[go: up one dir, main page]

JPS60224042A - Turbidity measuring device for lubricant - Google Patents

Turbidity measuring device for lubricant

Info

Publication number
JPS60224042A
JPS60224042A JP59079345A JP7934584A JPS60224042A JP S60224042 A JPS60224042 A JP S60224042A JP 59079345 A JP59079345 A JP 59079345A JP 7934584 A JP7934584 A JP 7934584A JP S60224042 A JPS60224042 A JP S60224042A
Authority
JP
Japan
Prior art keywords
light
window
optical path
light source
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59079345A
Other languages
Japanese (ja)
Inventor
Shigeru Kamiya
茂 神谷
Masae Nozawa
野沢 政衛
Toshinobu Ishida
石田 年伸
Hideaki Sasaya
笹谷 英顕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP59079345A priority Critical patent/JPS60224042A/en
Priority to US06/724,962 priority patent/US4699509A/en
Publication of JPS60224042A publication Critical patent/JPS60224042A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0389Windows
    • G01N2021/0392Nonplanar windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/534Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure a range of high turbidity by placing a lubricant to be measured in a light path gap of less than 0.34mm. provided between a light source window and a light receiving window. CONSTITUTION:A light path gap 3 is provided between facing faces of the light source window of light source 11 side and the light receiving window 22 of photoelectric element side. Nearly U-shaped projections 41-43 provided on the circumference of a nearly cylindrical spacer ring 4 are inserted between window 21, 22 to fix the aperture D to less than 0.34mm., and the lubricant turbidity of which is to be measured based on the transmissivity of light is placed in the gap 3.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は潤滑油汚濁度測定装置に関する。本発明による
装置は、例えば、車載用測定装置として、内燃機関、特
にディーゼル機関の潤滑油中に含まれるカーボン粒子濃
度を測定する場合等に用いられる。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a lubricating oil contamination measuring device. The device according to the present invention is used, for example, as an on-vehicle measuring device to measure the concentration of carbon particles contained in the lubricating oil of an internal combustion engine, particularly a diesel engine.

従来技術、発明が解決しようとする問題点機関潤滑油中
には、機関運転時間の経過とともに、種々の潤滑油汚濁
物が混入して来る。例えば、機関吸入空気中に含まれて
いる砂の微粒子、あるいは燃料の燃焼によって生ずる酸
化生成物、等がそれであるがディーゼル機関においては
、特に燃焼排気ガス中に含まれるカーボン粒子が油中に
多量に混入して潤滑油を汚濁させることが知られている
。油中に混入したカーボン粒子は機関各部の摺動部の摩
耗を促進させるため、カーボン粒子濃度が増大した場合
には、潤滑油を交換する等の手段がとられる。
BACKGROUND OF THE INVENTION Problems to be Solved by the Prior Art and the Invention Various lubricating oil contaminants become mixed into engine lubricating oil as the engine is operated. For example, fine particles of sand contained in the engine intake air, or oxidation products produced by combustion of fuel, etc. In diesel engines, carbon particles contained in the combustion exhaust gas are particularly large in the oil. It is known that it can contaminate lubricating oil by contaminating it. Carbon particles mixed in the oil accelerate wear on the sliding parts of various parts of the engine, so if the concentration of carbon particles increases, measures such as replacing the lubricating oil are taken.

前記カーボン粒子濃度の測定手段として、従来は、機関
より潤滑油を一部抜き取り、フィルターで濾過し、フィ
ルター上に捕集された粒子の重量を測定したり、遠心分
離により1粒子を分離し重量を測定する等の方法が用い
られて来た。しかしながらこの種の方法においては、機
関運転中にカーボン粒子濃度を測定することや、時間的
に連続して粒子濃度を測定することは不可能である。従
来の潤滑油汚濁度測定装置の一例が第3図に示される。
Conventionally, methods for measuring the concentration of carbon particles include extracting a portion of the lubricating oil from the engine, filtering it through a filter, and measuring the weight of the particles collected on the filter, or separating each particle by centrifugation and measuring its weight. Methods such as measuring the However, with this type of method, it is impossible to measure the carbon particle concentration during engine operation or to measure the particle concentration continuously over time. An example of a conventional lubricating oil pollution level measuring device is shown in FIG.

