JPS60224275A - Manufacture of insulating-substrate-mis type field effect transistor - Google Patents
Manufacture of insulating-substrate-mis type field effect transistorInfo
- Publication number
- JPS60224275A JPS60224275A JP59079503A JP7950384A JPS60224275A JP S60224275 A JPS60224275 A JP S60224275A JP 59079503 A JP59079503 A JP 59079503A JP 7950384 A JP7950384 A JP 7950384A JP S60224275 A JPS60224275 A JP S60224275A
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- point metal
- melting
- field effect
- effect transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/6737—Thin-film transistors [TFT] characterised by the electrodes characterised by the electrode materials
- H10D30/6739—Conductor-insulator-semiconductor electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6741—Group IV materials, e.g. germanium or silicon carbide
- H10D30/6743—Silicon
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はM I 8 (Metal−Insulate
r−Be−miconductor)型電界効果トラン
ジスタ(以降はMI8 FET)の製造方法に関し、特
に絶縁性透明基板を用いたMI8 ’ PETのソース
、ドレイン、ゲート各電極上にシリサイドを形成して低
抵抗化する方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to MI 8 (Metal-Insulate
Regarding the manufacturing method of (r-Be-miconductor) type field effect transistor (hereinafter referred to as MI8 FET), in particular, we have developed a method to reduce resistance by forming silicide on the source, drain, and gate electrodes of MI8' PET using an insulating transparent substrate. Regarding how to.
(従来技術とその問題点)
従来高性能MI8 FETにおいては、ゲート電極とソ
ース・ドレイン電極が自己整合的に形成できるため、ポ
リシリコンをゲート電極材料として使用したものが一般
的である。この構造では、ソース、ドレイン、ゲート各
電極の抵抗が素子のダイナミ、りな特性に対して問題と
なる。一般的なプロセス工程ではソース、ドレイン電極
のシート抵抗はn+の場合十数Ω/口、p十で1000
/口前後、ポリシリコンはn+で加〜(9)Ω/口、p
+で200〜300Ω/口程度となる。この抵抗を下げ
る一方法として各電極をシリサイド化して低抵抗化をは
かることが行われている。シリサイド化に関してはこれ
を均一に行うために、高融点金属を付着後高融点金属−
シリコン界面に不純物をイオン注入して界面を混合させ
た後、低温で熱処理してシリサイド化するITM法(1
ion implantationthrough m
e t a l f i 1m法)が良い。I’I’M
法は例えばB、Nagasawa etal、@A 8
elf −Aligred Mo−8i1icido
Formation JJAPVol 22. A I
、 Jan、1983 PPL57〜L59に記載さ
れている。(Prior art and its problems) Conventional high-performance MI8 FETs generally use polysilicon as the gate electrode material because the gate electrode and source/drain electrodes can be formed in a self-aligned manner. In this structure, the resistance of the source, drain, and gate electrodes poses a problem for the dynamics and characteristics of the device. In general process steps, the sheet resistance of the source and drain electrodes is 10-odd Ω/hole for n+ and 1000 for p-10.
/ before and after the mouth, polysilicon is added with n+ ~ (9) Ω / mouth, p
+ is about 200-300Ω/mouth. One way to lower this resistance is to silicide each electrode to lower the resistance. Regarding silicidation, in order to perform this uniformly, after depositing the high melting point metal,
The ITM method (1
ion implantation through m
Et alf i 1m method) is good. I'I'M
For example, B, Nagasawa et al, @A 8
elf-Aligred Mo-8i1icido
Formation JJAP Vol 22. AI
, Jan, 1983 PPL57-L59.
この方法では例えばシリコン(8i)上fこチタン(T
i)を厚さ約400大蒸着し、8iイオンをF3MeV
で5X10CIIl イオノ注入し、約550℃で20
分程度熱処理してシリサイド化すること−こより約10
070程度のシート抵抗が得られ、この後残ったチタン
をエッチ除去しざらに800℃程度の熱処理をすること
により約3Ω/口程度まで低下する。In this method, for example, titanium (T) is used on silicon (8i).
i) was deposited to a thickness of approximately 400 mm, and 8i ions were deposited at F3MeV.
