[go: up one dir, main page]

JPS60227161A - Multigas sensor - Google Patents

Multigas sensor

Info

Publication number
JPS60227161A
JPS60227161A JP59084326A JP8432684A JPS60227161A JP S60227161 A JPS60227161 A JP S60227161A JP 59084326 A JP59084326 A JP 59084326A JP 8432684 A JP8432684 A JP 8432684A JP S60227161 A JPS60227161 A JP S60227161A
Authority
JP
Japan
Prior art keywords
porous
film
counter electrode
cds
cdse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59084326A
Other languages
Japanese (ja)
Other versions
JPH04220B2 (en
Inventor
Nanao Kawai
河合 七雄
Tomoji Kawai
知二 川合
Satoshi Sekido
関戸 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59084326A priority Critical patent/JPS60227161A/en
Publication of JPS60227161A publication Critical patent/JPS60227161A/en
Publication of JPH04220B2 publication Critical patent/JPH04220B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0031General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To enable simple and accurate measurement of the concn. of plural kinds of gases with one sensor by using a photoelectrochemical cell consisting of plural porous photoelectrodes consisting of two kinds of semiconductor compds. having different band gaps at changed compounding ratios and a sheet of common counter electrode. CONSTITUTION:The plural electrodes consisting of the porous photoelectrodes 1'1-1'n made of, for example, CdS and CdSe having different band gaps or CdTe alone or plural changed compounding ratios in such a way as to consist the electrodes of the CdS alone, 3/1, 1/1, 1/3 CdS/CdSe, 1/1 CdSe/CdTe and CdTe alone are provided on a conductive film which is a Cd<2+> impermeable polypyrrole film by sputtering. Hexafluoropolypropylene is electrostatically painted and baked on the electrodes 1'1-1'n to form an ion conductor film 2 having impermeability to the photoelectrode material ion. The counter electrode 5' common with the film 3 is formed of a platinum plate and an electrolyte (30% aq. sulfuric acid soln.) 4 is inserted between the film 3 and the counter electrode 5', by which a multigas sensor is obtd. 11-1n, 5 are lead wires. The simultaneous measurement of, for example, CH4, CH3OH, C2H5OH, HCO, HCOOH, CO, etc. is thus made possible with one cell.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光電極反応を利用するマルチガスセンサに関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a multi-gas sensor that utilizes photoelectrode reactions.

従来例の構成とその問題点 従来ガスセンサとしては、酸化物半導体セラミックの抵
抗変化を利用する半導体式と触媒による燃焼によって触
媒坦体内に埋込んだ白金線の抵抗が変化することを利用
する接触燃焼式が多く実用化されている。
Conventional configurations and their problems Conventional gas sensors include semiconductor type, which utilizes the change in resistance of oxide semiconductor ceramics, and catalytic combustion, which utilizes the change in resistance of a platinum wire embedded in a catalyst carrier due to catalytic combustion. Many formulas have been put into practical use.

これらでは半導体や触媒の種類、設定温度によって検知
できるガスの選択がある程度可能であるが、かなりの妨
害ガスが存在した。
Although it is possible to select the gases that can be detected to some extent depending on the type of semiconductor, catalyst, and set temperature, there are a considerable number of interfering gases.

これに対して有機高分子膜や固体電解質の選択透過性と
電気化学的計測手段を組合せたセンサが開発され、選択
性はかなり向上されているが、未だ完全なものを期待す
ることは難かしかった。
In response, sensors that combine the permselectivity of organic polymer membranes and solid electrolytes with electrochemical measurement methods have been developed, and the selectivity has been considerably improved, but it is still difficult to expect perfection. It was true.

また、これらはディスクリートのセンサであり、単一計
測を企図したものであって多くのガスの種類と濃度を同
時に単一センサで検知するものではなかった。
Furthermore, these sensors are discrete sensors intended for single measurement, and are not intended to simultaneously detect the types and concentrations of many gases with a single sensor.

発明の目的 本発明はバンドギャップの相異によって光反応するガス
の種類と濃度を同時に検知するもので、このような原理
に基ずく新しい形式のセンサを提供するものである。
OBJECTS OF THE INVENTION The present invention provides a new type of sensor based on this principle, which simultaneously detects the type and concentration of a photoreacting gas based on the difference in band gap.