潤滑油溜め901の両側部に光源908、および光電池
904を取り付けたもので潤滑油913の汚濁とともに
光電池904の受光量が減少することを利用したもので
ある。なお、第3図において903,907は側壁、9
05はセンサ、906は電線、909は取付穴、910
は透明板、911.912は歯車である。(特開昭57
−98842号参照)。
A light source 908 and a photovoltaic cell 904 are attached to both sides of a lubricating oil reservoir 901, making use of the fact that the amount of light received by the photovoltaic cell 904 decreases as the lubricating oil 913 becomes contaminated. In addition, in FIG. 3, 903 and 907 are side walls, and 9
05 is the sensor, 906 is the electric wire, 909 is the mounting hole, 910
is a transparent plate, and 911 and 912 are gears. (Unexamined Japanese Patent Publication No. 57
-98842).

この種の光源と受光素子間の距離の長い方法では潤滑油
中のカーボン粒子の濃度測定が不可能である。その理由
が以下に説明される。油中にカーボン粒子が混入するこ
とによる光の透過量の減少は種々の実験により次式で表
わされることを確認した。新油に対する汚濁油の光の透
過率をT、光源と受光素子間の距離、さらに正確には、
油中の光路長をD (龍) 、イ撃数をKとすると、油
中カーボン重量濃度α(%)は、 で表わされ、さらにイ奪数には約17.4 (1/n+
)となる。il1式より、カーボン重量濃度に対する光
の透過率Tは、 となる。
It is impossible to measure the concentration of carbon particles in lubricating oil using this type of method in which the distance between the light source and the light receiving element is long. The reason for this will be explained below. Through various experiments, it was confirmed that the decrease in the amount of light transmitted due to the inclusion of carbon particles in oil is expressed by the following equation. Let T be the light transmittance of dirty oil to new oil, and let T be the distance between the light source and the light receiving element, and more precisely,
When the optical path length in oil is D (dragon) and the number of strikes is K, the carbon weight concentration α (%) in oil is expressed as, and the number of strikes is approximately 17.4 (1/n+
). From the il1 formula, the light transmittance T with respect to the carbon weight concentration is as follows.

第4図は、横軸にカーボン重量濃度、たて軸に光の透過
率をとり、(2)式で示される関係をあらゎすものであ
る。第2図で明らかなごとく、カーボン濃度に対する光
の透過率は光路長りで大きく変化し、D=1+uではα
=0.2%程度で光はほとんど透過しなくなる。具体的
にはT=3.3 Xl0−’となる。一方この透過光は
光源に対向する受光素子で電気信号に変換され濃度表示
メーター、その他の表示装置を駆動することになるが、
通常の電気信号処理回路においては、処理できる信号の
強度比は1:1000程度までである。したがって、上
記したごとく、光の透過率D−1mでは、カーボン濃度
0.172%で光の透過率Tは0.001に達するため
、この濃度以上では実際上信号が微弱になりすぎ計測が
不可能となる。
FIG. 4 shows the relationship expressed by equation (2), with carbon weight concentration on the horizontal axis and light transmittance on the vertical axis. As is clear from Figure 2, the light transmittance with respect to the carbon concentration changes greatly depending on the optical path length, and when D = 1 + u, α
= about 0.2%, almost no light is transmitted. Specifically, T=3.3Xl0-'. On the other hand, this transmitted light is converted into an electrical signal by a light receiving element facing the light source and drives a concentration display meter and other display devices.
In a typical electrical signal processing circuit, the signal intensity ratio that can be processed is up to about 1:1000. Therefore, as mentioned above, when the light transmittance is D-1m, the light transmittance T reaches 0.001 at a carbon concentration of 0.172%, so above this concentration, the signal becomes too weak and measurement becomes impossible. It becomes possible.

次に光路長りを0.1fi、 0.05鶴、 0.01
鰭と短くした場合の透過率曲線を第4図に示したが第4
図より明らかなごとく、光路長を短くすると透過率曲線
は直線に近づき、計測可能な濃度範囲を広げることがで
きる。次に、必要な計測濃度範囲は機関の型式その他に
より異なるが通常上限値としてα−0,5%〜4%程度
までであるため、例えばα−0,5%までを計測しよう
とする場合には、α=0.5%で光の透過率がT= 0
.001になる光路長として0.34mを得ることがで
きる。同様の考えでα=4%までを計測しようとする場
合にはD=0.043Mとなる。以上述べたように、光
の透過率で、潤滑油中のカーボン濃度を測定しようとす
る場合には、光の光路長が重要であり、実際上光路長り
は0.34m以下でなければ通常必要とする濃度範囲を
計測することができない。そこで、光路長を0.34m
以下にすべきであるという考えが生ずる。
Next, the optical path length is 0.1fi, 0.05 Tsuru, 0.01
Figure 4 shows the transmittance curve when the fin is shortened.
As is clear from the figure, when the optical path length is shortened, the transmittance curve approaches a straight line, making it possible to widen the measurable concentration range. Next, the required measurement concentration range varies depending on the type of engine and other factors, but the upper limit is usually between α-0.5% and 4%, so for example, when trying to measure up to α-0.5%, is α=0.5% and the light transmittance is T=0.
.. An optical path length of 0.34 m can be obtained. Using the same idea, when trying to measure up to α=4%, D=0.043M. As mentioned above, when trying to measure the carbon concentration in lubricating oil using light transmittance, the optical path length of the light is important, and in practice, the optical path length must be 0.34 m or less. Unable to measure the required concentration range. Therefore, the optical path length was set to 0.34 m.
The idea arises that the following should be done.

