[go: up one dir, main page]

JPS60221973A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPS60221973A
JPS60221973A JP59078261A JP7826184A JPS60221973A JP S60221973 A JPS60221973 A JP S60221973A JP 59078261 A JP59078261 A JP 59078261A JP 7826184 A JP7826184 A JP 7826184A JP S60221973 A JPS60221973 A JP S60221973A
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
positive
electrode
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59078261A
Other languages
Japanese (ja)
Inventor
Masao Ogawa
雅男 小川
Tadaaki Miyazaki
忠昭 宮崎
Shinichi Toyosawa
真一 豊澤
Yoshitomo Masuda
善友 増田
Tadashi Nakajima
正 中島
Takahiro Kawagoe
隆博 川越
Ryota Fujio
藤尾 亮太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP59078261A priority Critical patent/JPS60221973A/en
Publication of JPS60221973A publication Critical patent/JPS60221973A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a secondary battery having high power and light weight by forming a positive electrode with electric conductive high polymer and a negative electrode with carbon containing graphite structure. CONSTITUTION:A secondary battery is fabricated by using electric conductive high polymer as a positive electrode, carbon containing graphite structure as a negative electrode, and electrolyte prepared by dissolving a compound capable of electrolytically producing an ion which can be doped into the positive and negative electrodes in a nonaqueous solvent. Performance, espetially energy density, of the secondary battery is substantially increased compared with a secondary battery using conventional electric conductive high polymer. Artificial carbon prepared by carbonizing a substance at a temperature of above 1,000 deg.C and less than 2,500 deg.C, or artificial graphite prepared by graphitizing a substace at 2,500 deg.C or more, or natural graphite is preferable as the carbon containing graphite structure.

Description

【発明の詳細な説明】 本ブを明は、導電性高分子物質を用いた二次電池に関し
、更に詳述りると正極を導電性高分子物質にて形成し、
負極をU3墨構造含有炭素物賀にて形成すると共に、電
気分解にJ:りこれらiE極又は負極にドープされ得る
イオンを生成Jることが可能な化合物を非水溶媒に溶解
して得られる溶液を電解液とした高出力の二次電池に関
(る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a secondary battery using a conductive polymer material, and more specifically, a positive electrode formed of a conductive polymer material,
A negative electrode is formed using a carbon material containing a U3 black structure, and a compound capable of generating ions that can be doped into these iE electrodes or negative electrodes through electrolysis is dissolved in a non-aqueous solvent. Relates to high-output secondary batteries that use a solution as an electrolyte.

近年、ポリアセチレン等の導電性高分子物質が電池用電
極材料としC優れていることが明らかにされ、二次電池
の高出力化、軽量化に極めて有望な材料として注目され
るJ:うになってぎたため、これら導電性高分子物質を
電極とし!、二二次電池が種々提案されている(特開昭
56−136469号等)。
In recent years, it has been revealed that conductive polymer substances such as polyacetylene are excellent as electrode materials for batteries, and are attracting attention as extremely promising materials for increasing the output and reducing the weight of secondary batteries. Therefore, these conductive polymer materials can be used as electrodes! , various secondary batteries have been proposed (Japanese Unexamined Patent Publication No. 136469/1983, etc.).

しかしながら、従来の導電性高分子物質を電極とする二
次電池は、下記に示すような問題点を有しており、未だ
実用化には至っていない。
However, secondary batteries using conventional conductive polymer materials as electrodes have the following problems and have not yet been put into practical use.

