[go: up one dir, main page]

JPS60223161A - Charge transfer device output circuit - Google Patents

Charge transfer device output circuit

Info

Publication number
JPS60223161A
JPS60223161A JP59078959A JP7895984A JPS60223161A JP S60223161 A JPS60223161 A JP S60223161A JP 59078959 A JP59078959 A JP 59078959A JP 7895984 A JP7895984 A JP 7895984A JP S60223161 A JPS60223161 A JP S60223161A
Authority
JP
Japan
Prior art keywords
output circuit
semiconductor region
transistor
output
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59078959A
Other languages
Japanese (ja)
Inventor
Hidetsugu Oda
織田 英嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59078959A priority Critical patent/JPS60223161A/en
Publication of JPS60223161A publication Critical patent/JPS60223161A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D44/00Charge transfer devices
    • H10D44/40Charge-coupled devices [CCD]
    • H10D44/45Charge-coupled devices [CCD] having field effect produced by insulated gate electrodes 
    • H10D44/454Output structures

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To sharply reduce the input capacitance of a source follower output circuit, to eliminate a back gate effect, and to obtain an output circuit of high sensitivity and high S/N for a CCD (charge coupled device) having excellent linearity by a method wherein the second semiconductor region is connected common to the source terminal of the MOS transistor having a drain terminal connected to a power source. CONSTITUTION:The transistor Q3, whereon the drain terminal of the MOS transistor constituting an output circuit, is formed in a semiconductor region 27 separately from the semiconductor region 42 where a CCD will be constituted. As a result, the source terminal of the transistor Q3 constituting an output terminal can be connected common to a P-well 27. As the P-well, which is the effective substrate of the Q3, is connected common to an output terminal 29, the threshold voltage of the Q3 can be constantly maintained irrespective of the fluctuation of the output voltage BOUT, thereby enabling to remove the so- called back gate effect.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電荷転送素子の出力回路に関するO(従来技術
とその問題点) 電荷結合素子(以後CODと記す)あるいはバケットブ
リゲートデバイス(以後BBDと記す)に代表される電
荷転送素子は、従来からの高度の集積回路技術を基盤と
し、その発展とともに急速 ′な開発が進められ、近年
固体撮像、アナログ遅延線、メモリ等の各種の応用がな
されるようになり九0特に、CODを用いた固体撮像素
子は、低消費電力、小型、軽量、高性能と数多くの特徴
を有しその開発が盛んである0ところで、固体撮像素子
は、近年多画素、高密度化される傾向にあシ、これにと
もない、取り扱い得る信号電荷量はまずまず減少する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to an output circuit of a charge transfer device (prior art and its problems). Charge transfer devices, represented by (denoted as ), are based on conventional advanced integrated circuit technology, and have been rapidly developed along with their development, and have recently been used for various applications such as solid-state imaging, analog delay lines, and memories. In particular, solid-state image sensors using COD have many features such as low power consumption, small size, light weight, and high performance, and their development is active. There is a trend toward increasing the number of pixels and increasing the density, and as a result, the amount of signal charge that can be handled is decreasing.

このため、この微小な信号電荷を検出するための高性能
な出力アンプを必要とする。
Therefore, a high-performance output amplifier is required to detect this minute signal charge.

このような出力アンプに要求される性能としては、8/
N、リニアリティ、増幅度等が充分良いことである0従
来、このような出力アンプとしてはMOSトランジスタ
を用いたソースフォロワ回路あるいはインバータ回路が
一般的に用いられている0しかしながら、電荷転送素子
と同一半導体領域に形成されたMOS)ランジスタによ
多構成される出力アンプでは、ドレイン端子が電源側に
接続されたMOS )ランジスタのいわゆるバックゲー
ト効果によって、前記したようなりニアリティ、増幅度
等が劣化する。
The performance required for such an output amplifier is 8/
N, linearity, amplification degree, etc. are sufficiently good. Conventionally, source follower circuits or inverter circuits using MOS transistors are generally used as such output amplifiers. However, In an output amplifier composed of a large number of MOS transistors formed in a semiconductor region, the so-called back gate effect of the MOS transistors whose drain terminals are connected to the power supply side deteriorates the nearness, amplification degree, etc. as described above. .