発明の構成 本発明は一つの素子で複数種類の物質の同定と濃度を検
出できる選択性に優れたセンサであり、バンドギャップ
および価電帯と伝導体の電解液に対するポテンシャルが
少しずつ異なった複数の多孔質光電極を用意し、ガスの
種類によって光電極反応が起り出すポテンシャルが異な
ることを利用してその種類の同定を行なうとともに拡散
限界電流によって濃度を検出するマルチガスセンサであ
る。
Structure of the Invention The present invention is a sensor with excellent selectivity that can detect the identification and concentration of multiple types of substances with a single element. This is a multi-gas sensor that prepares a porous photoelectrode, identifies the type of gas by utilizing the fact that the potential for photoelectrode reactions to occur differs depending on the type of gas, and detects the concentration using the diffusion limit current.

実施例の説明 第1図は本発明の一実施例のマルチガスセンサの基本的
構造を示すものであり、イは正面図、口は側面図、ハは
背面図である。図において11〜1nは多孔質光電極か
らのリードである。通常pt箔を用いる。11〜1nは
バンドギャップの少しずつ異なる光電極で実施例1〜2
ではCd5on1.y。
DESCRIPTION OF THE EMBODIMENTS FIG. 1 shows the basic structure of a multi-gas sensor according to an embodiment of the present invention, in which A is a front view, the opening is a side view, and C is a rear view. In the figure, 11 to 1n are leads from the porous photoelectrode. Usually PT foil is used. 11-1n are photoelectrodes with slightly different band gaps, Examples 1-2
So Cd5on1. y.

CdS/CdSe = 3/1.1/j 、1/3、C
d5eonly。
CdS/CdSe = 3/1.1/j, 1/3, C
d5eon only.

CdSe/Cd5=7/1、CdTeonlyの単独捷
たは混合物を約5000人の厚みでCd2+4オン不透
過膜であるポリピロール膜からなる導電体膜3上にスパ
ッタして作った02は光電極電流が大気中からの検出ガ
スの拡散によって支配するだめの透明な材料の多孔質膜
で実施例では光電極11〜1ゎ上に六弗化ポリプロピレ
ンを静電塗装して200〜250℃ で焼付けて作った
。3は光電極が腐食しないようにするだめの光電極物質
イオン不透過性のイオン導電体膜である。4は電解液で
実施例では30%のH2S○4水溶液を用いた。5は対
極のリードである。5′は対極で実施例では一枚の平滑
白金板を用いた、6はセル容器で耐電解液性の樹脂で作
った、7は光電極要素1′1〜1′n、 2.3および
対極5′をセル容器6に固着するだめの接着材料でエポ
キシ系樹脂を用いた。
02 was made by sputtering CdSe/Cd5=7/1 and CdTeonly or a mixture thereof to a thickness of approximately 5000 mm on a conductor film 3 consisting of a polypyrrole film that is impermeable to Cd2+4 ions, and the photoelectrode current was It is a porous film made of a transparent material that is controlled by the diffusion of the detection gas from the atmosphere. In the example, it is made by electrostatically coating hexafluoride polypropylene on the photoelectrode 11~1゜ and baking it at 200~250°C. Ta. 3 is an ion conductor film impermeable to ions of the photoelectrode material to prevent corrosion of the photoelectrode. 4 is an electrolytic solution, and in the example, a 30% H2S4 aqueous solution was used. 5 is the opposite lead. 5' is a counter electrode, in which a single smooth platinum plate was used in the example; 6 is a cell container made of electrolyte-resistant resin; 7 is photoelectrode elements 1'1 to 1'n, 2.3, and Epoxy resin was used as the adhesive material for fixing the counter electrode 5' to the cell container 6.

い捷、光電極を500 WX eランプで照射しなから
CH4、CH30H,、C2H3O風HCH○、HCO
OH。
After irradiating the photoelectrode with a 500 WX e-lamp, CH4, CH30H,, C2H3O style HCH○, HCO
Oh.