また、濃度計測範囲を広げるためには、上記したように
、光路長りを極端に短くする必要が有るが、Dを短(す
ることにより下記のような問題点が生ずる。その1つは
、光路長の精度の問題である。第3図に光路長D(光路
ギャップ)が0.05wmより0.04m、 0.03
mに変化した場合の光の透過等の変化を示す。第3図で
明らかなごとく、光路ギャップがわずかに数10ミクロ
ン変化することによりカーボン濃度と、光の透過率の関
係は大きくずれて来る。すなわち、光路ギャップを正確
に規定しなければならないという問題点を有する。また
、上記のごとく光路ギャップを短くすることにより、光
源と受光素子間に介在する油の交換速度が遅くなり、例
えば汚濁油を新油に交換した場合、濃度詣ス値がすみや
かに新油のそれに復帰しないという問題点を生ずる。さ
らに、該光路ギャップに、固形汚濁粒子等がつまりやす
くなるという問題点も生ずる。
In addition, in order to widen the concentration measurement range, it is necessary to extremely shorten the optical path length as described above, but shortening D causes the following problems. One of them is: The problem is the accuracy of the optical path length. Figure 3 shows that the optical path length D (optical path gap) is 0.04 m, 0.03 m from 0.05 wm.
It shows changes in light transmission, etc. when changing to m. As is clear from FIG. 3, a slight change in the optical path gap of several tens of microns causes a large deviation in the relationship between the carbon concentration and the light transmittance. That is, there is a problem in that the optical path gap must be accurately defined. In addition, by shortening the optical path gap as described above, the exchange speed of the oil interposed between the light source and the light receiving element is slowed down. For example, when dirty oil is replaced with new oil, the concentration value changes quickly to the new oil. This causes a problem in that it does not return to normal. Furthermore, a problem arises in that the optical path gap is easily clogged with solid contaminant particles.

本発明の目的は、前述の従来形における問題点にかんが
み、光源ウィンドウと受光ウィンドウとの間の光路ギャ
ップ長を所定長以下に選定する着想、および、光源ウィ
ンドウおよび受光ウィンドウの少なくとも一方を凸面形
状となし相手側ウィンドウの面に衝合させるという着想
にもとづき、潤滑油の汚濁度の測定を、高汚濁度域にま
で拡大することにある。
In view of the above-mentioned problems with the conventional type, an object of the present invention is to select the optical path gap length between the light source window and the light receiving window to be less than or equal to a predetermined length, and to form at least one of the light source window and the light receiving window into a convex shape. Based on the idea of abutting against the surface of the opposite window, the objective is to expand the measurement of lubricating oil contamination to areas with high contamination.

問題点を解決するための手段 本発明においては、第1の形態として光源側に設けられ
た光源ウィンドウと受光素子側に設けられた受光ウィン
ドウとの間に光路ギャップが設けられ、該光路ギャップ
に光の透過率にもとづき汚濁度が測定されるべき潤滑油
が存在し得るようにされ、該光路ギヤツブの長さが0.
34n以下に選定されていることを特徴とする潤滑油汚
濁度測定装置が提供される。
Means for Solving the Problems In the present invention, as a first form, an optical path gap is provided between a light source window provided on the light source side and a light receiving window provided on the light receiving element side, and the optical path gap is A lubricating oil whose degree of contamination is to be measured based on the light transmittance can be present, and the length of the optical path gear is 0.
A lubricating oil contamination measuring device is provided, characterized in that the contamination level of the lubricating oil is selected to be 34n or less.