第1図は、従来のCCDの出力近傍の断面図および出力
アンプの等価回路を簡略化して示している。第1図にお
いて、1は半導体基板で本例ではNチャネルを仮定しP
型のシリコン基板とする。
FIG. 1 shows a simplified cross-sectional view of the vicinity of the output of a conventional CCD and an equivalent circuit of the output amplifier. In FIG. 1, 1 is a semiconductor substrate, and in this example, assuming an N channel, P
A mold silicon substrate is used.

2はN型の半導体領域でCCDの埋込みチャネルを形成
する。この領域は本発明の主旨とは直接関係ないためな
くともよい。3,4はP型基板1と反対導電型のN4拡
散層、5はリセットゲート電極を示し、3をドレイン、
5をゲート、4を浮遊のソースとするリセットトランジ
スタを構成している。6〜10はCCDの転送電極を示
し、本例では二層のゲート電極構造について示しである
が、この限りではない043は酸化膜を示す。Q 1r
Q2はCCDと同一のP型基板1上に形成される出力ア
ンプを構成するMOS)ランジスタである。
2 is an N-type semiconductor region that forms a buried channel of the CCD. This area may be omitted since it is not directly related to the gist of the present invention. 3 and 4 are N4 diffusion layers of the opposite conductivity type to the P-type substrate 1, 5 is a reset gate electrode, 3 is a drain,
A reset transistor is constructed with 5 as a gate and 4 as a floating source. Reference numerals 6 to 10 indicate transfer electrodes of the CCD, and in this example, a two-layer gate electrode structure is shown, but the reference numeral 043 indicates an oxide film. Q 1r
Q2 is a MOS transistor forming an output amplifier formed on the same P-type substrate 1 as the CCD.

本例では、出力アンプとしてソースフォロワ回路として
いるが、インバータ回路等であってもよい〇トランジス
タQiのゲートi2は、配置llを介して浮遊拡散層4
に接続されるoQlのドレイン端子13は電源■DDに
接続され、そのソース端子14はトランジスタQ2のド
レイン端子15と共通に接続され出力端子20を構成す
るOQ2のゲート16は通常電源VAGに接続されるか
、接地されるOQ2のソース端子17は通常接地されて
いる。トランジスタQ1?Q2はCCDと同一基板上に
形成されるため、Ql、Q2の基板端子18,19はC
CDの基板1と同一電位、すなわち本例では接地電位に
設定されている。
In this example, a source follower circuit is used as the output amplifier, but an inverter circuit or the like may also be used. The gate i2 of the transistor Qi is connected to the floating diffusion layer 4 through the arrangement ll.
The drain terminal 13 of oQl, which is connected to Alternatively, the source terminal 17 of OQ2, which is grounded, is normally grounded. Transistor Q1? Since Q2 is formed on the same substrate as the CCD, the substrate terminals 18 and 19 of Ql and Q2 are connected to CCD.
It is set to the same potential as the substrate 1 of the CD, that is, the ground potential in this example.

つぎに本素子の動作について説明する。まず信号電荷で
ある電子はCCDの転送電極6〜lOによって、図面の
右方から左方へと転送され、リセットゲート5、拡散J
@ 3等によって構成されるリセットトランジスタによ
シ予め基準電位に設定された浮遊拡散層4へと流入する
0このとき浮遊拡散層の電位V、は、浮遊拡散層4に付
随した容量(例えば、拡散層4の容量、配線11の容量
Next, the operation of this device will be explained. First, electrons, which are signal charges, are transferred from the right side to the left side of the drawing by the transfer electrodes 6 to 1O of the CCD, and are transferred from the reset gate 5 to the diffusion J
At this time, the potential V of the floating diffusion layer flows into the floating diffusion layer 4, which is set to a reference potential in advance, by the reset transistor constituted by a reset transistor such as @3. The capacitance of the diffusion layer 4 and the capacitance of the wiring 11.