Co 10’ppm (残りair )の雰囲気に曝し
た場合の各光電極に流れる対極との間の短絡電流を゛測
定したものである。
The short-circuit current flowing between each photoelectrode and the counter electrode was measured when exposed to an atmosphere of 10'ppm Co (remaining air).

その電流を、第2図のそれぞれ1〜6に示した。The currents are shown in numbers 1 to 6 in FIG. 2, respectively.

これから、光電流の流れ出すのは光電極の価電帯の上用
がガスの酸化/還元電位より約150mV以JJ、ノ電
極であり、酸化/還元電位(CH40,169v1CH
30HQ、o44v1C2H5oH0,028v1HC
HO−0,050V、HCOOH−o、1ssV、C0
−0,103V )と良く対応していることが認められ
る。
From this, the photocurrent flows from the electrode where the valence band of the photoelectrode is about 150 mV higher than the oxidation/reduction potential of the gas, and the oxidation/reduction potential (CH40, 169v1CH
30HQ, o44v1C2H5oH0,028v1HC
HO-0,050V, HCOOH-o, 1ssV, C0
-0.103V).

言い換えるとその対応関係を予備的に見て置けはどの電
極から光電流が流れ始めるかによってカスの種類を知る
ことができる。捷だ、この実施例からいずれのガス種と
もバンドギャップの大きい光電極で飽和電流値を示すこ
とが認められた。
In other words, if we take a preliminary look at the correspondence relationship, we can determine the type of debris by looking at which electrode the photocurrent begins to flow from. From this example, it was confirmed that a photoelectrode with a large band gap exhibits a saturation current value for any gas type.

この飽和電流値が拡散限界電流によっているか、言い換
えるとその飽和電流値iλ によってガス濃度を知るこ
とができるかとうかを見るためCH30)′i濃度を1
0〜200ppmの範囲で変え、充分飽和電流値を示し
ているCdS光電極に流れる電流値を測定した。
In order to see whether this saturation current value is due to the diffusion limit current, in other words, whether the gas concentration can be determined from the saturation current value iλ, CH30)'i concentration is set to 1.
The current value flowing through the CdS photoelectrode which showed a sufficient saturation current value was measured by changing the current value in the range of 0 to 200 ppm.

この値は第3図に示すように全くガス濃度に比例してお
り、これから単一ガスならばこれからガス濃度が知り得
ることが分った。
As shown in FIG. 3, this value is completely proportional to the gas concentration, and it was found from this that the gas concentration can be determined for a single gas.

混合ガスによる光電流の影響を見るためにCH4、CH
30H,、HCOoHを60と1100ppずつを混合
した雰囲気下での光電流をめた。この場合、ガスの種類
の検出精度を上げるだめ、光電極の固溶比をCdTe/
Cd5e=3/1.1/3とCdSe/Cd5=7/1
とした。
CH4, CH to see the effect of photocurrent due to mixed gas
The photocurrent was measured in an atmosphere containing 60 and 1100 pp of 30H, HCOoH. In this case, in order to increase the detection accuracy of the gas type, the solid solution ratio of the photoelectrode is changed to CdTe/
Cd5e=3/1.1/3 and CdSe/Cd5=7/1
And so.

第4図のイと口にそれぞれのガス雰囲気での光電流を示
した。
The photocurrents in each gas atmosphere are shown at A and A in Figure 4.

この結果と第2図および第3図の単独ガスでの結果を併
せて見ると、第4図6光電流が単独ガスの光電流の和を
示していることが認められる。それは幾つかの光電流の
平坦部によって構成される。
When this result is viewed together with the results for single gases in FIGS. 2 and 3, it is recognized that the photocurrent in FIG. 46 shows the sum of the photocurrents for single gases. It is constituted by several photocurrent plateaus.

平坦部からの光電流の立上がるバンドギャップははソ単
独ガスの光電流が流れ出すノくンドギャノプに一致する
から、これによってガスの種類を固定できる。
The band gap at which the photocurrent rises from the flat region corresponds to the gap at which the photocurrent of a single gas flows, so the type of gas can be fixed by this.

また、平坦電流は複数ガス種の飽和電流の和になってい
るから、それを対比することによって混合ガス中の単独
ガスの濃度を知ることができる。
Furthermore, since the flat current is the sum of the saturation currents of multiple gas species, the concentration of a single gas in the mixed gas can be determined by comparing them.