また本発明においては、第2の形態として光源側に設け
られた光源ウィンドウと受光素子側に設けられた受光ウ
ィンドウとの間に光路ギャップが設けられ、該光源ウィ
ンドウおよび受光ウィンドウは少な(とも一方が凸面形
状を有し、該光路ギャップに光の透過率にもとづき汚濁
度が測定されるべき潤滑油が存在し得るようにされ、該
凸面形状を有するウィンドウの該凸面の先端が相手側ウ
ィンドウの面に接触状態に衝合していることを特徴とす
る潤滑油汚濁度測定装置が提供される。
Further, in the present invention, as a second form, an optical path gap is provided between a light source window provided on the light source side and a light receiving window provided on the light receiving element side, and the light source window and the light receiving window are small (both sides are small). has a convex shape, and lubricating oil whose degree of contamination is to be measured based on light transmittance can be present in the optical path gap, and the tip of the convex surface of the window having the convex shape is connected to the opposite window. A lubricating oil contamination level measuring device is provided, which is characterized in that it is in contact with a surface.

実施例 本発明の第1の形態の一実施例としての潤滑油汚濁度測
定装置が第1図に示される。第1図装置において、11
は発光ダイオード等の光源、12はフォトダイオードも
しくはフォトトランジスタよりなる受光素子、21およ
び22はガラスもしくは透明合成樹脂よりなるウィンド
ウで、21および22の相対する面の間が光路ギャップ
3となる。第1図装置においてはギャップ3の間隙りは
0.34n以下である。5は樹脂もしくは一部金属より
なりボデ一部で、光源および受光素子を規定の位置に保
持するとともに、機関のオイル溜め、その他の個所に装
着する役もになう。6は、光源、受光素子を図示しない
信号処理及び表示部に接続するための端子部を示す。光
路ギャップ3と測定可能な油中カーボン粒子濃度との関
係は前述したごとく、D=0.34mmでは0.5%ま
で、D = 0.1 IImでは1.7%、D=0.0
5鰭では3.4%までとなる。
EXAMPLE FIG. 1 shows a lubricating oil contamination measuring device as an example of the first embodiment of the present invention. In the device shown in FIG. 1, 11
1 is a light source such as a light emitting diode, 12 is a light receiving element such as a photodiode or a phototransistor, 21 and 22 are windows made of glass or transparent synthetic resin, and an optical path gap 3 is formed between opposing surfaces of 21 and 22. In the device shown in FIG. 1, the gap 3 is 0.34n or less. Reference numeral 5 is a part of the body made of resin or part of metal, and serves not only to hold the light source and the light receiving element in a specified position, but also to attach it to the engine's oil reservoir or other parts. Reference numeral 6 indicates a terminal section for connecting the light source and the light receiving element to a signal processing and display section (not shown). As mentioned above, the relationship between the optical path gap 3 and the measurable carbon particle concentration in oil is up to 0.5% for D = 0.34 mm, 1.7% for D = 0.1 IIm, and 1.7% for D = 0.0.
For five fins, it is up to 3.4%.

この種の方法では光路ギャップ3の間隙りを正確に規定
する必要が有るが、これを実現するための構成の一例が
第2図に示される。第2図において4は略円筒状スペー
サーリングで円周上3ケ所に41 、42 、43で示
す略U字形の突起部を有し、該突起部をウィンドウ21
 、22の間に挿入することにより21と22の間に形
成すべき光路ギャップは前記突起部41 、42 、4
3の厚さではほぼ正確に規定することができる。
In this type of method, it is necessary to accurately define the optical path gap 3, and an example of a configuration for realizing this is shown in FIG. In FIG. 2, reference numeral 4 denotes a substantially cylindrical spacer ring having substantially U-shaped protrusions 41, 42, and 43 at three locations on its circumference.
, 22, the optical path gap to be formed between 21 and 22 is the projections 41, 42, 4.
A thickness of 3 can be defined almost accurately.

本発明の第2の形態の一実施例としての潤滑油汚濁度測
定装置が第6図に示される。第6図中第4図と同一符号
は各々同一構成要素を示す。第1図装置においては、ウ
ィンドウ21 、22の相対する面は平面であったが、
第6図装置はこれを凸球面となし、かつ両者を接触させ
ている。なおこの球面の半径は約1〜3fi程度である
。以上の構成とすることにより、光路ギャップは、はと
んどゼロより、数鰭まで種々の光路長を有することにな
り、高濃度においても十分高い出力電圧を維持すること
ができる。
A lubricating oil contamination measuring device as an example of the second embodiment of the present invention is shown in FIG. In FIG. 6, the same reference numerals as in FIG. 4 indicate the same components. In the device shown in FIG. 1, the opposing surfaces of the windows 21 and 22 were flat, but
In the device shown in FIG. 6, this is a convex spherical surface, and both are in contact with each other. Note that the radius of this spherical surface is about 1 to 3 fi. With the above configuration, the optical path gap has various optical path lengths from almost zero to several fins, and a sufficiently high output voltage can be maintained even at high concentrations.