即ち、(1〉導電性高分子物質をtE極として用いた場
合には比較的優れた電極特性を示づが、負極とし−C用
いた場合には電極特性が劣ること、(ii)どのような
電解液を用いても水等の不純物に対して極めて敏感であ
り、電池の性能を向上、保持づるためには、電解液を高
度に精製等づる必要があること、(iii ) (i 
)の問題を解消づるため負極としCs電性高分子物質の
代りにリチウム金属を用いることも提案されているが、
この方法は負極であるリチウム金属にいわゆるプントラ
イ1へ現象が発生し、実用的な電池を供し得ないこと、
(1v)また、正負両極にそれぞれ黒鉛を用いた電極も
提案されている(特開[11158−192266号)
が、この電池(よ出力が高くないこと等の問題があり、
実用的な電池とJるためにはこれらの問題点を解決する
ことが望まれる。
That is, (1) when a conductive polymer substance is used as the tE electrode, it exhibits relatively excellent electrode properties, but when -C is used as the negative electrode, the electrode properties are poor; (ii) how Even if a standard electrolyte is used, it is extremely sensitive to impurities such as water, and in order to improve and maintain battery performance, the electrolyte needs to be highly purified.
) It has also been proposed to use lithium metal as the negative electrode instead of the Cs-conductive polymer material, but
This method has the disadvantage that a so-called Puntorai 1 phenomenon occurs in the lithium metal that is the negative electrode, making it impossible to provide a practical battery.
(1v) Also, an electrode using graphite for both the positive and negative electrodes has been proposed (Japanese Patent Application Laid-Open No. 11158-192266).
However, there are problems with this battery (such as the output is not high),
In order to create a practical battery, it is desirable to solve these problems.

本発明名らは、上記事情に化み、導電性高分子物質を正
極材料とし、これと組合せた場合に優れた性能を発揮づ
る適切な負極月利につき鋭意検討を進めIこ結果、石墨
M4造含有炭素物質を負極として使用することにより上
記目的が達成されることを知見した。
In view of the above circumstances, the inventors of the present invention have conducted intensive studies on an appropriate negative electrode monthly rate that will exhibit excellent performance when combined with a conductive polymer substance as a positive electrode material.As a result, graphite M4 It has been found that the above object can be achieved by using a carbonaceous material as a negative electrode.

即ち、導電性高分子物質を正極とし、石墨構造含有炭素
物質を負極とJるとバに、電解によりこれら正極及び負
極にそれぞれドープされ得るイオンを生成することが可
能な化合物を非水溶媒に溶解した溶液を電解液とした電
池を構成しlζ場合、(イ)高出力であり、かつこの特
性を長期間維持すること、〈口)負極とし【リチウム金
属を用いた場合に発生づるダン1〜ライト現象が起きな
いこと、(ハ)水等の不純物の存在が電池の性能に与え
る彩管が小さく、従って電解液に対しての特別の精製や
封止技術を必要としないこと等の優れた特性を有する電
池が得られ、導電性高分子物質からなる正極に対し石墨
構造含有炭素物質を負極とした場合、これら正負極の組
合ばが非常に適切有効で、導電性高分子物質電極材料の
特性を効果的に発揮させることができることを知見し、
本発明をなすに至ったものである。
That is, a conductive polymer material is used as a positive electrode, a graphite structure-containing carbon material is used as a negative electrode, and a compound capable of generating ions that can be doped into the positive and negative electrodes by electrolysis is used as a non-aqueous solvent. When constructing a battery using a dissolved solution as an electrolyte, (a) it must have high output and maintain this characteristic for a long period of time; ~Advantages such as no light phenomenon, (c) small effect of impurities such as water on battery performance, and therefore no special purification or sealing technology for the electrolyte is required. When a graphite structure-containing carbon material is used as a negative electrode for a positive electrode made of a conductive polymer material, the combination of these positive and negative electrodes is very suitable and effective. We discovered that it is possible to effectively demonstrate the characteristics of
This has led to the present invention.

以下、本発明につき更に詳しく説明づる。The present invention will be explained in more detail below.

本発明に係る二次電池は、上述したように導電性高分子
物質を正極とし、′Ei墨構造含右炭素物質を負極どし
、電解にJ:りこれら正極及び負極にそれぞれドープさ
れ得るイオンを生成覆ることが可能な化合物を非水溶媒
に溶解した溶液を電解液としくなるものであり、これに
より二次電池の性能、特にエネルギー密度が従来の導電
性t′b分子物質を電極と覆る二次電池に比べC驚異的
に向上したものである。
As described above, the secondary battery according to the present invention has a conductive polymer material as a positive electrode, a carbon-containing material with an Ei black structure as a negative electrode, and ions that can be doped into the positive electrode and the negative electrode, respectively, through electrolysis. The electrolyte is a solution prepared by dissolving a compound capable of producing and covering t'b in a non-aqueous solvent, and this improves the performance of the secondary battery, especially the energy density, compared to conventional conductive t'b molecular substances as electrodes. This is an amazing improvement in C compared to the covered secondary battery.