トランジスタQ1の入力容量等の和)をCyJとし、転
送される信号電荷をQHaとするとVy=Qs□G/C
FJとして与えられるOさらにこのvlの値は、ソース
フォロワアンプを介して■。UTとして出力される。と
ころで、一般にCCUの出力アンプとしては、アンプの
入力容量が小さく、増幅度が大きいこと、リニアリティ
がよいこと等が要求される0本例に示すソースフォロワ
アンプの入力容量C1nは次式で与えられるO Cin=Cgd + (1−A ) Cgs(11ここ
でCg、はトランジスタQ1のゲート12とドレイン1
3との間の容量、Cgsはゲート12とソース14との
間の容量、Aはソースフォロワの増幅度を示す。さらに
この人はトランジスタQ2が理想的な定電流回路とする
と次式で与えられる。
If CyJ is the sum of the input capacitance, etc. of transistor Q1, and QHa is the signal charge to be transferred, then Vy = Qs□G/C
O given as FJ Furthermore, this vl value is passed through a source follower amplifier. Output as UT. By the way, in general, as an output amplifier for a CCU, the input capacitance of the amplifier is required to be small, the amplification degree is large, and the linearity is good.The input capacitance C1n of the source follower amplifier shown in this example is given by the following formula. O Cin=Cgd + (1-A) Cgs (11 Here, Cg is the gate 12 and drain 1 of the transistor Q1
3, Cgs is the capacitance between the gate 12 and the source 14, and A is the amplification degree of the source follower. Furthermore, assuming that transistor Q2 is an ideal constant current circuit, this person is given by the following equation.

A= gm / (gm 十gmb ) (2)ここで
gmはトランジスタQlの相互コンダクタンス、gtn
bはパックゲートコンダクタンスであるO従来のCOD
のソースフォロワアンプでは、QlはCODと同一半導
体に形成されているため、Qlの基板端子18は固定電
位すなわち本例では接地電位となっている。このため一
般にgmbはゼロとはならず有限の値をもつoしたがっ
て(2)式に示す増幅度Aも1以下の値となる。このこ
とは(1)式からもわかる通シ、入力容量C,nを大き
くすることになる。このようなことは、ソースフォロワ
回路だけでなく、インパーク回路を用いたときも同様の
ことが生じる0また、一般にバックゲート効果によって
アンプのリニアリティも劣化する。さらに、入力容量C
inの増大によシ、CCD出力部でのkTCノイズも増
加する。このように、従来のCODの出力アンプでは充
分な性能が得られなかったO (発明の目的) 本発明の目的は、上記したような従来の欠点を除去した
電荷転送素子の出力回路を提供することにある。
A= gm / (gm + gmb) (2) where gm is the mutual conductance of transistor Ql, gtn
b is the pack gate conductance O conventional COD
In the source follower amplifier, since Ql is formed of the same semiconductor as the COD, the substrate terminal 18 of Ql is at a fixed potential, that is, in this example, the ground potential. Therefore, in general, gmb does not become zero but has a finite value. Therefore, the amplification degree A shown in equation (2) also takes a value of 1 or less. As can be seen from equation (1), this increases the input capacitance C,n. A similar problem occurs not only when a source follower circuit is used but also when an impark circuit is used. In addition, the linearity of the amplifier generally deteriorates due to the back gate effect. Furthermore, the input capacitance C
As in increases, kTC noise at the CCD output section also increases. As described above, sufficient performance could not be obtained with the conventional COD output amplifier. (Objective of the Invention) An object of the present invention is to provide an output circuit for a charge transfer device that eliminates the above-mentioned conventional drawbacks. There is a particular thing.