第6図装置の特性が第7図に示される。第7図において
、横軸妥はカーボン重量濃度α(%)を、縦軸は受光器
出力電圧E (OIIT) (V)をあられす。第7図
中曲線Aは第1図装置光路ギャップ0.1酊の場合を示
し、曲線Bは球面の半径2.5鶴での第6図装置の場合
を示す。第7図より明らかなごとく、第6図装置では高
濃度側においても受光器出力電圧E (OUT)の急激
な低下は生ぜず、広範囲での測定が可能なことがわかる
。また第6図装置では2球面を接触させた状態で作り出
される光路ギャソプを利用しているため、製作時ギャッ
プ調整の必要が無い利点を有する。またギャップ部での
油の停滞も少ないため、濃度変化に対する時間的追従性
も良くなるという利点を存する。さらに本発明の第2形
態の実施例においては、カーボン濃度の測定の他に油の
存在の有無を検知できるという利点を有する。この点が
第8図、第9図を用いて以下に説明される。
The characteristics of the device shown in FIG. 6 are shown in FIG. In FIG. 7, the horizontal axis represents the carbon weight concentration α (%), and the vertical axis represents the receiver output voltage E (OIIT) (V). Curve A in FIG. 7 shows the case of the apparatus shown in FIG. 1 with an optical path gap of 0.1, and curve B shows the case of the apparatus shown in FIG. 6 with a spherical radius of 2.5. As is clear from FIG. 7, in the device shown in FIG. 6, there is no sudden drop in the photoreceiver output voltage E (OUT) even on the high concentration side, indicating that measurements can be made over a wide range. Furthermore, since the apparatus shown in FIG. 6 utilizes an optical path gap created by bringing two spherical surfaces into contact, it has the advantage that there is no need for gap adjustment during manufacture. Furthermore, since there is less stagnation of oil in the gap, there is an advantage that the ability to follow changes in concentration over time is also improved. Furthermore, the embodiment of the second aspect of the present invention has the advantage that the presence or absence of oil can be detected in addition to measuring the carbon concentration. This point will be explained below using FIGS. 8 and 9.

第8図は油が存在する場合の光源から受光素子に至る光
の経路を示したもので、油が存在する場合には、主にガ
ラス等で作られるウィンドウ21゜22と油における光
の屈折率がほぼ等しいため、光はウィンドウ21 、2
2の凸部形状に関係なく直進する。このため光源11と
受光素子12を結ぶ光軸から大きくずれた光は受光素子
に至らない。これに反し第9図は油の存在しない場合の
光の経路を示すが、ウィンドウ21および22のレンズ
作用により光源よりの光は大部分受光素子12に至るこ
とになり、受光素子の受ける光量は、油の存在する場合
に比べ、大きく増加する。すなわち油の存在の有無を検
知することが可能である。
Figure 8 shows the path of light from the light source to the light receiving element when oil is present. When oil is present, the light is refracted mainly by the windows 21 and 22 made of glass or the like and by the oil. Since the ratios are approximately equal, the light is transmitted through the windows 21 and 2.
Go straight regardless of the shape of the convex part 2. Therefore, light that is largely deviated from the optical axis connecting the light source 11 and the light receiving element 12 does not reach the light receiving element. On the other hand, FIG. 9 shows the light path in the absence of oil, but due to the lens action of the windows 21 and 22, most of the light from the light source reaches the light receiving element 12, and the amount of light received by the light receiving element is , increases significantly compared to the case where oil is present. That is, it is possible to detect the presence or absence of oil.

なお、72および84はそれぞれ光源および受光素子を
駆動するための電源、71は安定化抵抗、82は受光素
子に流れる光電流を検知するための抵抗で、受光量に比
例した電圧が抵抗の両端に接続した端子81 、83間
に生ずる。この電圧を従来周知の技術により電気回路に
よりカーボン濃度に変換し、表示装置その他を駆動する
わけである。
Note that 72 and 84 are power supplies for driving the light source and the light receiving element, respectively, 71 is a stabilizing resistor, and 82 is a resistor for detecting the photocurrent flowing through the light receiving element, and a voltage proportional to the amount of light received is applied across the resistor. This occurs between terminals 81 and 83 connected to. This voltage is converted into a carbon concentration by an electric circuit using a conventionally well-known technique to drive a display device and other devices.