ここで、本発明の二次電池の負極に用いる?5墨構造含
有炭素物質としCは、カーボン質材料又は黒鉛質材料か
らなるものであって、炭化bt、<は黒鉛化し+’Fる
物質を1000℃以上2500℃未満の温度ぐ炭化させ
た人I ;/J−ボン質もしくは2500℃以上の温度
で黒鉛化さ1また人工黒鉛質又は天然黒鉛が好適に使用
し得る。
Here, what is used for the negative electrode of the secondary battery of the present invention? 5 Ink structure-containing carbon material, C is a carbonaceous material or graphite material, carbonized bt, < is a person who carbonized a graphitized +'F substance at a temperature of 1000°C or more and less than 2500°C. I;/J-bond or graphitized at a temperature of 2500° C. or higher, artificial graphite or natural graphite can be suitably used.

この場合、炭化もしくは黒鉛化し得る物質としては、セ
ルロース、ビッヂ、液晶ビッヂ、ポリアクリロニトリル
、ポリ塩化ビニル、フェノール樹脂、ポリベンゾオキリ
シールイミド等のイミド類などが挙げられる。なお、負
極として用いる石墨構造含有炭素物質の形態には特に制
限はなく、例えば繊維、布、不織布、フィルム、板、粉
末等の各種形態で使用でき、具体的には−1−記物質等
を焼成したカーボン繊維、カーボンクロス、カーボンフ
ォイル、グラフフィト繊維、グラファイト・り[]ス、
グラフ7?イトフォイル、アセチレンブラック及び天然
グラファイト等が使用し得る。
In this case, examples of substances that can be carbonized or graphitized include cellulose, bits, liquid crystal bits, polyacrylonitrile, polyvinyl chloride, phenol resins, and imides such as polybenzooxylylimide. Note that there is no particular restriction on the form of the graphite structure-containing carbon material used as the negative electrode, and it can be used in various forms such as fiber, cloth, nonwoven fabric, film, plate, powder, etc. Specifically, the material listed in -1- Calcined carbon fiber, carbon cloth, carbon foil, graphite fiber, graphite liss,
Graph 7? Itofoil, acetylene black, natural graphite, etc. may be used.

次に、正極に用いる導電性高分子物質としては、ポリア
ニリン、ポリフェニレン、ポリチェニレン。
Next, examples of conductive polymer materials used for the positive electrode include polyaniline, polyphenylene, and polythenylene.

ポリアセヂレン、ポリフラン、ポリピロール、ポリ(p
−フェニレンビニレン)、ポリフェニレンスルフィド及
びポリフェニレンオキシドなどが挙げられるが、これら
のうちではポリアニリン及びポリフェニレンが好ましく
、特にポリアニリンが最も好適に使用し得る。
Polyacetylene, polyfuran, polypyrrole, poly(p
-phenylene vinylene), polyphenylene sulfide, and polyphenylene oxide. Among these, polyaniline and polyphenylene are preferred, and polyaniline is most preferably used.

なお、これらのIP導電性高分子物質電気化学的用合法
により得ることができ、例えば電極に金属或いはカーボ
ン成型体を使用してこれら導電性高分子物質を直接電極
上に電解合成し、これをそのまま正極として使用するこ
とができるもので、このような方法を採用することによ
り導電性高分子物質の製造工程を短縮することができる
Note that these IP conductive polymer substances can be obtained by electrochemical application methods, for example, by electrolytically synthesizing these conductive polymer substances directly on the electrode using a metal or carbon molded body as the electrode. It can be used as a positive electrode as it is, and by adopting such a method, the manufacturing process of the conductive polymer material can be shortened.

本発明二次電池を構成づる電解液に用いられ、前記正負
極にそれぞれドープされ得るイオンを生成Jる化合物は
、アニオンとカチオンの組合せよりなる化合物であって
、アニオンの例としてはPF6−.5bFs−、ASF
6−.3blJ6−の如きVA族元素のハロゲン化物ア
ニオン。
The compound used in the electrolytic solution constituting the secondary battery of the present invention and generating ions that can be doped into the positive and negative electrodes is a compound consisting of a combination of an anion and a cation, and examples of the anion include PF6-. 5bFs-, ASF
6-. A halide anion of a group VA element such as 3blJ6-.

