[go: up one dir, main page]

JPS60221538A - Molybdenum purification method - Google Patents

Molybdenum purification method

Info

Publication number
JPS60221538A
JPS60221538A JP7798484A JP7798484A JPS60221538A JP S60221538 A JPS60221538 A JP S60221538A JP 7798484 A JP7798484 A JP 7798484A JP 7798484 A JP7798484 A JP 7798484A JP S60221538 A JPS60221538 A JP S60221538A
Authority
JP
Japan
Prior art keywords
molybdenum
water
temperature
purification method
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7798484A
Other languages
Japanese (ja)
Other versions
JPS6261094B2 (en
Inventor
Yasuo Kuroda
黒田 康雄
Akio Yanagisawa
柳沢 明男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP7798484A priority Critical patent/JPS60221538A/en
Publication of JPS60221538A publication Critical patent/JPS60221538A/en
Publication of JPS6261094B2 publication Critical patent/JPS6261094B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は大規模集積回路、特に超大規模実績回路のゲー
ト−極形成形の低アルカリモリブデンを漫るためのモリ
ブデンの稽製方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for fabricating molybdenum for use in gate-to-electrode formation of low-alkali molybdenum in large-scale integrated circuits, particularly very large-scale circuits.

大規模集積回路(LSI)のゲート電極にrt従従来多
結晶シリコ模膜至アルミニウム膜が使用されてきたが、
集積度が高lるに痒い、より電気抵抗が低く、かつ高温
度に耐える材料がめられている。該M科として#1LS
I素子j&仮の単結晶シリコンウェファとの接合性が良
く、かつ熱膨張係数のφが少くない珪化モリブデンが好
適とされている。
Conventionally, polycrystalline silicon films to aluminum films have been used for gate electrodes of large-scale integrated circuits (LSIs).
As the degree of integration increases, materials with lower electrical resistance and resistance to high temperatures are being sought. #1LS as the M department
Molybdenum silicide is preferred because it has good bonding properties with the I-element j and temporary single-crystal silicon wafer, and has a thermal expansion coefficient φ that is not small.

この珪1ヒモリブデン製造等に用いられる細金属モリブ
デンは通常褌モリブデン鉱?培現して三酸化モリブデン
とし、鉄酸で、先手して介在物を溶出除去後、アンモニ
ア水に溶解し、蒸発磯w4を1畦でモリブデン酸アンモ
ンとして晶析させ、これYKA分解して得られるば化モ
リブデンヲ1に素瀘元して侮られており、さらに、これ
を高温揮発により梢装した、比較的両度の詞い三酸化モ
リブデンを水素還示して得られたものもあるが、いずれ
もLSI用としては純度上不満足なものである。即ら、
これら在来のモリブデン9忙は半導体素子の眠気絶縁性
、耐食性等に悪杉jのあるNa’、Kが数十ppmから
数百1)pm、%に64キロビット以上の超LSI電子
で誤動作(ソフトエラー)の原因になるアルファaを発
生するU、Thが数ppbから数十I)I)b含まれる
ので、LSI用としてはNa、Kが11)9mmトド超
LSI用としては、さらにU、 Thが1 ppb以下
のものが要望されていたが、さらに、集積度の向とと、
素子の信頼性同上の要求に伴いNa、にの許容レベルが
益々厳しくなり、共に0.1pI)In以下の材料が要
望されるに至っている。もちろん、Fe等の半導体特性
をtI4なう不純物もできるだけ少ないことが必要であ
る。
Is the fine metal molybdenum used in the production of silico-1-hypomolybdenum usually locust molybdenum ore? Cultivate to form molybdenum trioxide, elute and remove inclusions with ferric acid, dissolve in aqueous ammonia, crystallize evaporated rock w4 as ammonium molybdate in one ridge, and decompose this by YKA. Molybdenum trioxide is despised as a raw material for molybdenum trioxide, and there is also a product obtained by reducing molybdenum trioxide with hydrogen, which is relatively ambivalent and is coated with molybdenum trioxide by high-temperature volatilization. All of them are unsatisfactory in terms of purity for LSI applications. In other words,
These conventional molybdenum materials have Na' and K, which have poor properties such as drowsiness and corrosion resistance of semiconductor devices, ranging from tens of ppm to hundreds of ppm (1) pm, %, which can cause malfunctions in VLSI electronics of 64 kilobits or more. U and Th, which generate alpha a that causes soft errors), are included from several ppb to several tens of ppb. , Th is required to be 1 ppb or less, but in addition, the direction of integration,
Along with the above-mentioned requirements for element reliability, the tolerance level for Na and In is becoming increasingly strict, and materials with both Na and In of 0.1 pI) or less are now required. Of course, it is also necessary to minimize the amount of impurities such as Fe that affect the semiconductor properties.