5X10 CIIl iono-injection at approximately 550°C for 20
Heat treatment for about 10 minutes to form a silicide.
A sheet resistance of about 0.070°C is obtained, which is then reduced to about 3Ω/hole by etching away the remaining titanium and performing heat treatment at about 800°C.
このITM法ではゲートポリシリコンの側壁を垂直に近
い形状壷こすればメタルが付いていても注入イオンによ
る界面混合がなく、低温の熱処理ではシリサイド化しに
くいためゲート電極と、ソース・ドレイン電極が自己整
合的にシリサイド化できることが特徴である。In this ITM method, if the sidewall of the gate polysilicon is rubbed with a nearly vertical pot, there will be no interfacial mixing due to implanted ions even if there is metal, and it is difficult to turn into silicide with low-temperature heat treatment, so the gate electrode and source/drain electrode are self-aligned. It is characterized by its ability to be silicided.
しかし8iイオン、Arイオンなど比較的軽いイオンで
界面混合する時は充分な混合が行えず、多少高い温度の
熱処理が必要となる。このためゲートポリ8iの側壁に
おいてもシリサイド化が発生しゲート電極、ソース・ド
レインを極間の短絡が起る。これを防ぐためゲート側壁
に酸化膜、窒化膜などの絶縁物を形成することが行われ
る。However, when interfacial mixing is performed with relatively light ions such as 8i ions and Ar ions, sufficient mixing cannot be achieved and heat treatment at a somewhat high temperature is required. Therefore, silicidation also occurs on the side walls of the gate polygon 8i, causing a short circuit between the gate electrode, source, and drain. To prevent this, an insulator such as an oxide film or a nitride film is formed on the gate sidewalls.
絶縁性基板上の半導体を用いたMI8 FETは接合容
量、配線容量が少く、各素子間の分離が完全であること
などの特徴をもち、高速・高密度な集積回路への応用と
いう点から注目されている。The MI8 FET, which uses a semiconductor on an insulating substrate, has characteristics such as low junction capacitance, low wiring capacitance, and complete isolation between each element, and is attracting attention from the perspective of application to high-speed, high-density integrated circuits. has been done.
この素子へ前記したシリサイド化技術を適用することは
、より高性能なデバイスを形成するうえで重要である。Applying the above-mentioned silicidation technology to this element is important in forming a higher performance device.
第1図(a) 〜(e)の例は、808 (Silic
on 0n8apph i r e)を用いたMI8
F’B’l’に上記シリサイド化を適用する時、従来と
同様の技術で行う場合の工程を示す模式的断面図である
。同図(a)は通常の80Sの工程でゲート電極とソー
ス・ドレイン拡散層を形成したトランジスタの断面を示
し、同図Φ)は、全面にOVD法によりシリコン窒化膜
を付けたもの、同図(C)はΦ)の試料を上面よりドラ
イエッチし、ゲートポリシリコンを極4の側壁にのみ前
記窒化膜を残したものを示す。単結晶シリコンは島状ζ
こ加工する際ヒドラジン等で異方性工、チングを行なっ
ているので端部は約54°のテーパーが付いており窒化
膜は残らない、同図(d)は上面にTi膜を蒸着し8i
イオンを80 K e Vの加速エネルギーで5×10
c1rL イオノ注入する工程を示す。同図(e)はイ
オン注入後550℃で加分間アニールし、次いで未反応
のTiをエツチング除去した後の断面を示す。島状シリ
コン端のテーパ一部は平坦部に比べてイオンが入りtこ
<<、界面混合が充分lこ行なわれないため熱反応によ
るシリサイド化が異常に進みサファイア基板上にのび出
してしまう。この辺の事情を第2図の部分断面斜視図を
用いて詳細に示す。図中1はサファイア基板、2は島状
シリコン(トランジスタを構成する)、3はゲート絶縁
膜、4はゲートポリシリコン電極、11はゲート側壁に
形成された絶縁膜、31,32はITM法によりて形成
された、それぞれゲート電極上及びソース・ドレイン拡
散層上のシリサイド層、おは島状シリコンのテーパ一部
に異常lこ成長した熱反応によるシリサイド層、箕はシ
リサイド層おがゲート側壁の絶縁膜11の下にもぐりこ
んでサファイア−ゲートポリシリコン界面にくい込んだ
ものをそれぞれ示している。このシリサイド層あが原因
となりてゲート電極とソース・ドレイン電極の短絡が発
生する。The examples in FIGS. 1(a) to (e) are 808 (Silic
MI8 using on 0n8apph ire)
FIG. 6 is a schematic cross-sectional view showing a process when applying the above-mentioned silicidation to F'B'l' using a technique similar to the conventional technique. Figure (a) shows a cross section of a transistor in which a gate electrode and source/drain diffusion layers are formed using the normal 80S process, and Figure Φ) shows a cross section of a transistor in which a silicon nitride film is applied over the entire surface by the OVD method. (C) shows the sample of Φ) which was dry-etched from the top surface, leaving the nitride film only on the side wall of the gate polysilicon pole 4. Single crystal silicon is island-like ζ