B F4− 、 NIC9a−の如ぎIIIA族元素の
ハト1グン化物アニオン+ I−(13−)、Br−、
(J−の如きハロゲンアニオン、CROa−の如き過塩
素酸アニオン、HF2− 、CF3 SO3−、CN5
− 。
BF4-, pigeonide anion of group IIIA element such as NIC9a-, I-(13-), Br-,
(Halogen anions such as J-, perchlorate anions such as CROa-, HF2-, CF3 SO3-, CN5
−.

So a −−、HSOa−等を挙げることができるが
、必ずしもこれらのアニオンに限定されるものではない
。また、カチオンとしてはli”、tJa”、K”の如
きノフルカリ金属イオン、R4N” (Rは水素又は炭
化水素残基を示づ)の如き第4級アン°E二つムイオン
等を挙げることができるが、必ずしもこれらのカチオン
に限定されるものではない。これらアニオン及びカチオ
ンを右りる化合物の具体例としては、 Li PFe 、Li Sb F6 。
Examples include Soa --, HSOa-, etc., but the anion is not necessarily limited to these anions. Examples of cations include noflukali metal ions such as li'', tJa'', and K'', and quaternary ammonium ions such as R4N'' (R represents hydrogen or a hydrocarbon residue). However, it is not necessarily limited to these cations. Specific examples of compounds containing these anions and cations include Li PFe and Li Sb F6.

Li As Fs 、l−1cf04.Li 1.Li
Br。
Li As Fs, l-1cf04. Li 1. Li
Br.

Li CR,NaPF5 、NbSb F6 、NaA
S F6 。
Li CR, NaPF5, NbSb F6, NaA
SF6.

tbcRo 4 、、Na1.KPFa 、KSb F
6゜KAS Fo 、KCfo 4 、I−i BF4
 。
tbcRo 4 , , Na1. KPFa, KSbF
6゜KAS Fo, KCfo 4, I-i BF4
.

11 NCIa 、Li HF2 、L−i CNS。11 NCIa, Li HF2, Li CNS.

KSCN、Li SO3CF3 。KSCN, Li SO3CF3.

(n Ct 4 F+7 )4 NAS l二 。 。(n Ct 4 F+7) 4 NAS l2. .

(n −04H7)4 NPFI+ 。(n-04H7)4 NPFI+.

(n −C4Hy )4 NCjO4。(n-C4Hy)4NCjO4.

(n −C4Hy )4 NBF4 。(n-C4Hy)4NBF4.

(C21−1s > 4 NCRO4。(C21-1s>4 NCRO4.

(n −041−17>4 N 1 等を挙げることができ、これらに限定されるものではな
いが、二次電池の軽量化、安定化の点からはリチウム塩
、特に:Li CIO4、Li BF4 。
(n -041-17>4 N 1 etc., but from the viewpoint of weight reduction and stabilization of the secondary battery, lithium salts, especially: Li CIO4, Li BF4 .

しt I、 l i[3r、 LiCfが好適に用いら
れる。
t I, l i[3r, LiCf is preferably used.

なお、上記化合物は通常溶媒により溶解された状態で使
用され、この場合溶媒は特に限定はされないが、比較的
極性の大ぎい溶媒が好適に用いられる。具体的には、プ
ロピレンカーボネート、エチレンカーボネート、ベンゾ
ニトリル、アセトニトリル、テトラヒドロフラン、2−
メチルテトラヒドロフラン、γ−ブチロラクトン、ジオ
キソラン、塩化メチレン、トリエチルフAスフl−ト。
Note that the above-mentioned compound is usually used in a state dissolved in a solvent, and in this case, the solvent is not particularly limited, but a relatively highly polar solvent is preferably used. Specifically, propylene carbonate, ethylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-
Methyltetrahydrofuran, γ-butyrolactone, dioxolane, methylene chloride, triethylphate A sulfate.