本発明者等はさきに、モリブデン涜アンモンの再結晶に
よるU* Tbの除去方法を提案しているが、この再結
晶法によって、U、Thiは十分に低減化できるものの
、Na、Kについては除去効果が低く、要求されるよう
な高度積装のためには再債晶操作を幾回も繰り返さねば
ならない4X誰さが問題となっていた。
The present inventors have previously proposed a method for removing U*Tb by recrystallizing molybdenum ammonium, but although this recrystallization method can sufficiently reduce U and Thi, Na and K The problem with 4X was that it had a low removal effect and had to repeat the re-debt operation many times in order to achieve the required high loading.

、4:のため1本発明者等はさらに有効なモリブデンの
債製方法として、1水蒸気を含む雰囲気中で三酸化モリ
ブデン?渾発させ、これを低温部において針状結晶の東
合体として精製モリブデンを析出させる方法を提案した
。この方法によれば、Na。
, 4: Therefore, the present inventors have proposed a more effective method for producing molybdenum using molybdenum trioxide in an atmosphere containing water vapor. We proposed a method in which refined molybdenum is precipitated as acicular crystals in a low-temperature region. According to this method, Na.

K 含有レベルが0.5pJ)Inを丁まわるものも得
ら几るようになったが、さらに純度を上げるためにはJ
4発梢喪を繰り燻す必要があり、特にNa、に含有レベ
ルとして0.1 pI)InJ! )’(+−達成すル
タメK HNa、に含有レベルの低下に伴い、′4II
製効率が低下する傾向があるため、所要揮発精製回数の
増加に伴って実用性が低下することが判った。
It has become possible to obtain products with a K content level of 0.5 pJ) that is just below In, but in order to further increase the purity, J
It is necessary to smoke the four-shot decomposition repeatedly, especially Na, as the content level is 0.1 pI) InJ! )'(+-Achieving Rutame K HNa, with the decrease in the content level, '4II
It has been found that the production efficiency tends to decrease, and thus the practicality decreases as the number of required volatilization purification increases.

そこで、本発明者等はさらに効率的なモリブデンからの
Na、にの除去方法を検討した結果、モリブデン中に存
在するNa、にの化学形としては、先駆体のモリブデン
酸アンモン及至ハ酸化モリブデン中に存在していたもの
で、上記金属への還元を受けなかったモリブデン酸塩で
はないかと考えるに到った。従って、水素等による還元
によって得られる金属モリブデン粉末を水で洗浄すれば
、本来水にOT溶性のモリブデン酸ソーダ及びモリブデ
ン寂カリが溶出し、除去されるであろうと考え実験を重
ねた結果、通例の還元温度、即ち1.0000C以下の
温度で得たモリブデン粉末であれば、再結晶操作を経由
したモリブデン酸アンモン、揮発梢襄操作を経由した三
酸化モリブデン等、通常得られるいずれの原料を用いた
ものでも、明らかに水による洗浄効果により、アルカリ
分がモリブデンより効率よ(除去されることを見出し、
本発明に到達した。
Therefore, the present inventors investigated a more efficient method for removing Na from molybdenum, and found that the chemical forms of Na present in molybdenum range from the precursor ammonium molybdate to molybdenum halide. I came to think that it was a molybdate that was present in the metal and did not undergo reduction to the above metal. Therefore, after repeated experiments, we thought that if the metallic molybdenum powder obtained by reduction with hydrogen etc. is washed with water, sodium molybdate and potassium molybdate, which are originally OT-soluble in water, will be eluted and removed. As long as the molybdenum powder is obtained at a reduction temperature of 1.0000 C or lower, any commonly obtained raw material can be used, such as ammonium molybdate obtained through a recrystallization operation or molybdenum trioxide obtained through a volatilization operation. It was discovered that the alkali content was removed more efficiently than molybdenum, even if the molybdenum was removed, due to the clear cleaning effect of water.
We have arrived at the present invention.

すなわち、本発明の要旨とするところは、ナトリウム及
びカリウムを含有する金属モリブデン粉末を水で洗浄し
、該す) IJウム及びカリウムを溶出させることを特
徴とする金属モリブデンの精製方法、にある。
That is, the gist of the present invention is a method for purifying metal molybdenum, which comprises washing a metal molybdenum powder containing sodium and potassium with water to elute metal molybdenum and potassium.

