JPS6022680A - Wave radar observation system - Google Patents
Wave radar observation systemInfo
- Publication number
- JPS6022680A JPS6022680A JP58131340A JP13134083A JPS6022680A JP S6022680 A JPS6022680 A JP S6022680A JP 58131340 A JP58131340 A JP 58131340A JP 13134083 A JP13134083 A JP 13134083A JP S6022680 A JPS6022680 A JP S6022680A
- Authority
- JP
- Japan
- Prior art keywords
- wave
- data
- spectrum
- circuit
- radar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/95—Radar or analogous systems specially adapted for specific applications for meteorological use
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、船舶用パルスレーダにとって不要とされる海
面反射からの信号を利用し、波浪の移動する方向とその
速度を測定するレータ″観測方式に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radar observation method for measuring the moving direction and speed of waves by using signals from sea surface reflections that are unnecessary for a marine pulse radar.
波浪によって生じる海面からの反射は、船舶等の目標と
する信号の検出をさまたげるたゾ)。Reflections from the sea surface caused by waves can hinder the detection of signals targeted by ships, etc.).
従来では不要な信号として除去されるべき装置が実用化
されてきた。ところがここ数年の)ちに、波浪によって
生じる海面からの反射信号を積極的に利用し、波浪の波
長、方向等を算出する方式が実用化されつつある。Conventionally, devices have been put into practical use that should be removed as unnecessary signals. However, in recent years, methods have been put into practical use that actively utilize signals reflected from the sea surface caused by waves to calculate wave wavelengths, directions, etc.
これはレーダ指示機からJ”P Iスコーゾ写真を撮り
、この写真からフォトセンザを使いXY方向にスキャン
してアナログからプイジタルに゛変換し、2次元フーリ
エ変換により空間的な・;ワースベクトルを算出し、波
浪の波長と方向をめる方式である。(日本航海学会論文
集N[L66P、 127〜135 昭和57年5月[
船舶レーダを利用した波浪解析の一方法」)
しかしながら、この方式ではパワースペクトルが点対称
となり波の方向がどぢらかわからないし、波の移動速度
も出せないという欠点があった。This involves taking a J"P I scozo photograph from a radar indicator, scanning this photograph in the X and Y directions using a photosensor, converting it from analog to digital, and calculating the spatial worth vector using two-dimensional Fourier transformation. , is a method of determining the wavelength and direction of waves. (Proceedings of the Japanese Society of Navigation N [L66P, 127-135 May 1980 [
(A method of wave analysis using ship radar) However, this method had the disadvantage that the power spectrum was point symmetrical, making it impossible to determine the direction of the waves and not being able to determine the speed at which the waves were traveling.
の
本発明は、波浪信号の2画面相互相関により△
求めたスペクトル即ちクロススペクトルをレーダ空中線
の1回転ごとに演算し、その振幅と位相から波浪の真の
移動方向と速度をめる波浪レーダ観測方式を提供するも
ので、以下にこれを図面に基づき詳細に説明する。The present invention is a wave radar observation method in which the spectrum obtained by two-screen cross-correlation of wave signals, that is, the cross spectrum, is calculated for each revolution of the radar antenna, and the true moving direction and speed of the waves are determined from the amplitude and phase. This will be explained in detail below with reference to the drawings.
第1図は本発明方式の一実施例を示すブロツク図で、1
はレーダ空中線、2は送信機、3は対数増幅受信機、4
はA、7.1)変換回路、5はゲート設定回路、6は補
正回路、7はXY変換回路8は2次元プロセッサ、9は
表示回路である。FIG. 1 is a block diagram showing an embodiment of the method of the present invention.
is a radar antenna, 2 is a transmitter, 3 is a logarithmic amplification receiver, 4
7.1) is a conversion circuit, 5 is a gate setting circuit, 6 is a correction circuit, 7 is an XY conversion circuit, 8 is a two-dimensional processor, and 9 is a display circuit.
第2図は波浪からの受信信号のPPI写真で。Figure 2 is a PPI photo of the received signal from the waves.