第10図は他の例を示し、ウィンドウの片方を球面、他
方を平面とした場合を示す。作用効果は第8図、第9図
に示すものと同様である。
FIG. 10 shows another example in which one side of the window is spherical and the other is flat. The operation and effect are similar to those shown in FIGS. 8 and 9.

次にウィンドウの片側を同様の考えから凸円錐とした例
を第11図に示す。図において、ウィンドウ21のウィ
ンドウ22に対する面211は円錐面となっている。第
12図はウィンドウを円筒面状にした場合を示す。作用
効果はいずれもウィンドウを凸球面とした場合とほぼ同
様である。
Next, FIG. 11 shows an example in which one side of the window is made into a convex cone based on the same idea. In the figure, a surface 211 of the window 21 facing the window 22 is a conical surface. FIG. 12 shows a case where the window has a cylindrical surface shape. The effects are almost the same as when the window is a convex spherical surface.

以上に述べた実施例においては、光源としての発光ダイ
オード、および受光素子としてのフォトダイオードは、
油中に浸漬した状態で使用される。
In the embodiments described above, the light emitting diode as the light source and the photodiode as the light receiving element are:
Used while immersed in oil.

一方機関の潤滑油温は運転中に120℃程度までに上昇
するため、各素子の温度特性により測定値に誤差の生ず
る場合が有る。
On the other hand, since the lubricating oil temperature of the engine rises to about 120° C. during operation, errors may occur in the measured values depending on the temperature characteristics of each element.

第13図(A)(B)(C)に示す例は、これを回避す
るために、各素子を油中に浸漬しない構造とした場合の
例を示す。第13図中100は油中に浸漬される検知部
を示し、21 、22で示す光路ギャソフ形成のための
ウィンドウ、および、外部より光をウィンドウ部に導く
ための光ファイバー等よりなる108 、109で示す
ライトガイド、および光の向きを90°変更するための
212 、222で示すプリズムより成っている。
In order to avoid this, the examples shown in FIGS. 13(A), 13(B), and 13(C) show examples in which each element is not immersed in oil. In FIG. 13, 100 indicates a detection part immersed in oil, and 108 and 109 are windows 21 and 22 for forming an optical path, and optical fibers 108 and 109 for guiding light from the outside to the window part. It consists of a light guide shown, and prisms shown 212 and 222 for changing the direction of light by 90 degrees.

200は送受光素子部を示し、発光ダイオード11およ
びフォトダイオード12が組み込まれている。
Reference numeral 200 indicates a light transmitting/receiving element section, in which a light emitting diode 11 and a photodiode 12 are incorporated.

300は両者をむすぶケーブルで内部にライトガイド3
14 、315を有し、コネクタ一部311 、313
がそれぞれiio 、 201に結合される。以上の構
成により、送受光部を比較的温度の低い所に設置できる
ため、温度の影響をほぼ回避することができる。
300 has a light guide 3 inside with a cable that connects the two.
14, 315, and connector parts 311, 313
are coupled to iio, 201, respectively. With the above configuration, the light transmitting/receiving section can be installed in a place with relatively low temperature, so that the influence of temperature can be almost avoided.

第14図に第4図装置の機関への取り付は構造の一例を
示す。41Gは機関オイルパン、417は潤滑油、Mは
測定装置、419はドレンプラグを示す。
FIG. 14 shows an example of the structure for mounting the device shown in FIG. 4 on an engine. 41G is an engine oil pan, 417 is lubricating oil, M is a measuring device, and 419 is a drain plug.

420は正常時の油面、421は油量下限時の油面を示
す。測定装置Mは下限時の油面位置に取り付けることに
より、油量の検知をも行うことができる。
420 indicates the oil level at normal times, and 421 indicates the oil level at the lower limit of oil amount. By attaching the measuring device M at the oil level position at the lower limit, it is also possible to detect the oil amount.

なお第4図の測定装置は、通常油量を監視するために使
用されるレベルゲージの先端に装着することも可能であ
る。
Note that the measuring device shown in FIG. 4 can also be attached to the tip of a level gauge that is normally used to monitor the amount of oil.

