[go: up one dir, main page]

JPS60219414A - Intake device for engine - Google Patents

Intake device for engine

Info

Publication number
JPS60219414A
JPS60219414A JP59074692A JP7469284A JPS60219414A JP S60219414 A JPS60219414 A JP S60219414A JP 59074692 A JP59074692 A JP 59074692A JP 7469284 A JP7469284 A JP 7469284A JP S60219414 A JPS60219414 A JP S60219414A
Authority
JP
Japan
Prior art keywords
intake
swirl
valve
engine
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59074692A
Other languages
Japanese (ja)
Inventor
Taizo Shimada
泰三 嶋田
Osamu Miyata
治 宮田
Tomoaki Tajima
田島 智明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP59074692A priority Critical patent/JPS60219414A/en
Publication of JPS60219414A publication Critical patent/JPS60219414A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/042Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors induction channel having a helical shape around the intake valve axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To provide an intake device having satisfactory efficiency of intake even in low speed by forming respective intake paths of an engine having two intake valves as swirl forming large diameter paths and opening small diameter intake paths provided with a valve controllably opened and closed according to the engine running condition in the antiswirl direction near the respective intake valves. CONSTITUTION:Air is sucked into a cylinder 22 of an engine having two intake valves 27 in two intake ports 26 through two large diameter intake paths 25 communicating to the respective intake ports 26 and two small diameter intake paths 29. The large diameter intake path 25 is of spiral type which forms high swirl in the intake port 26, and the small diameter intake path 29 has a controlling valve 30 while opening in the antiswirl direction near the intake valve 27. The valve 30 is closed in low load and air is sucked through the large diameter intake path 25 with high efficiency of intake and high swirl, and in high load the valve 30 is opened to remove the swirl while increasing the intake amount.

Description

【発明の詳細な説明】 本発明は、たとえば3弁式もしくは4弁式の直接噴射式
ディーゼルエンジンにおいて、シリンダ室における吸込
空気の旋回渦流(以下、スワールという)に対する制御
構造を改良した吸気装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake system that improves the control structure for the swirling vortex flow (hereinafter referred to as "swirl") of intake air in a cylinder chamber in, for example, a three-valve or four-valve direct injection diesel engine. .

たとえば直接噴射式ディーゼルエンジンのシリンダヘッ
ドには、空気をシリンダ室に導びくための吸気ボートが
設けられ、この吸気ボートに連通する吸気弁座を吸気弁
がエンジンの各打機に応じて開閉するようになっている
For example, the cylinder head of a direct injection diesel engine is equipped with an intake boat to guide air into the cylinder chamber, and the intake valve opens and closes the intake valve seat that communicates with this intake boat in response to each stroke of the engine. It looks like this.

上記吸気弁座からシリンダ室に導入された空気は圧縮さ
れ、噴射ノズルから噴出される燃料と混合して爆発燃焼
するが、空気と燃料との混合状態が良い程、燃焼効率が
向上すること周知である。
The air introduced into the cylinder chamber from the intake valve seat is compressed and mixed with the fuel injected from the injection nozzle, resulting in explosive combustion. It is well known that the better the mixing state of air and fuel, the better the combustion efficiency. It is.

従来より、空気と燃料との混合状態を良、くするための
種々の手段が用いられているが、その一つとしてH8P
構造と呼ばれるハイスワールボート(強制渦流吸気孔)
が挙げられる”。
Conventionally, various means have been used to improve the mixing state of air and fuel, one of which is H8P.
High swirl boat (forced swirl intake hole) called structure
”.

これは、第1図および第2図に)、 (B)に示すよう
になっている。図中1はシリンダライナ、2はシリンダ
室、3はシリンダヘッド、4は吸気装置であり、これは
吸気ボート5と、吸気弁6とからなる。また、7は排気
ボートである0なお、上記シリンダヘッド3にはシリン
ダ室2に対向して図示しない燃料の噴射ノズルが備えら
れる0(図は、吸気1弁、排気1弁からなる通常の2弁
式エンジンである。) 上記吸気ボート5は吸気弁6の中心に対して少しの「偏
心」が設けられていて、吸気弁6が下降し吸気ボート5
が開放する吸込行程時に、吸気ボート5で1偏心」を加
えられた吸込空気がシリンダ室2に導びかれ、ここでそ
の円周方向に沿ってスワールを強制的に形成することと
なる。したがって、この空気と、噴射ノズルから噴出さ
れる燃料との混合状態が良くなり、その結果燃焼効率が
向上する。
This is shown in Figures 1 and 2) and (B). In the figure, 1 is a cylinder liner, 2 is a cylinder chamber, 3 is a cylinder head, and 4 is an intake device, which consists of an intake boat 5 and an intake valve 6. Furthermore, the cylinder head 3 is equipped with a fuel injection nozzle (not shown) facing the cylinder chamber 2 (the figure shows a normal two-way valve consisting of one intake valve and one exhaust valve). (This is a valve type engine.) The intake boat 5 has a slight "eccentricity" with respect to the center of the intake valve 6, so that the intake valve 6 descends and the intake boat 5
During the suction stroke when the cylinder is opened, the suction air that has been subjected to one eccentricity by the intake boat 5 is guided to the cylinder chamber 2, where a swirl is forcibly formed along the circumferential direction. Therefore, the mixing state of this air and the fuel injected from the injection nozzle is improved, and as a result, the combustion efficiency is improved.