トリエチルフAスファイト、硫酸ジメチル、ジメチルボ
ルムアミド。ジメチルアセトアミド、ジメチルスルフオ
キシド、ジオキサン、ジメトキシエタン、ポリエチレン
グリコール、スルフオラン。
Triethylph A sphite, dimethyl sulfate, dimethylborumamide. Dimethylacetamide, dimethylsulfoxide, dioxane, dimethoxyethane, polyethylene glycol, sulforane.

ジクロロエタン、クロルベンゼン、ニトロベンゼン、水
などの1fiIi又は2種以上の混合物を挙げることが
できる。これらの中では非水溶媒が好ましく、溶媒とし
て非水溶媒を用いた場合には電池の起電力が大きくなる
Mention may be made of dichloroethane, chlorobenzene, nitrobenzene, water, etc. or a mixture of two or more thereof. Among these, nonaqueous solvents are preferred, and when a nonaqueous solvent is used as the solvent, the electromotive force of the battery increases.

本発明の二次電池は、通常正負極間に電解液を介在させ
ることにより構成されるが、この場合正負両極間に両極
の接触による電流の短絡を防ぐためセパレーターを介装
することができる。セパレーターとしては多孔質で電解
液を通したり含んだりJることのできる材料、例えばポ
リテトラフルオロエチレン、ポリプロピレンやポリアニ
リンなどの合成樹脂製の不織布、織布及び網等を使用(
ることができる。
The secondary battery of the present invention is usually constructed by interposing an electrolyte between the positive and negative electrodes, but in this case, a separator can be interposed between the positive and negative electrodes to prevent short circuiting of current due to contact between the two electrodes. As the separator, use a porous material that allows the electrolyte to pass through or contain it, such as nonwoven fabrics, woven fabrics, and nets made of synthetic resins such as polytetrafluoroethylene, polypropylene, and polyaniline.
can be done.

本発明の二次電池は正極が導電性高分子物質、負極が石
墨構造含有炭素物質より形成され、これら正負極の組合
せが非常に有効であるため、高出力が達成されると共に
、軽量であり、このため自動車、飛行機、ポータプル機
械、電気自動車など多方面の用途に好適に使用されるも
のである。
In the secondary battery of the present invention, the positive electrode is formed of a conductive polymer material and the negative electrode is formed of a graphite structure-containing carbon material, and since the combination of these positive and negative electrodes is very effective, it achieves high output and is lightweight. Therefore, it is suitable for use in a wide variety of applications such as automobiles, airplanes, portable machines, and electric vehicles.

以下、実施例と比較例を示し、本発明を具体的に説明−
4るが、本発明は下記の実施例に限定される一bのでは
ない。
Hereinafter, the present invention will be specifically explained by showing Examples and Comparative Examples.
However, the present invention is not limited to the following examples.

[実施例] アニリンを含む過塩素酸水溶液を電解溶液とし、この中
に作用極、対極としてそれぞれ白金板(2X 2C11
1>を浸漬し、定電位電解によってポリアニリンを合成
した。得られたポリアニリン(重量41m(+>は蒸溜
水で十分洗浄した後、よく乾燥させた。
[Example] A perchloric acid aqueous solution containing aniline was used as an electrolytic solution, and platinum plates (2X 2C11
1> was immersed, and polyaniline was synthesized by constant potential electrolysis. The obtained polyaniline (weight: 41 m (+)) was thoroughly washed with distilled water and then thoroughly dried.

次に、このポリアニリンを正極として使用し、また負極
としくはグラフ7Iイ1−(日本カーボン打製GF20
.重吊38m9)に集電極としてNL網を着けると共に
、その周囲を7ノ[]ンで被覆したものを用い、電解液
としては1悦水処理した炭酸プロピレン中に無水過塩木
酸すヂウム(淵瓜1モル/、i)を溶解した溶液を用い
、電池をMIj、シた。電池は上記の正極、負極および
電解液を試験管型レルに組み込み、内部を真空にして十
分に脱気した。
Next, this polyaniline was used as a positive electrode, and the negative electrode was Graph 7I-1- (GF20 manufactured by Nippon Carbon Co., Ltd.).
.. An NL net was attached as a collector electrode to a 38 m9 heavy hanging electrode, and the surrounding area was covered with 7 nanoparticles.The electrolyte was anhydrous sodium persalt wood acid in propylene carbonate treated with water. Using a solution in which 1 mol/i) of Fuchigourd was dissolved, the battery was heated to MIj. For the battery, the above-mentioned positive electrode, negative electrode, and electrolyte were assembled in a test tube type barrel, and the inside was evacuated to sufficiently degas it.