During this processing, anisotropic processing and etching are performed using hydrazine, etc., so the edges are tapered at approximately 54 degrees and no nitride film remains. Figure (d) shows a Ti film deposited on the top surface and an 8i
5×10 ions with an acceleration energy of 80 K e V
The process of c1rL ion implantation is shown. FIG. 5(e) shows a cross section after ion implantation, additional annealing at 550° C., and unreacted Ti was then etched away. Ions enter the tapered portion of the island-shaped silicon end compared to the flat portion, and interfacial mixing is not performed sufficiently, so that silicidation due to thermal reaction progresses abnormally and extends onto the sapphire substrate. This situation will be explained in detail using the partial cross-sectional perspective view of FIG. In the figure, 1 is a sapphire substrate, 2 is an island-shaped silicon (constituting a transistor), 3 is a gate insulating film, 4 is a gate polysilicon electrode, 11 is an insulating film formed on the gate sidewall, and 31 and 32 are formed by the ITM method. A silicide layer is formed on the gate electrode and the source/drain diffusion layer, respectively, a silicide layer is grown abnormally on a tapered part of island-like silicon due to a thermal reaction, and a silicide layer is formed on the gate sidewall. The parts shown are those that go under the insulating film 11 and sink into the sapphire-gate polysilicon interface. This silicide layer cracking causes a short circuit between the gate electrode and the source/drain electrode.
(発明の目的)
本発明は上記したゲート電極と、ソース・ドレイン電極
間の短絡を防止し、高信頼、高性能な絶縁基板MI8F
ETを形成しつる方法を提供することを目的とする。(Object of the Invention) The present invention provides a highly reliable and high-performance insulating substrate MI8F that prevents short circuits between the gate electrode and source/drain electrodes described above.
It is an object of the present invention to provide a method for forming and attaching an ET.
(発明の構成)
本発明によれば絶縁性透明基板上のシリコン結晶を用い
て形成するMI8fi電界効果トランジス夕の製造方法
において、島状シリコンのトランジスタ領域、ゲート電
極、ソース・ドレイン拡散層を形成した後、全面にネガ
型フォト・レジストを付着し裏面から露光現像しその上
面lこ高融点金属を全面に付着し次いで核レジストを剥
離する工程と、非ドーパントイオンをイオン注入して高
融点金属とシリコンの界面を混合し、次いで熱アニール
することlこより高融点金属とシリコンが接触した部分
のシリコンをシリサイド化する工程を含むことを特徴と
する絶縁基板MIS型電界効果トランジスタの製造方法
を得る。(Structure of the Invention) According to the present invention, in a method for manufacturing an MI8fi field effect transistor formed using silicon crystal on an insulating transparent substrate, an island-like silicon transistor region, a gate electrode, and a source/drain diffusion layer are formed. After that, a negative photoresist is attached to the entire surface, exposed and developed from the back side, a high melting point metal is attached to the entire upper surface, and then the nuclear resist is peeled off, and non-dopant ions are ion-implanted to form the high melting point metal. A method for manufacturing an insulating substrate MIS type field effect transistor is obtained, which includes the steps of: mixing the interface between the high melting point metal and the silicon, and then thermally annealing the silicon at a portion where the high melting point metal and the silicon are in contact with each other to silicide. .