(発明の構成) 本発明によれば一導電型を有する半導体内に形成され該
半導体とは反対導電型を有する第一の半導体領域に形成
され、信号電荷を検出するための任意の数のMOS)ラ
ンジスタによって構成される電荷転送素子の出力回路に
おいて、ドレイン端子が電源に接続されている少なくと
も一つの前記MO8)ランジスタは前記第一の半導体領
域とは独立した前記半導体と反対導電型を有する第二の
半導体領域内に形成され、かつ該第二の半導体領域は前
記ドレイン端子がt源に接続されているMOS)ランジ
スタのソース端子と共通に接続されてなることを特徴と
する電荷転送素子の出力回路が得られる。
(Structure of the Invention) According to the present invention, an arbitrary number of MOSs are formed in a semiconductor having one conductivity type and are formed in a first semiconductor region having a conductivity type opposite to the semiconductor, for detecting signal charges. ) In an output circuit of a charge transfer device constituted by a transistor, at least one MO transistor whose drain terminal is connected to a power supply is provided. A charge transfer element formed in a second semiconductor region, and wherein the second semiconductor region is commonly connected to a source terminal of a MOS transistor whose drain terminal is connected to a t source. An output circuit is obtained.

(実施例) つぎに、本発明について図面を用いて詳細に説明する。(Example) Next, the present invention will be explained in detail using the drawings.

第2図および第3図は、本発明による電荷転送素子の出
力回路の一実施例を示し、それぞれその平面図および断
面図を示す0さらに第4図は出力回路のみの等価回路を
示す。本実施例においては、CCDおよび出力回路はN
型基板41の上に形成されたPウェル42あるいは27
の内部に形成されている。図においてQ3およびQ4は
出力回路を構成するMOS)ランジスタで、Q3はその
ドレイン端子22が電源VDDに接続されているo21
,23はQlのゲート、ソースで23はQlが形成され
ているPウェル27およびQ4のドレイン端子24と結
線され出力端子を構成する。25,26はQ4のゲート
、ソースである。
2 and 3 show an embodiment of the output circuit of the charge transfer device according to the present invention, respectively showing a plan view and a sectional view thereof, and FIG. 4 shows an equivalent circuit of only the output circuit. In this embodiment, the CCD and output circuit are N
P-well 42 or 27 formed on mold substrate 41
is formed inside. In the figure, Q3 and Q4 are MOS) transistors that constitute the output circuit, and Q3 is o21 whose drain terminal 22 is connected to the power supply VDD.
, 23 are the gate and source of Ql, and 23 is connected to the P well 27 in which Ql is formed and the drain terminal 24 of Q4 to form an output terminal. 25 and 26 are the gate and source of Q4.

本発明による素子の特徴は、出力回路を構成するMOS
 )ランジスタで、そのドレイン端子が電源に接続され
るトラ/ラスタQ3はCCDが構成すれる半導体領域(
本実施例ではPウェル42)とは独立した半導体領域(
本実施例ではPウェル27)内に形成されていることに
あシ、このため出力端子を構成するQ3のソース端子が
Pウェル27と共通接続できることにある。本実施例に
おける出力回路の等価回路は第4図に示される通シであ
る。
The feature of the device according to the present invention is that the MOS that constitutes the output circuit
) transistor whose drain terminal is connected to the power supply is the semiconductor region (
In this embodiment, the semiconductor region (P-well 42) is independent of the semiconductor region (
In this embodiment, the source terminal of Q3, which constitutes the output terminal, can be commonly connected to the P well 27 because it is formed in the P well 27). The equivalent circuit of the output circuit in this embodiment is shown in FIG.

本回路においてはQ3の実効的な基板であるPウニ/I
/27は出力端子29と共通接続されているため、出力
電圧■。U、の変動によらず、Q3のしきい値電圧は一
定に保たれ、したがっていわゆるバックゲート効果を除
去できる。このため、前記したようなパックゲートコン
ダクタンスgmbがゼロとなシ、本出力回路の増幅度は
ほとんど1に近い値とすることができる。このことは本
ソースフォロワ出力回路の入力容量を大幅に減少できる
ことを意味し、CODにとって高感度、高S/Nの出力
回路が実現できる。さらにバックゲート効果がないため
、極めてリニアリティのよい高性能の出力回路が実現で
きる。
In this circuit, the effective board of Q3 is P/I.
/27 is commonly connected to the output terminal 29, so the output voltage is ■. The threshold voltage of Q3 is kept constant regardless of the variation in U, so that the so-called back gate effect can be eliminated. Therefore, as long as the pack gate conductance gmb as described above is zero, the amplification degree of the present output circuit can be almost a value close to 1. This means that the input capacitance of the present source follower output circuit can be significantly reduced, and an output circuit with high sensitivity and high S/N can be realized for COD. Furthermore, since there is no backgate effect, a high performance output circuit with extremely good linearity can be realized.