波浪は2次元に拡がった縞模様となり、扇形の黒い枠は
ゲート設定回路5を使って波浪の強く出ている範囲を波
浪の波長の分布程度、即ち短い波長と長い波長が共存し
ているときには長い波長に対して1波長の範囲または短
い波長に対しては5波長の範囲(長い波長は300m位
まであり、短い波長は50m位が観測の対象であるので
)のデータをA/D変換回路4でアナログからディジタ
ルに変換する。補正回路6はレーダの受信信号が近距離
で強くなるため、一様な強さに変換する回路と対数特性
を持った信号強度を直線特性に変換する回路である。X
Y変換回路7は極座標として入って来るデータを解析の
都合上、直交座標に変換する回路である。第3図(a)
は極座標から直交座標に変換された信刊て。The waves form a striped pattern that spreads in two dimensions, and the fan-shaped black frame uses the gate setting circuit 5 to determine the area where the waves are strongly appearing, based on the wave wavelength distribution, that is, when short wavelengths and long wavelengths coexist. The A/D conversion circuit converts data in one wavelength range for long wavelengths or five wavelength ranges for short wavelengths (long wavelengths are up to about 300 m, and short wavelengths are observed at about 50 m). Step 4 converts from analog to digital. The correction circuit 6 is a circuit that converts the received signal of the radar into a uniform intensity because it becomes stronger at a short distance, and a circuit that converts the signal intensity having a logarithmic characteristic into a linear characteristic. X
The Y conversion circuit 7 is a circuit that converts data input as polar coordinates into rectangular coordinates for convenience of analysis. Figure 3(a)
is the newsletter converted from polar coordinates to rectangular coordinates.
波浪からの受信信号がX方向に正弦波状に拡がっており
、第3図(b)ではレーダの空中線が1回転する時間に
波がφたけ移動したものを示す。The received signal from the waves spreads in the X direction in the form of a sine wave, and FIG. 3(b) shows that the waves move by φ in the time it takes for the radar antenna to rotate once.
式の簡略化のため1次元で記述すると第3図(a)は
f +=Asln @%;1) A:振幅嘲1:波の波
数
となり、第3図(b)では
L = As1n(j’t%t−φ)φ:位相となる。To simplify the equation, if we describe it in one dimension, Fig. 3(a) becomes f + = Asln @%; 1) A: amplitude 1: wave number of the wave, and Fig. 3(b) shows L = Asln 't%t-φ)φ: Phase.
2次元プロセッサ8は4才ずFF’L”プロセ、ザによ
りLとf2のフーリエ変換を行い、それぞれFlとF2
とすれば、波浪信号の2画面の相互相関によりめたスペ
クトル即ちクロススペクトルは
S+t=F+”CP* *:?N素共役となる。Slの
実数部を1.Lc、虚数部を1mとすればS12の振幅
Srと位相Sφは
Sr−147口;
8φ= jan ’ (Im/H,c )となる。The two-dimensional processor 8 performs the Fourier transform of L and f2 using the 4-year-old FF'L'' process, and obtains Fl and F2, respectively.
Then, the spectrum determined by the cross-correlation of the two screens of the wave signal, that is, the cross spectrum, is S+t=F+"CP* *:?N prime conjugate. Let the real part of Sl be 1.Lc and the imaginary part be 1m. For example, the amplitude Sr and phase Sφ of S12 are Sr-147; 8φ=jan' (Im/H,c).
第4図(a) 、 (b)は、Sr、::Sφを図示し
たもので。Figures 4(a) and 4(b) illustrate Sr::Sφ.
Srは対称になっており波の移動方向がわからない。と
ころがφ−0でない限り、すなわちレーダの空中線の1
回転の時間で波の移動があればSφの符号は対称にはな
らない。第3図では2波はχの正の方向へ動いており振
幅スペクトルの正側を残ぜばよい。2次元の場合は、振
幅スペクトルが点対称となり、それぞれの位相スペクト
ルの符号が異なる場合、負の位相を持った振幅スペクト
ルと位相スペクトルを残し、同符号の場合はどちらも残
すようにする1、
次に2次元に拡がった振幅スペクトルと位相スペクトル
の分布から方向と速riをめるために22.5度ずつの
16方位に区切り、その中で振幅の大きいものから数個
選択し、その振幅を持つ波数と位相の平均値をめる。1
6方位のうち最大のものが波の向いている方向で、平均
波数に、平均位相φ(度)、アンテナの回転時間1がら
波の移動速度V(m/S)は
L φ
V=(−x−0)/l Lは解析データ1ノ・招こK
360
おける波の最大波長としてまる。Sr is symmetrical and the direction of wave movement is unknown. However, unless φ-0, that is, 1 of the radar antenna
If there is movement of the wave during rotation, the sign of Sφ will not be symmetrical. In FIG. 3, the two waves are moving in the positive direction of χ, so it is sufficient to leave the positive side of the amplitude spectrum. In the two-dimensional case, if the amplitude spectrum is point symmetric and the signs of the phase spectra are different, leave the amplitude spectrum and phase spectrum with negative phase, and if they have the same sign, leave both 1. Next, in order to determine the direction and speed ri from the distribution of the amplitude spectrum and phase spectrum spread two-dimensionally, divide it into 16 directions of 22.5 degrees each, select a few from among those with large amplitudes, and Calculate the average value of the wave number and phase with . 1
The largest direction among the six directions is the direction in which the waves are facing, the average wave number, the average phase φ (degrees), the rotation time of the antenna 1, and the moving speed of the wave V (m/S) are L φ V=(- x-0)/l L is analysis data 1/invitation K
The maximum wavelength of the wave at 360 degrees.