なお、上記実施例においては、多孔質光電極は電解液と
ガスに関して固−液一気の三相領域を形成しており、光
電極反応は拡散律速になるようなっている。
In the above embodiment, the porous photoelectrode forms a solid-liquid three-phase region with respect to the electrolytic solution and gas, so that the photoelectrode reaction is diffusion-controlled.

発明の効果 このように一つのセンサに光電極を併設し、それぞれの
光電流を測ることによって複数のガスとその濃度を簡単
に知ることができる従来にない効果が期待できる。
Effects of the Invention As described above, by attaching a photoelectrode to one sensor and measuring the photocurrent of each, an unprecedented effect can be expected in which a plurality of gases and their concentrations can be easily known.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ〜I\は本発明の一実施例のマルチセンサの正
面図、側面図および背面図、第2図は同マルチセンサを
単独ガス雰囲気に曝した場合の各光電極に流れる電流を
示す図、第3図は同マルチセンサをCH30H雰囲気に
曝した場合、CdS光電極の電流とCH30H濃度との
関係を示す図、第4図は同マルチセンサを混合ガスに曝
らした場合の各光電極に流れる電流を示す図である。 11〜1n・・・・・多孔質光電極、2・・・・・・透
明多孔質膜、3・・・・・導電体膜、4・・・・・・電
解液、6・・・・・・対極リード、6・・・・・・セル
容器、7・・・・・・接着材料。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 (イノ (ロノ (7\] 第 2 図。 ” t、4 /、6 L、S z、o 2.2 2.4
第3図 θ 4Q 80 120/60 2θθQH30/−1
淫渡(Inn−) 第4図
Figures 1-I are a front view, side view, and rear view of a multi-sensor according to an embodiment of the present invention, and Figure 2 shows the current flowing through each photoelectrode when the multi-sensor is exposed to a single gas atmosphere. Figure 3 shows the relationship between the CdS photoelectrode current and CH30H concentration when the multi-sensor is exposed to a CH30H atmosphere, and Figure 4 shows the relationship between the CdS photoelectrode current and CH30H concentration when the multi-sensor is exposed to a mixed gas. FIG. 3 is a diagram showing a current flowing through a photoelectrode. 11-1n... Porous photoelectrode, 2... Transparent porous membrane, 3... Conductor film, 4... Electrolyte, 6... ... Counter electrode lead, 6 ... Cell container, 7 ... Adhesive material. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure (Ino (Rono (7\) Figure 2. ” t, 4 /, 6 L, S z, o 2.2 2.4
Figure 3 θ 4Q 80 120/60 2θθQH30/-1
Inn- (Inn-) Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)1バンドギヤツプの異なる2種類の半導体化合物
か、それらを配合割合を変えて固溶化した原材料から々
る複数の多孔質光電極を並列に接続し、前記複数の多孔
体電極に共通の対極との間で光電気化学セルを構成し、
前記多孔質光電極のガス側を多孔質透明物質で被覆し、
前記多孔体の電解質側を電極物質のイオンが不透過なイ
オン導電11C膜で被覆したことを特徴とするマルチガ
スセンサ。
(1) A plurality of porous photoelectrodes made of two types of semiconductor compounds with different 1 band gaps or raw materials obtained by solid solutioning them with different blending ratios are connected in parallel, and a counter electrode common to the plurality of porous electrodes is connected in parallel. A photoelectrochemical cell is constructed between
coating the gas side of the porous photoelectrode with a porous transparent material;
A multi-gas sensor characterized in that the electrolyte side of the porous body is coated with an ion-conductive 11C film that is impermeable to ions of an electrode material.
(2)多孔体電極はCdSとCdSeあるいはCdTe
の単独もしくは複数との配合割合を変えた固溶体であり
、対極はptもしくはPd金属を用いることを特徴とす
る特許請求の範囲第1項記載のマルチガスセンサ。
(2) The porous electrode is made of CdS and CdSe or CdTe.
2. The multi-gas sensor according to claim 1, wherein the multi-gas sensor is a solid solution in which the mixing ratio of one or more of these is varied, and the counter electrode is made of PT or Pd metal.
JP59084326A 1984-04-25 1984-04-25 Multigas sensor Granted JPS60227161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59084326A JPS60227161A (en) 1984-04-25 1984-04-25 Multigas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59084326A JPS60227161A (en) 1984-04-25 1984-04-25 Multigas sensor