(発明の効果) 以上、本発明によれば高性能の出力回路が実現できる◎
また本発明の主旨はPチャネルの回路あるいはインバー
タを用いた回路にも適用できることは明らかである。
(Effects of the invention) As described above, according to the present invention, a high-performance output circuit can be realized◎
It is clear that the gist of the present invention can also be applied to a P-channel circuit or a circuit using an inverter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のCODの出力近傍の断面図および出力
回路の等価回路を示fb第2図および第3図は本発明に
よる素子の平面図および断面図を示す。第4図は本発明
による出力回路の等価回路を示す0図において、Q1〜
Q4はMOS )ランジスタ、1はP型基板、2は埋込
みチャネルを形成するN型の半導体領域、3.4.5は
リセットト2ンジスクのドレイン、ソース、ゲート、6
〜10はCCDの転送電極、43は酸化膜、12.13
.14はQlのゲート、ドレイン、ソース、15.16
.17はQ2のドレイン、ゲート、ソース、18,19
はQl、Q2が構成される基板端子、20は出力端子、
21,22.23はQ3のゲート、ドレイン、ソース、
24,25,26はQ4のドレイン、ゲート、ソース、
27はQ3が形成されているPウェル、41はN型基板
、42はCCDおよびQ4が形成されるPウェルを示す
。 @1図 第2図
FIG. 1 shows a cross-sectional view near the output of a conventional COD and an equivalent circuit of the output circuit, and FIGS. 2 and 3 show a plan view and a cross-sectional view of a device according to the present invention. FIG. 4 shows an equivalent circuit of the output circuit according to the present invention.
Q4 is a MOS) transistor, 1 is a P-type substrate, 2 is an N-type semiconductor region forming a buried channel, 3.4.5 is the drain, source, and gate of the reset disk, 6
~10 is a CCD transfer electrode, 43 is an oxide film, 12.13
.. 14 is the gate, drain, and source of Ql, 15.16
.. 17 is the drain, gate, and source of Q2, 18, 19
is the board terminal where Ql and Q2 are configured, 20 is the output terminal,
21, 22.23 are the gate, drain, and source of Q3,
24, 25, 26 are the drain, gate, and source of Q4,
27 is a P-well where Q3 is formed, 41 is an N-type substrate, and 42 is a P-well where a CCD and Q4 are formed. @Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 一導亀型を有する半導体内に形成され該半導体とは反対
導電型を有する第一の半導体領域に形成され、信号電荷
を検出するための任意の数のMOSトランジスタによっ
て構成される電荷転送素子の出力回路において、ドレイ
ン端子が電源に接続されている少なくとも一つの前記M
OSトランジスタは前記第一の半導体領域とは独立した
前記半導体と反対導電型を有する第二の半導体領域内に
形成され、かつ該第二の半導体領域は前記ドレイン端子
が電源に接続されているMO8)ランジスタのソース端
子と共通に接続されてなることを特徴とする電荷転送素
子の出力回路。
A charge transfer element is formed in a first semiconductor region having a conductivity type opposite to that of the semiconductor and is formed in a semiconductor having a conductive turtle shape, and is constituted by an arbitrary number of MOS transistors for detecting signal charges. In the output circuit, at least one of said M whose drain terminal is connected to a power supply
The OS transistor is formed in a second semiconductor region that is independent of the first semiconductor region and has a conductivity type opposite to that of the semiconductor, and the second semiconductor region is an MO8 transistor whose drain terminal is connected to a power source. ) An output circuit for a charge transfer element, characterized in that it is commonly connected to a source terminal of a transistor.
JP59078959A 1984-04-19 1984-04-19 Charge transfer device output circuit Pending JPS60223161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59078959A JPS60223161A (en) 1984-04-19 1984-04-19 Charge transfer device output circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59078959A JPS60223161A (en) 1984-04-19 1984-04-19 Charge transfer device output circuit