表示回路9は、このようζこしてまった16個の方向き
移動速度のうち振幅スペクトルの太きいものから順番に
方向と速度を数個表示する回路である。The display circuit 9 is a circuit that displays several directions and velocities in order from the one with the thickest amplitude spectrum among the 16 directional movement velocities thus obtained.
以上のように、波浪のクロススペクトルから波の方向と
速度の算出ができるが1周知のようにクロススペクトル
を逆フーリエ変換ずれば相互相関関数が得られ、そのピ
ークの方向と偏位から波の方向と速度をめることも可能
である。As mentioned above, the wave direction and velocity can be calculated from the wave cross spectrum, but as is well known, if the cross spectrum is subjected to inverse Fourier transform, the cross correlation function can be obtained, and from the direction and deviation of the peak, the wave direction and velocity can be calculated. It is also possible to calculate direction and speed.
以上説明したように、波の移動する方向とその速度がわ
かることから、大きな波の回避、進行方向に対する最適
コースの選択ができ船舶の安全でしかも効率的運航に寄
与する。また、今までの目視観測に比へ正確で定置的な
データが得られるため気象庁への通報業務の簡易化とデ
ータの信頼性を高められる。As explained above, since the direction in which waves are moving and their speed can be known, it is possible to avoid large waves and select the optimal course for the direction of travel, contributing to the safe and efficient operation of ships. Additionally, since it is possible to obtain stationary data that is more accurate than conventional visual observation, reporting to the Japan Meteorological Agency can be simplified and data reliability can be increased.
第1図は本発明方式の一実施例を示すブロック図、第2
図は波浪のレータ用〕P丁写真、第3図(a)及び(1
))はいずれも極座標からXY直交座標への変換の図、
第4図(21)及び(1))は正弦波のクロススペクト
ルの振幅と位相を示す図である。
1 ・空中線、2・・送信機、:′)・対数増幅受信機
、4・−Δ/D変換回路、5・・ゲー]・設定回路。
6・・補正回路、7・・XY変換回路、8・・2次元プ
ロセッサ、9・・表示回路
特許出願人 日本無線株式会社
第2図
第3囚
(a)
オfJ!刀1オ票 直交111票
第4図
(a)
:FL数
(b)FIG. 1 is a block diagram showing an embodiment of the method of the present invention, and FIG.
The figure is for Wave Rator] P-page photograph, Figures 3 (a) and (1)
)) are all diagrams of conversion from polar coordinates to XY orthogonal coordinates,
FIG. 4 (21) and (1)) are diagrams showing the amplitude and phase of the cross spectrum of a sine wave. 1. Antenna, 2. Transmitter, :'). Logarithmic amplification receiver, 4. -Δ/D conversion circuit, 5.. Setting circuit. 6. Correction circuit, 7. Katana 1 O vote Orthogonal 111 votes Figure 4 (a): Number of FL (b)
Claims (1)
得られるレーダにとっては不要とされる海面反射からの
信号をアナログ・ディジタル交換し、極座標系から直交
座標系に変換したレーダ空中線の1回転ごとに得られる
データのうち最初の両面の範囲と次の画面の範囲を前後
左右それぞれの波浪の5波長から1波長の範囲内のデー
タ間で2次元相互相関のデジタル演算を1’ IぎJ″
ζこより演算してめたスペクトルの振幅上位相情報から
波浪の方向と船に対する相対速度をめることを特徴とす
る波浪レータ観測方式。In a marine pulse radar, signals from sea surface reflections that are unnecessary for the radar obtained from the logarithmic detection output of the received waves are exchanged between analog and digital, and are obtained every rotation of the radar antenna converted from a polar coordinate system to a rectangular coordinate system. Digital calculation of two-dimensional cross-correlation is performed between data within the range of 5 wavelengths to 1 wavelength of the waves on the front, back, left, and right sides of the first two-sided range and the next screen range of the data that is displayed.