電池を組立−C後、両電極間の電圧はOVであったが、
2ml定電流C充電づると両極間の電圧は直ちに2.8
Vに十’RL/、その俊充電を続4プると電圧は徐々に
1−冒して行き、4.5vの電圧に達したどころで充電
を終了した。その後同じく2mlの電流で両極間に電圧
が2.Ovになるまで放電させた。その結束、この時の
充放電効率は95%、エネルギー密度は158Wb /
ka (平均放電電圧3.5V)であった。
After assembling the battery -C, the voltage between both electrodes was OV,
When 2ml is charged with constant current C, the voltage between the two poles immediately becomes 2.8
When I applied 10'RL/ to V and continued charging 4 times, the voltage gradually increased by 1-V, and when the voltage reached 4.5V, I stopped charging. After that, with the same current of 2 ml, the voltage between the two electrodes was 2. It was discharged until it reached Ov. The charging/discharging efficiency at this time is 95%, and the energy density is 158Wb/
ka (average discharge voltage 3.5V).

[比較例1] 実施例で製造したポリアニリンを正負両極として使用し
た以外は実施例と同一条件で電池試験を行なった結果、
充放電効率は90%、エネルギー密度ハ90Wl+ /
ka (平均数m’lH: 3 、0 V ) テあっ
た。
[Comparative Example 1] A battery test was conducted under the same conditions as in the example except that the polyaniline produced in the example was used as both positive and negative electrodes.
Charge/discharge efficiency is 90%, energy density is 90Wl+/
ka (average number m'lH: 3, 0 V).

[比較例2] 実施例で用いたグラフIイI・を正ず1両極として使用
した以外は実施例と同一条件で電池試験を行なったIl
i!i東、充放電効率は95%、エネルギー密度は19
Wh/に9(平均放電電圧1.5V)であり、実施例に
比べてエネルギー密度が茗しく小であった。
[Comparative Example 2] A battery test was conducted under the same conditions as in the example except that the graph II used in the example was used as the positive electrode and both electrodes.
i! i East, charging/discharging efficiency is 95%, energy density is 19
The energy density was 9 (average discharge voltage 1.5 V) in Wh/, and the energy density was rather small compared to the example.

以上の結果より、正極として導電性高分子物質を用い、
11極として石早構造含有炭素物質を用いた二次電池(
実施例)は■ネルギーWj度が非常に高いことが知見さ
れる。
From the above results, using a conductive polymer material as the positive electrode,
Secondary battery using carbon material containing Ishihaya structure as 11 poles (
It is found that Example) has a very high energy Wj degree.

出願人 株式公判 ブリデストン 代理人 弁理士 小 島 隆 司Applicant: Stock Trial Brideston Agent: Patent Attorney Takashi Kojima

Claims (1)