Publications (2)

Publication Number Publication Date
JPS60227161A true JPS60227161A (en) 1985-11-12
JPH04220B2 JPH04220B2 (en) 1992-01-06

Family

ID=13827389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59084326A Granted JPS60227161A (en) 1984-04-25 1984-04-25 Multigas sensor

Country Status (1)

Country Link
JP (1) JPS60227161A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466556A (en) * 1993-05-14 1995-11-14 Brother Kogyo Kabushiki Kaisha Photosensitive microencapsulated toner
US5470683A (en) * 1993-07-28 1995-11-28 Brother Kogyo Kabushiki Kaisha Photosensitive microcapsule toner
RU2613482C1 (en) * 2015-11-13 2017-03-16 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Ammonia semiconductor sensor
RU2652646C1 (en) * 2017-03-20 2018-04-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Ammonia trace contaminant sensor
RU2760311C1 (en) * 2021-05-19 2021-11-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет"(ОмГТУ) Carbon monoxide sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466556A (en) * 1993-05-14 1995-11-14 Brother Kogyo Kabushiki Kaisha Photosensitive microencapsulated toner
US5470683A (en) * 1993-07-28 1995-11-28 Brother Kogyo Kabushiki Kaisha Photosensitive microcapsule toner
RU2613482C1 (en) * 2015-11-13 2017-03-16 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" Ammonia semiconductor sensor
RU2652646C1 (en) * 2017-03-20 2018-04-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Ammonia trace contaminant sensor
RU2760311C1 (en) * 2021-05-19 2021-11-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет"(ОмГТУ) Carbon monoxide sensor

Also Published As

Publication number Publication date
JPH04220B2 (en) 1992-01-06

Similar Documents

Publication Publication Date Title
US5322602A (en) Gas sensors
DE69624885T2 (en) Sensor for carbon monoxide and toxic gases with moisture compensation using proton-conducting membranes and their manufacturing processes
EP0790498B1 (en) Electrochemical sensors with improved selectivity and increased sensitivity
US4265714A (en) Gas sensing and measuring device and process using catalytic graphite sensing electrode
DE2627271C2 (en) Electrochemical cell with a polarographic device with ion-selective electrode as working and reference electrode
GB2164156A (en) Electrochemical gas sensor
US5004532A (en) Amperometric cell
TWI631329B (en) Planar dissolved oxygen sensing electrode and manufacturing method thereof
US3622488A (en) Apparatus for measuring sulfur dioxide concentrations
CA2872236C (en) Methods and apparatus for measuring the total organic content of aqueous streams
JP2012504237A (en) Nitrogen oxide gas sensor
Shibata et al. Electrocatalysis by ad-atoms: part XXI. Catalytic effects on the elementary steps in methanol oxidation by non-oxygen-adsorbing ad-atoms
JPS60227161A (en) Multigas sensor
CN2548158Y (en) Disposable electrochemical sensor for measuring blood lend concentration
CN1043488C (en) Solid polymer electrolyte, capillary type oxygen sensor
JPH0640092B2 (en) Humidity measurement method
EP0227281A2 (en) Electrochemical testing system
Wallgren et al. Oxygen sensors based on a new design concept for amperometric solid state devices
Xing et al. Electrochemical oxidation and the quantitative determination of carbon monoxide on metal–solid polymer electrolyte (SPE) system
GB2180653A (en) Electrochemical cell
EP0230289A2 (en) Electrochemical determination of formaldehyde
Wallgren et al. Electrochemistry of planar solid-state amperometric devices based on Nafion® and polybenzimidazole solid polymer electrolytes
EP0230573B1 (en) Selectively ion-permeable dry electrodes for analyzing selected ions in aqueous solution
Brockman et al. Permeable membrane mass spectrometry of products of electrochemical oxidation of carboxylate ions
Hanselman et al. Coulometric Passage of Reagents through Ion Exchange Membranes