発明の効果 本発明によれば、潤滑油汚濁度、光路長、光透過率の間
の関係にもとづいて潤滑油汚濁度測定装置を構成するこ
とができ、潤滑油の汚濁度の測定を、高汚濁度域にまで
拡大することができる。
Effects of the Invention According to the present invention, a lubricating oil contamination measuring device can be constructed based on the relationship between the lubricating oil contamination, the optical path length, and the light transmittance, and the lubricating oil contamination can be measured at a high level. It can be extended to the pollution range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の形態の一実施例としての潤滑油
汚濁度測定装置を示す図、 第2図は本発明の第1の形態の他の実施例を示す図、 第3図は従来形の潤滑油汚濁度測定装置の一例を示す図
、 第4図、第5図はいずれも汚濁度測定特性を説明する特
性図、 第6図は本発明の第2の形態の一実施例としての潤滑油
汚濁度測定装置を示す図、 第7図は第6図装置の特性を示す図、 第8図、第9図はいずれも第6図装置の作動を説明する
ための図、 第10図、第11図、第12図、及び第13図(A)(
B)(C)はいずれも本発明の第2の形態の他の実施例
を示す図、 第14図は本発明の実施例としての潤滑油汚濁度測定装
置の機関への取り付は構造の一例を示す図である。 (符号の説明) 11・・・光源、12・・・受光素子、21・・・光源
ウィンドウ、22・・・受光ウィンドウ、3・・・光路
ギャップ、4・・・スペーサーリング、41 、42 
、43・・・突起部、5・・・ボデ一部、6・・・端子
部、71・・・安定化抵抗、72・・・電源、81 、
83・・・端子、82・・・抵抗。 第1図 に1′J2図 ’;g 3 ’i:’:’1 第4 F、7 0 1 2(wtZ) −m−−べ 第5図 箭6回 斧・8 図 4 第10図 第110 11 第121゛力
FIG. 1 is a diagram showing a lubricating oil pollution level measuring device as an embodiment of the first embodiment of the present invention, FIG. 2 is a diagram showing another embodiment of the first embodiment of the present invention, and FIG. 1 is a diagram showing an example of a conventional lubricating oil contamination degree measuring device, FIGS. 4 and 5 are characteristic diagrams explaining contamination degree measurement characteristics, and FIG. 6 is an embodiment of the second embodiment of the present invention. FIG. 7 is a diagram showing the characteristics of the device shown in FIG. 6; FIG. 8 and FIG. 9 are both diagrams for explaining the operation of the device shown in FIG. 6. Figures 10, 11, 12, and 13 (A) (
B) and (C) are diagrams showing other embodiments of the second embodiment of the present invention, and Fig. 14 shows how the lubricating oil pollution level measuring device as an embodiment of the present invention is attached to an engine due to the structure. It is a figure showing an example. (Explanation of symbols) 11... Light source, 12... Light receiving element, 21... Light source window, 22... Light receiving window, 3... Optical path gap, 4... Spacer ring, 41, 42
, 43...Protrusion, 5...Body part, 6...Terminal part, 71...Stabilizing resistor, 72...Power supply, 81,
83...terminal, 82...resistance. Figure 1 shows 1'J2 figure'; g 3 'i:':'1 4th F, 7 0 1 2 (wtZ) -m--be Figure 5 Arrow 6 times Ax・8 Figure 4 Figure 10 110 11 121st force

Claims (1)

【特許請求の範囲】 1、光源側に設けられた光源ウィンドウと受光素子側に
設けられた受光ウィンドウとの間に光路ギャップが設け
られ、該光路ギャップに光の透過率にもとづき汚濁度が
測定されるべき潤滑油が存在し得るようにされ、該光路
ギャップの長さが0.34m以下に選定されていること
を特徴とする潤滑油汚濁度測定装置。 2、光源側に設けられた光源ウィンドウと受光素子側に
設けられた受光ウィンドウとの間に光路ギャップが設け
られ、該光源ウィンドウおよび受光ウィンドウは少なく
とも一方が凸面形状を有し、該光路ギャップに光の透過
率にもとづき汚濁度が測定されるべき潤滑油が存在し得
るようにされ、該凸面形状を有するウィンドウの該凸面
の先端が相手側ウィンドウの面に接触状態に衝合してい
ることを特徴とする潤滑油汚濁度測定装置。 3、該光源ウィンドウおよび受光ウィンドウの両者が凸
面形状を有する、特許請求の範囲第2項記載の装置。
[Claims] 1. An optical path gap is provided between a light source window provided on the light source side and a light receiving window provided on the light receiving element side, and the degree of pollution is measured based on the light transmittance in the optical path gap. 1. A lubricating oil contamination degree measuring device, characterized in that the lubricating oil to be removed can be present, and the length of the optical path gap is selected to be 0.34 m or less. 2. An optical path gap is provided between a light source window provided on the light source side and a light receiving window provided on the light receiving element side, and at least one of the light source window and the light receiving window has a convex shape, and a light path gap is provided in the optical path gap. A lubricating oil whose degree of contamination is to be measured based on light transmittance may be present, and the tip of the convex surface of the window having a convex shape is brought into contact with the surface of the opposite window. A lubricating oil contamination measurement device featuring: 3. The device of claim 2, wherein both the light source window and the light receiving window have a convex shape.
JP59079345A 1984-04-21 1984-04-21 Turbidity measuring device for lubricant Pending JPS60224042A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59079345A JPS60224042A (en) 1984-04-21 1984-04-21 Turbidity measuring device for lubricant
US06/724,962 US4699509A (en) 1984-04-21 1985-04-19 Device for measuring contamination of lubricant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59079345A JPS60224042A (en) 1984-04-21 1984-04-21 Turbidity measuring device for lubricant