(実施例)
次に第3図に示す実施例iこ基づいて本発明の詳細な説
明する。本実施例では基板はSO8で単結晶Siのエビ
厚は0.4μmのものを用いており同図(a)〜(f)
は実施例の工程を説明するための模式的断面図である。(Example) Next, the present invention will be described in detail based on the example shown in FIG. In this example, the substrate is SO8 and single-crystal Si with a thickness of 0.4 μm, as shown in Figures (a) to (f).
FIG. 3 is a schematic cross-sectional view for explaining the steps of the example.
第3図(a)は従来と同様の工程でゲート電極4、ソー
ス・ドレイン拡散層2を形成したFBTの断面で図中3
はゲート酸化膜、lはサファイア基板、11はゲート電
極側壁iこ形成したシリコン酸化膜を示す。次いで同図
Φ)薔こ示すごとくネガ型のフォト・レジスト41を厚
さ約1μm付着する。この後裏面より露光して現像する
。この時露光量を表面から露光する時の適正量の約3倍
程度とすることで、同図(C)に示すように島状シリコ
ンをこオーパラ、プしてレジストを残すことができる。Figure 3(a) shows a cross section of an FBT in which a gate electrode 4 and source/drain diffusion layers 2 are formed in the same process as in the conventional method.
Reference numeral 11 indicates a gate oxide film, 1 indicates a sapphire substrate, and 11 indicates a silicon oxide film formed on the side walls of the gate electrode. Next, as shown in FIG. Φ), a negative type photoresist 41 is deposited to a thickness of about 1 μm. After that, it is exposed to light from the back side and developed. At this time, by setting the exposure amount to about three times the appropriate amount when exposing from the surface, it is possible to overprint the island-shaped silicon and leave a resist as shown in FIG.
この状態で真空蒸着法によりTi−t−厚さ約400A
蒸着する(同図@))。この後レジストを剥離すること
により、同図(e顧ように島状シリコンの上面のみにT
iが残る。この後8iイオンを園KeVで5×1015
a′イオン注入シHx中550℃で加分熱処理してシリ
サイド化し、残りのTiをエツチング除去する(同図(
f))。In this state, Ti-t-thickness of about 400A was formed by vacuum evaporation method.
Vapor deposition (same figure @)). After that, by peeling off the resist, T
i remains. After this, the 8i ion is 5×1015 at Sono KeV.
a' ion implantation process is heated at 550°C in Hx to form a silicide, and the remaining Ti is removed by etching (see Fig.
f)).
以上の説明はSO8基板でエビ厚0.4μmのものを用
いてきたが、他のエビ厚のものでも可能であり、また金
属も他の高融点金属、例えはMOlW、Ptなどでも良
く、さらに808基板ではなくSOI (5ilico
n on In5ulator)例えば石英基板上に成
長した8i結晶を用いた場合にも適用可能である。The above explanation uses an SO8 substrate with a thickness of 0.4 μm, but other thicknesses are also possible, and the metal may also be other high melting point metals, such as MOLW, Pt, etc. SOI (5ilico) instead of 808 board
For example, it is also applicable when using an 8i crystal grown on a quartz substrate.