Publications (1)

Publication Number Publication Date
JPS60223161A true JPS60223161A (en) 1985-11-07

Family

ID=13676426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59078959A Pending JPS60223161A (en) 1984-04-19 1984-04-19 Charge transfer device output circuit

Country Status (1)

Country Link
JP (1) JPS60223161A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859624A (en) * 1987-07-31 1989-08-22 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor device having CCD and peripheral circuit
JPH0284348U (en) * 1988-12-16 1990-06-29
JPH02181438A (en) * 1989-01-05 1990-07-16 Hamamatsu Photonics Kk Semiconductor device for amplifying charge
JPH02246158A (en) * 1989-03-17 1990-10-01 Matsushita Electron Corp Semiconductor integrated circuit
US5033068A (en) * 1987-05-21 1991-07-16 Kabushiki Kaisha Toshiba Charge transfer device
US5294817A (en) * 1992-04-02 1994-03-15 Nec Corporation Output circuit for charged transfer device and having a high detection sensitivity
US5357129A (en) * 1992-12-28 1994-10-18 Sharp Kabushiki Kaisha Solid state imaging device having high-sensitivity and low-noise characteristics by reducing electrostatic capacity of interconnection
US6023195A (en) * 1997-09-01 2000-02-08 Nec Corporation On-chip source follower amplifier
US6147556A (en) * 1997-11-04 2000-11-14 Nec Corporation Solid-state image sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5033068A (en) * 1987-05-21 1991-07-16 Kabushiki Kaisha Toshiba Charge transfer device
US4859624A (en) * 1987-07-31 1989-08-22 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor device having CCD and peripheral circuit
JPH0284348U (en) * 1988-12-16 1990-06-29
JPH02181438A (en) * 1989-01-05 1990-07-16 Hamamatsu Photonics Kk Semiconductor device for amplifying charge
JPH02246158A (en) * 1989-03-17 1990-10-01 Matsushita Electron Corp Semiconductor integrated circuit
US5294817A (en) * 1992-04-02 1994-03-15 Nec Corporation Output circuit for charged transfer device and having a high detection sensitivity
US5357129A (en) * 1992-12-28 1994-10-18 Sharp Kabushiki Kaisha Solid state imaging device having high-sensitivity and low-noise characteristics by reducing electrostatic capacity of interconnection
US6023195A (en) * 1997-09-01 2000-02-08 Nec Corporation On-chip source follower amplifier
US6147556A (en) * 1997-11-04 2000-11-14 Nec Corporation Solid-state image sensor

Similar Documents

Publication Publication Date Title
JPH0786513A (en) Power wiring
JPWO2021065587A5 (en)
JPS59108461A (en) solid state imaging device
JPS60223161A (en) Charge transfer device output circuit
JPH07106553A (en) Solid state image pickup element
JP2590135B2 (en) Charge input circuit
JP4049472B2 (en) Semiconductor device
JP3031105B2 (en) Charge detection device
JP3130540B2 (en) Signal detection circuit
US7468500B2 (en) High performance charge detection amplifier for CCD image sensors
JP2870467B2 (en) Charge coupled device
JP3024183B2 (en) Method for manufacturing charge-coupled device
JPH0576770B2 (en)
JPS58106867A (en) Charge transfer element
JPH0468789B2 (en)
JP3614513B2 (en) Solid-state imaging device
JPH01103872A (en) Solid-state image sensing device
JPH0563177A (en) Ccd image sensor
JPS5955067A (en) charge transfer device
JPS5829633B2 (en) Charge detection device for charge transfer device
JPS6286861A (en) Output unit for charge transfer device
JPS63224256A (en) Mos transistor
JPS6055641A (en) MOS type silicon integrated circuit element
JPS63161A (en) Charge-coupled device output circuit
JPH01233771A (en) Charge transfer element and driving method therefor