Publications (1)

Publication Number Publication Date
JPS60224042A true JPS60224042A (en) 1985-11-08

Family

ID=13687310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59079345A Pending JPS60224042A (en) 1984-04-21 1984-04-21 Turbidity measuring device for lubricant

Country Status (1)

Country Link
JP (1) JPS60224042A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200750U (en) * 1987-06-15 1988-12-23
WO1992015007A1 (en) * 1991-02-22 1992-09-03 Kabushiki Kaisha Komatsu Seisakusho Device for detecting oil pollution
JP2008128933A (en) * 2006-11-24 2008-06-05 Ntn Corp Lubricant deterioration detector and bearing with detector
JP2015232582A (en) * 2015-09-30 2015-12-24 ナブテスコ株式会社 Optical sensor
US9494530B2 (en) 2010-12-02 2016-11-15 Nabtesco Corporation Optical sensor for detecting lubricant deterioration

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410472A (en) * 1977-06-24 1979-01-26 Hosokawa Micron Kk Screening device
JPS5514552B2 (en) * 1976-11-04 1980-04-17

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514552B2 (en) * 1976-11-04 1980-04-17
JPS5410472A (en) * 1977-06-24 1979-01-26 Hosokawa Micron Kk Screening device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200750U (en) * 1987-06-15 1988-12-23
WO1992015007A1 (en) * 1991-02-22 1992-09-03 Kabushiki Kaisha Komatsu Seisakusho Device for detecting oil pollution
JP2008128933A (en) * 2006-11-24 2008-06-05 Ntn Corp Lubricant deterioration detector and bearing with detector
US9494530B2 (en) 2010-12-02 2016-11-15 Nabtesco Corporation Optical sensor for detecting lubricant deterioration
JP2015232582A (en) * 2015-09-30 2015-12-24 ナブテスコ株式会社 Optical sensor

Similar Documents

Publication Publication Date Title
US5739916A (en) Apparatus and method for determining the concentration of species in a substance
CN1078351C (en) Method of detecting impurities in molten resin
EP0635714B1 (en) Oil deterioration detection apparatus and apparatus for detecting particles in liquid
JP6126217B2 (en) Sensor and method for measuring particles in a medium
US4699509A (en) Device for measuring contamination of lubricant
US4152070A (en) Turbidimeter
US4936151A (en) Paddle-wheel type flow meter
EP0334536B1 (en) Particle measuring apparatus
US6043505A (en) Device and method for monitoring fluids with a detection of cross sectional shape of transmitted beam
JPS60224042A (en) Turbidity measuring device for lubricant
KR100469870B1 (en) Apparatus for Measuring Soot Content in Diesel Engine Oil in Real Time
EP0057667B1 (en) Device for the measurement of the refraction index of a fluid
JPH10104160A (en) Oil deterioration sensor
JPH0514209B2 (en)
JPS62238444A (en) Apparatus for detecting pollution degree of oil
JPS61288142A (en) Detector for condensable component in gas flow
EP0133607B1 (en) Refractometer for the measurement of the refractive index of a liquid
DE3024061C2 (en) Refractometer
RU2235991C1 (en) Noncontact turbidimeter
KR870000477B1 (en) Apparatus of detecting irregularity for line
CN110849771A (en) Online liquid analyzer detection assembly
CN210604381U (en) Bacteria turbidimeter
CN219737273U (en) Liquid pollution degree measurement system based on evanescent wave principle
US5796481A (en) Suspended particle concentration monitor
JPH0720049A (en) Liquid property detecting device