なお、モリブデンの還元に常用される温度(1,000
°C以下)を大巾に越える温度、例えば1 、500°
Cで還元して優た場合、あるいは金属モリブデン粉末を
この様な高温度に加熱した場合には、粉末粒子の凝集に
よる粗粒化が進み、アルカリ分が粗粒子内に内包される
傾向があるためと考えられるが、アル男す分の除去効率
に低下をきたす場合が多いので留意する必要がある。
Note that the temperature commonly used for reducing molybdenum (1,000
temperatures exceeding 1,500°
When reduction with C is effective, or when metal molybdenum powder is heated to such high temperatures, the powder particles tend to aggregate and become coarser, and the alkali content tends to be encapsulated within the coarse particles. Although this is thought to be due to this, it is necessary to keep in mind that this often results in a decrease in the removal efficiency of alkalinity.

本発明における水による洗浄条件は水量、水温。The conditions for washing with water in the present invention include water amount and water temperature.

攪拌条件等様々の組合せかり能であり、それらの組合せ
によって所要処理時間が決められるが、以下に述べる実
施例を参考にしてめることができる。
Various combinations such as stirring conditions can be used, and the required processing time is determined by these combinations, which can be determined with reference to the examples described below.

本発明は以上のように、大規模集積回路、特に超大規模
集積回路のゲート電極形成用の低アルカリモリブデンが
効率よ(得られるモリブデンの精製方法を提供するもの
で、その工業的価値はきわめて大である。 ゛ 次に、本発明を実施例によりさらに具体的に説明するが
、これらの実症例によって本発明の範囲は制限されるも
のではない。
As described above, the present invention provides a method for efficiently purifying molybdenum for forming gate electrodes of large-scale integrated circuits, especially ultra-large-scale integrated circuits, and its industrial value is extremely high.゛Next, the present invention will be explained in more detail with reference to examples, but the scope of the present invention is not limited by these actual cases.

実症例1 精製モリブデン酸アンモンを熱分解して得たモリブデン
当りNa 2.91)I)m、 K 14 ppmを含
む酸化モリブデンを水素ガス気流中、温度400°C2
次いで750°Cで還元し、モリブデン金属粉末を得た
Actual case 1 Molybdenum oxide containing Na2.91)I)m, K14 ppm per molybdenum obtained by thermally decomposing purified ammonium molybdate was heated at a temperature of 400°C2 in a hydrogen gas stream.
Next, it was reduced at 750°C to obtain molybdenum metal powder.

このモリブデン金属粉末中のNa、Kiは上記の値と分
析誤差範囲内で一致していた。
Na and Ki in this molybdenum metal powder matched the above values within the analytical error range.

該モリブデン金属粉末1kgをテフロン製芥器にとり、
温度45°Cの蒸溜水3を中で1.5時間攪拌後、静置
し、上沿液を除き、次いで新たに45°Cの蒸溜水Xt
を加え、10分間攪拌して濾過後、窒素ガス気流中、温
度100°Cで乾燥し、モリブデン金属粉末980gを
得た。このもののNa、に含有量はいずれも0.1 p
pm以下であって、水洗浄によってNa、Kが十分に除
去されていることがわかった。
Place 1 kg of the molybdenum metal powder in a Teflon container,
Distilled water 3 at a temperature of 45°C was stirred for 1.5 hours, left to stand, the upper liquid was removed, and then newly added to distilled water Xt at a temperature of 45°C.
was added, stirred for 10 minutes, filtered, and dried in a nitrogen gas stream at a temperature of 100°C to obtain 980 g of molybdenum metal powder. The content of Na in this product is 0.1 p.
pm or less, and it was found that Na and K were sufficiently removed by water washing.

実施料2 J、[II発H製したモリブデン当りNa O,4pI
)m 、KO,3ppmを含む三酸化モリブデンを水素
ガス気流中、温度s o o’c 、次いで800°C
で加熱して還元し、モリブデン金属粉末’に4だ。この
モリブデン金属粉末10kgを、脱イオン水40tと共
にポリプロピレン製容器(501)にとり、窒素ガスを
吹き込みつつ、温度70°Cで1時間攪拌後、静置。
Practical fee 2 J, [II H-produced Na O per molybdenum, 4 pI
)m, KO, 3 ppm in a hydrogen gas stream at a temperature of s o o'c and then at 800°C.
It is heated and reduced to molybdenum metal powder. 10 kg of this molybdenum metal powder was placed in a polypropylene container (501) together with 40 t of deionized water, stirred at a temperature of 70° C. for 1 hour while blowing nitrogen gas, and then allowed to stand still.