A wave radar observation method characterized by determining the wave direction and relative speed to the ship from the amplitude and phase information of the spectrum calculated from ζ.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58131340A JPS6022680A (en) | 1983-07-19 | 1983-07-19 | Wave radar observation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58131340A JPS6022680A (en) | 1983-07-19 | 1983-07-19 | Wave radar observation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6022680A true JPS6022680A (en) | 1985-02-05 |
JPH0230674B2 JPH0230674B2 (en) | 1990-07-09 |
Family
ID=15055648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58131340A Granted JPS6022680A (en) | 1983-07-19 | 1983-07-19 | Wave radar observation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6022680A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61270682A (en) * | 1985-05-25 | 1986-11-29 | Japan Radio Co Ltd | Wave display device of ship radar |
JPS6384875A (en) * | 1986-07-14 | 1988-04-15 | デ ビアス インダストリアル ダイアモンド デイビジヨン (プロプライエタリイ) リミテツド | Manufacture of composite diamond polishing molded form |
JPH03262990A (en) * | 1990-03-13 | 1991-11-22 | Tech Res & Dev Inst Of Japan Def Agency | wave observation radar |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4827330B2 (en) * | 2001-07-09 | 2011-11-30 | 日本無線株式会社 | Radar wave measuring method and apparatus |
-
1983
- 1983-07-19 JP JP58131340A patent/JPS6022680A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61270682A (en) * | 1985-05-25 | 1986-11-29 | Japan Radio Co Ltd | Wave display device of ship radar |
JPS6384875A (en) * | 1986-07-14 | 1988-04-15 | デ ビアス インダストリアル ダイアモンド デイビジヨン (プロプライエタリイ) リミテツド | Manufacture of composite diamond polishing molded form |
JPH03262990A (en) * | 1990-03-13 | 1991-11-22 | Tech Res & Dev Inst Of Japan Def Agency | wave observation radar |
Also Published As
Publication number | Publication date |
---|---|
JPH0230674B2 (en) | 1990-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4283767A (en) | Multiple correlator reference processor | |
Huang et al. | Mapping of ocean currents in shallow water using moving ship acoustic tomography | |
KR100742467B1 (en) | Method and apparatus for visualization of motion in ultrasound flow imaging using packet data acquisition | |
CN104898103B (en) | Low velocity target detection method based on multichannel clutter map | |
CN103293521B (en) | Method for detecting water depth of offshore sea by X-band radar | |
CN111045005B (en) | Sea wave height calculation method, terminal and measurement system | |
US7450470B2 (en) | High resolution images from reflected wave energy | |
US5559756A (en) | Acoustic intercept reciever-combined frequency and bearing processor | |
JPH0548692B2 (en) | ||
US10816651B2 (en) | Ultrasonic diagnosis device | |
US7942821B2 (en) | Doppler velocity detection device and ultrasonographic device using the same | |
JPS63317137A (en) | Ultrasonic blood flow imaging apparatus | |
EP3444632A1 (en) | Signal processing device and radar apparatus | |
JPS6022680A (en) | Wave radar observation system | |
JPH0431265B2 (en) | ||
JP2969202B2 (en) | 3D object recognition method using neural network | |
CN113281740A (en) | Ultra-wideband Doppler radar life detection system | |
CN116482664A (en) | Reverberation suppression method based on angle-delay-Doppler three-dimensional deconvolution | |
CN115166681B (en) | Method and system for rapidly detecting through-wall radar target by frequency modulation continuous wave signal system | |
JPH05277111A (en) | Ultrasonic blood flow imaging device | |
CN115079174B (en) | A method for two-dimensional super-resolution imaging of a deep space probe hovering downward | |
JPH0231835B2 (en) | HAROREEDAKANSOKUHOSHIKI | |
JPH0728865B2 (en) | Ultrasonic diagnostic equipment | |
WO2021100402A1 (en) | Solid-state radar device | |
JPH07394A (en) | Ultrasonic doppler diagnostic system |