【特許請求の範囲】 1、i#電性尚分子物質を正極とし、石墨構造含有炭素
物質を負極とづると共に、電解によりこれら正tΦ及び
負極にそれぞれドープされ襞するイオンを生成すること
が可1itiな化合物を非水溶媒に溶解した溶液を電解
液としてなることを特徴とJる二次電池。 2、石墨構造含有炭素物質が炭化もしくは黒鉛化し得る
物質を1000℃以上2500℃未満の温度で炭化”り
ることにより得られた人工カーボン貿材判’bL<は2
500 ’C以上の温度で黒鉛化JることにJ:り得ら
れた人コ■黒鉛賀月料又は天然黒鉛である特許請求の範
りm第1項記載の二次N池。 3、導電性高分子物質がポリアニリン又はポリフェニレ
ンである特許請求の範囲第1項又は@2項記載の二次電
池。
[Claims] 1. It is possible to use an i# conductive molecular substance as a positive electrode and a graphite structure-containing carbon material as a negative electrode, and to generate ions that are doped into the positive tΦ and negative electrode respectively by electrolysis. 1. A secondary battery characterized in that the electrolyte is a solution obtained by dissolving a compound in a non-aqueous solvent. 2. Artificial carbon trade material obtained by carbonizing a substance that can be carbonized or graphitized at a temperature of 1000°C or more and less than 2500°C.
Graphitization at a temperature of 500'C or higher, in particular, the secondary N pond according to claim 1, which is graphite powder or natural graphite. 3. The secondary battery according to claim 1 or @2, wherein the conductive polymer material is polyaniline or polyphenylene.
JP59078261A 1984-04-18 1984-04-18 Secondary battery Pending JPS60221973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59078261A JPS60221973A (en) 1984-04-18 1984-04-18 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59078261A JPS60221973A (en) 1984-04-18 1984-04-18 Secondary battery

Publications (1)

Publication Number Publication Date
JPS60221973A true JPS60221973A (en) 1985-11-06

Family

ID=13657039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59078261A Pending JPS60221973A (en) 1984-04-18 1984-04-18 Secondary battery

Country Status (1)

Country Link
JP (1) JPS60221973A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122066A (en) * 1985-04-30 1987-06-03 Mitsubishi Petrochem Co Ltd Nonaqueous solvent secondary battery
US4940640A (en) * 1985-07-23 1990-07-10 University Of Pennsylvania High capacity polyaniline electrodes
US5023149A (en) * 1984-06-14 1991-06-11 University Patents, Inc. Electrochemistry employing polyaniline
EP0547794A1 (en) 1991-12-17 1993-06-23 Mitsubishi Gas Chemical Company, Inc. Lithium secondary battery using a non-aqueous solvent and anode material therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023149A (en) * 1984-06-14 1991-06-11 University Patents, Inc. Electrochemistry employing polyaniline
JPS62122066A (en) * 1985-04-30 1987-06-03 Mitsubishi Petrochem Co Ltd Nonaqueous solvent secondary battery
US4940640A (en) * 1985-07-23 1990-07-10 University Of Pennsylvania High capacity polyaniline electrodes
EP0547794A1 (en) 1991-12-17 1993-06-23 Mitsubishi Gas Chemical Company, Inc. Lithium secondary battery using a non-aqueous solvent and anode material therefor
US5326658A (en) * 1991-12-17 1994-07-05 Mitsubishi Gas Chemical Company, Inc. Lithium secondary battery using a non-aqueous solvent

Similar Documents

Publication Publication Date Title
US5919589A (en) Rechargeable battery
KR100227764B1 (en) Rechargeable lithium battery having an improved cathode and process for the production thereof
JP2007525787A (en) New carbon nanotube lithium battery
KR102631278B1 (en) Graphitic carbon-based cathode and manufacturing method for aluminum secondary battery
JPH01200557A (en) Nonaqueous electrolytic battery
JP2004165131A (en) Ion conductor using de novo molten salt
JPS60221973A (en) Secondary battery
JPS61163562A (en) Secondary cell
JPS6168864A (en) Battery
JP3812098B2 (en) Electric double layer capacitor
JPS60221964A (en) Secondary battery
JP3236317B2 (en) Non-aqueous battery
JPH01230216A (en) Energy storing apparatus for nonaqueous electrolyte
JP3236002B2 (en) Lithium secondary battery
JP2015513179A (en) Electrochemical energy storage device or energy conversion device with galvanic cell having an electrochemical half-cell with a suspension of fullerene and ionic liquid
JP2000223368A (en) Secondary power supply
JPH0782839B2 (en) Secondary battery negative electrode
JPS6020476A (en) Secondary battery
JPH06150931A (en) Negative electrode for secondary battery
JP4029273B2 (en) Electrode cell electrode material and electrochemical cell using the same
JP2811389B2 (en) Rechargeable battery
JPH0567477A (en) Battery
JPH0821430B2 (en) Secondary battery
JP3398771B2 (en) Carbon electrode and secondary battery using the same
JP3837880B2 (en) Electric double layer capacitor