冷却して上澄液を除き、次いでメタノール、エタノール
の順に洗浄後、真空乾燥器中、温度80°Cで乾燥した
。得られたモリブデン金属粉末中のNa、にはいずれも
0.1 pl)In以下であって、Na。
After cooling, the supernatant was removed, and then washed with methanol and ethanol in that order, and dried at a temperature of 80°C in a vacuum dryer. The Na content in the obtained molybdenum metal powder is 0.1 pl)In or less, and Na.

Kが水による洗浄によって十分に除去されていることが
判明した。
It was found that K was sufficiently removed by washing with water.

瞥出願人 三菱金属株式会社 代 埋 人 白 川 義 直Applicant Mitsubishi Metals Co., Ltd. Substitute Yoshinao Shirakawa

Claims (1)

【特許請求の範囲】[Claims] (1)ナトリウム及びカリウムを含む企属モリブデン粉
末を水で& re L、該ナトリウム及びカリウムwH
出させること?特徴とするモリブデンの梢製方法。
(1) Mix molybdenum powder containing sodium and potassium with water & re L, the sodium and potassium wH
To let it out? Characteristic method of making molybdenum treetops.
JP7798484A 1984-04-18 1984-04-18 Molybdenum purification method Granted JPS60221538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7798484A JPS60221538A (en) 1984-04-18 1984-04-18 Molybdenum purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7798484A JPS60221538A (en) 1984-04-18 1984-04-18 Molybdenum purification method

Publications (2)

Publication Number Publication Date
JPS60221538A true JPS60221538A (en) 1985-11-06
JPS6261094B2 JPS6261094B2 (en) 1987-12-19

Family

ID=13649125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7798484A Granted JPS60221538A (en) 1984-04-18 1984-04-18 Molybdenum purification method

Country Status (1)

Country Link
JP (1) JPS60221538A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022395A (en) * 1998-03-24 2000-02-08 Osram Sylvania Inc. Method for increasing tap density of molybdenum powder
CN106735193A (en) * 2016-12-23 2017-05-31 西安瑞福莱钨钼有限公司 A kind of preparation method of low potassium content molybdenum plate blank
CN108441651A (en) * 2018-03-30 2018-08-24 厦门虹鹭钨钼工业有限公司 A kind of preparation method improving molybdenum purity and yield

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211588U (en) * 1988-06-28 1990-01-24

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595625A (en) * 1978-09-15 1980-07-21 Amax Inc Production of high purity molybudenum compound with reduced potassium content

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595625A (en) * 1978-09-15 1980-07-21 Amax Inc Production of high purity molybudenum compound with reduced potassium content

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022395A (en) * 1998-03-24 2000-02-08 Osram Sylvania Inc. Method for increasing tap density of molybdenum powder
CN106735193A (en) * 2016-12-23 2017-05-31 西安瑞福莱钨钼有限公司 A kind of preparation method of low potassium content molybdenum plate blank
CN108441651A (en) * 2018-03-30 2018-08-24 厦门虹鹭钨钼工业有限公司 A kind of preparation method improving molybdenum purity and yield

Also Published As

Publication number Publication date
JPS6261094B2 (en) 1987-12-19

Similar Documents

Publication Publication Date Title
US4973462A (en) Process for producing high purity silica
JPS6212608A (en) Silica of high purity and production thereof
JPS6060913A (en) Method of removing impurities from piece
JPS60221538A (en) Molybdenum purification method
JP2542797B2 (en) Method for producing high-purity silica
JPH01172226A (en) Method for producing high purity ammonium paratungstate crystals
JP2905353B2 (en) Purification method of metallic silicon
JPH0977516A (en) Method for producing high-purity strontium carbonate
JPH0421524A (en) Purification method of potassium tantalum fluoride
JPH042618A (en) Purification method of potassium tantalum fluoride
JP3585603B2 (en) Method for producing high-purity strontium carbonate
JP2710049B2 (en) Method for producing high-purity ammonium molybdate crystal
JPH082920A (en) Method for producing high-purity tungstic acid crystal
JPS6230632A (en) Production of high-purity quartz glass
KR20050106825A (en) Recovery of phosphoric acid from semiconductor waste etchant
CN111533152A (en) Method for preparing high-purity fluorite by rapid reaction of fluosilicic acid and calcium carbonate
JPS61107728A (en) Thin film forming material and its manufacturing method
JPH0450132A (en) Purification of silica-based raw material
US2414294A (en) Production of pure tellurium
JPS61178414A (en) High-purity silica and production thereof
JPH09142839A (en) Method for producing high-purity barium carbonate
JPS6148422A (en) High purity silica and its manufacturing method
US2910346A (en) Recovery of germanium values
JPS62270424A (en) Production of ultra-high purity quartz glass powder
JPH01179712A (en) Processing method for indium-phosphorus compound semiconductor scrap