(発明の効果)
以上の工程により島状シリコンのテーパ部におけるシリ
サイドの異常成長を防ぐことができ、ゲート電極とソー
ス・ドレイン拡散層の短絡は防止できる。シリサイド化
によりゲート電極、ソース・ドレインの抵抗は下がり、
高性能MI8 FETが高信頼で得られる。(Effects of the Invention) The above steps can prevent abnormal growth of silicide in the tapered portion of the silicon island, and can prevent short circuits between the gate electrode and the source/drain diffusion layer. Silicidation lowers the resistance of the gate electrode, source and drain,
High performance MI8 FET can be obtained with high reliability.
第1図(a)〜(e)はSO8基板を用いたMI8 F
B’Iに従来の方法でITM法によるシリサイド化を行
う時の工程を示す模式的断面図である。
第2図は第1図に示した工程で形成されるMISFET
の部分断面斜視図であり、ゲート電極、ソース・ドレイ
ン電極間の短絡の状態を示している。
第3図(a)〜(f)は本発明によるITMシリサイド
化を適用して808基板にMIS型FETを形成する工
程を示す模式的断面図である。
図中1は8apphire 基板、2はトランジスタを
構成する島状シリコン、3はゲート酸化膜、4はゲート
・ポリシリコン電極、11はOVD法によるSiO2,
21はチタン、31はゲート電極上のシリサイド層、3
2はソースドレイン拡散ノー上のシリサイド層、33は
島状シリコン端テーパ一部ζこ異常に成長した熱反応に
よるシリサイド層、あはシリサイド層おがゲートポリシ
リコン電極とサファイア基板界面にくい込んだ部分、4
1はネガ型フォト・レジストをそれぞれ示す。Figures 1 (a) to (e) show MI8 F using an SO8 substrate.
FIG. 3 is a schematic cross-sectional view showing a process when B'I is silicided by the ITM method using a conventional method. Figure 2 shows a MISFET formed by the process shown in Figure 1.
FIG. 2 is a partial cross-sectional perspective view showing a state of short circuit between the gate electrode and the source/drain electrodes. FIGS. 3(a) to 3(f) are schematic cross-sectional views showing the process of forming a MIS type FET on an 808 substrate by applying ITM silicidation according to the present invention. In the figure, 1 is an 8apphire substrate, 2 is an island-like silicon that constitutes a transistor, 3 is a gate oxide film, 4 is a gate polysilicon electrode, 11 is SiO2 by OVD method,
21 is titanium, 31 is a silicide layer on the gate electrode, 3
2 is a silicide layer on the source/drain diffusion node, 33 is a part of the island-like silicon end taper, ζ is a silicide layer that has grown abnormally due to a thermal reaction, and A is a part of the silicide layer that is buried at the interface between the gate polysilicon electrode and the sapphire substrate. , 4
1 indicates a negative photoresist, respectively.
Claims (1)
a型電界効果トランジスタの製造方法において、島状シ
リコンのトランジスタ領域、ゲート電極、ソース・ドレ
イン電極を形成した後、全面にネガ型フォトレジストを
付着し裏面から露光現像し、その上面lこ高融点金属を
全面に付着し次いで該レジストを剥離する工程と、非ド
ーパントイオンをイオン注入して高融点金属とシリコン
の界面を混合し次いで熱アニールすることにより高融点
金属とシリコンが接触した部分のシリコンをシリサイド
化する工程を含むことを特徴とする絶縁基板MIS型電
界効果トランジスタの製造方法。MI formed using silicon crystal on an insulating transparent substrate
In a method for manufacturing an A-type field effect transistor, after forming a transistor region, a gate electrode, and a source/drain electrode of island-like silicon, a negative photoresist is deposited on the entire surface, exposed and developed from the back side, and the upper surface is coated with a high melting point. The process of attaching metal to the entire surface and then peeling off the resist, implanting non-dopant ions to mix the interface between the high melting point metal and silicon, and then thermally annealing the silicon in the area where the high melting point metal and silicon are in contact is removed. 1. A method for manufacturing an insulated substrate MIS field effect transistor, the method comprising the step of siliciding the insulated substrate MIS field effect transistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59079503A JPS60224275A (en) | 1984-04-20 | 1984-04-20 | Manufacture of insulating-substrate-mis type field effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59079503A JPS60224275A (en) | 1984-04-20 | 1984-04-20 | Manufacture of insulating-substrate-mis type field effect transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60224275A true JPS60224275A (en) | 1985-11-08 |
Family
ID=13691732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59079503A Pending JPS60224275A (en) | 1984-04-20 | 1984-04-20 | Manufacture of insulating-substrate-mis type field effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60224275A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02148865A (en) * | 1988-07-08 | 1990-06-07 | Texas Instr Inc <Ti> | Silicon transistor on insulator including connection between body node and source node |
JPH07135324A (en) * | 1993-11-05 | 1995-05-23 | Semiconductor Energy Lab Co Ltd | Thin film semiconductor integrated circuit |
US5482870A (en) * | 1990-06-08 | 1996-01-09 | Seiko Epson Corporation | Methods for manufacturing low leakage current offset-gate thin film transistor |
US6218678B1 (en) | 1993-11-05 | 2001-04-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
JP2006261191A (en) * | 2005-03-15 | 2006-09-28 | Oki Electric Ind Co Ltd | Manufacturing method of semiconductor device |
-
1984
- 1984-04-20 JP JP59079503A patent/JPS60224275A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02148865A (en) * | 1988-07-08 | 1990-06-07 | Texas Instr Inc <Ti> | Silicon transistor on insulator including connection between body node and source node |
US5482870A (en) * | 1990-06-08 | 1996-01-09 | Seiko Epson Corporation | Methods for manufacturing low leakage current offset-gate thin film transistor |
JPH07135324A (en) * | 1993-11-05 | 1995-05-23 | Semiconductor Energy Lab Co Ltd | Thin film semiconductor integrated circuit |
US6218678B1 (en) | 1993-11-05 | 2001-04-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US6475839B2 (en) | 1993-11-05 | 2002-11-05 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing of TFT device by backside laser irradiation |
US6617612B2 (en) * | 1993-11-05 | 2003-09-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and a semiconductor integrated circuit |
JP2006261191A (en) * | 2005-03-15 | 2006-09-28 | Oki Electric Ind Co Ltd | Manufacturing method of semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05198739A (en) | Stacked semiconductor device and manufacturing method thereof | |
JPH0576177B2 (en) | ||
US6096647A (en) | Method to form CoSi2 on shallow junction by Si implantation | |
JPH0594968A (en) | Semiconductor device and manufacture thereof | |
US5924001A (en) | Ion implantation for preventing polycide void | |
JPS60224275A (en) | Manufacture of insulating-substrate-mis type field effect transistor | |
US5700734A (en) | Process of fabricating field effect transistor having reliable polycide gate electrode | |
US20060281232A1 (en) | Method of growing a germanium epitaxial film on insulator for use in fabrication of a CMOS integrated circuit | |
US6228766B1 (en) | Process for fabricating semiconductor device without separation between silicide layer and insulating layer | |
JPH0371768B2 (en) | ||
JPS60224272A (en) | Manufacturing method of insulating substrate MIS type field effect transistor | |
US6040238A (en) | Thermal annealing for preventing polycide void | |
JP3061027B2 (en) | Method for manufacturing semiconductor device | |
JPH0719759B2 (en) | Method for manufacturing semiconductor device | |
JPS60224274A (en) | Manufacture of insulating-substrate-mis type field effect transistor | |
JP3110054B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3387518B2 (en) | Semiconductor device | |
JP2853143B2 (en) | Method for manufacturing semiconductor device | |
JPS60224273A (en) | Manufacture of insulating-substrate-mis type field effect transistor | |
JPH02106971A (en) | Semiconductor integrated circuit device and manufacture thereof | |
JPH03191529A (en) | Manufacture of semiconductor device | |
JP2632159B2 (en) | Method for manufacturing semiconductor device | |
JP3307362B2 (en) | Method for manufacturing semiconductor device | |
JPS62104078A (en) | Manufacture of semiconductor integrated circuit device | |
JPH0434926A (en) | Manufacture of semiconductor device |