なお、シリンダ室における吸気の旋回回転数とエンジン
回転数との比率を「スワール比」と呼んでいるが、この
スワール比は後述するように種々の条件から可変である
ことが望ましい。
Note that the ratio between the rotational speed of intake air in the cylinder chamber and the engine rotational speed is referred to as a "swirl ratio," and it is desirable that this swirl ratio be variable based on various conditions as described below.

たとえば、同一シリンダ室にスワール比が異る吸気ボー
トを交互にセットしてエンジン性能を比較すると、第3
図に示すような実験結果となる。図中、a曲線祉高スワ
ール比のもの、6曲線は中スワール比のもの、C曲線は
低スワール比のものである。図示のように、高スワール
比aのものはエンジン回転数が低速時aS e中スワー
ル比すのものは中速時す、低スワール状態Cのものは高
速時cIに、それぞれエンジン性能が最良になる。した
がって、スワール比が一定であると、いずれかのエンジ
ン回転域で性能低下がみられることとなる。
For example, when comparing engine performance by alternately setting intake boats with different swirl ratios in the same cylinder chamber, the third
The experimental results are as shown in the figure. In the figure, curve a is for a high swirl ratio, curve 6 is for a medium swirl ratio, and curve C is for a low swirl ratio. As shown in the figure, the engine performance is best when the engine speed is low with a high swirl ratio a, aS with a medium swirl ratio when the engine speed is low, and with low swirl ratio C when the engine speed is high. Become. Therefore, if the swirl ratio is constant, performance will deteriorate in some engine rotation range.

また、自動車のエンジンには排ガス規制が設定されてい
るが、排ガス中の主成分であるN0x(窒素酸化物)の
発生量がスワール比と関連する。すなわち、第4図に示
すような実験結果が得られていて、互いに略比例関係に
あり高スワール比になるほどNOxの発生量が増大する
Further, exhaust gas regulations are set for automobile engines, and the amount of NOx (nitrogen oxides) generated, which is the main component in exhaust gas, is related to the swirl ratio. That is, experimental results as shown in FIG. 4 have been obtained, and they are in a substantially proportional relationship with each other, and the higher the swirl ratio, the greater the amount of NOx generated.

また、エンジンにはエンジン回転数に対する負荷が影響
するので、これとスワール比との関連をみなければなら
ない。第5図に示すように、エンジン回転数が低速のと
きは高スワール時、中速のときは中スワール比、高速の
ときは低スワール比が最適であ石εとは先きに説明した
通り(第3図)であるが、負荷に対1〜ては図に示すハ
ツチング部分は低スワール比でよい。たとえば、低速の
際に低負荷であれば高スワール比の必要がなく、低スワ
ール比のものが最適となる。中速においても軽負荷から
中負荷にかけては低スワール比でよく、高速においては
負荷状態に拘りなく低スワール比が最適となる。すなわ
ち、低速、低負荷の場合には、吸気量が余っている状態
であるので、スワール比に関係なく燃焼する。この状態
では、NOxの発生量が増大する高スワール比よりも、
発生量が少い低スワール比のものが最適とカる0またス
ワールは低い方が、燃焼ガスからシリンダ壁へ吸収され
る熱損失が減少する。特に軽負荷では、この熱損失の大
小が燃費率の悪化、良化に対応するため、この点からも
低スワールの方が有利である。
Furthermore, since the load on the engine is affected by the engine speed, the relationship between this and the swirl ratio must be considered. As shown in Figure 5, high swirl is optimal when the engine speed is low, medium swirl ratio is optimal when the engine speed is medium, and low swirl ratio is optimal when the engine speed is high. (Fig. 3), the hatched portion shown in the figure may have a low swirl ratio of 1 to 1 to the load. For example, if the load is low at low speed, there is no need for a high swirl ratio, and a low swirl ratio is optimal. Even at medium speeds, a low swirl ratio is sufficient from light to medium loads, and at high speeds, a low swirl ratio is optimal regardless of the load condition. That is, in the case of low speed and low load, there is a surplus of intake air, so combustion occurs regardless of the swirl ratio. In this state, rather than a high swirl ratio that increases the amount of NOx generated,
A low swirl ratio that generates a small amount is optimal. Also, the lower the swirl, the less heat loss is absorbed from the combustion gas into the cylinder wall. Particularly under light loads, the magnitude of this heat loss corresponds to deterioration or improvement of fuel efficiency, so low swirl is advantageous from this point of view as well.

以上は、吸気2弁、排気1弁を備えた3弁式エンジンも
しくは吸気2弁、排気1弁を備えた4弁式エンジンにお
いても全く同様であること言う迄もない。
Needless to say, the above is exactly the same for a three-valve engine with two intake valves and one exhaust valve, or a four-valve engine with two intake valves and one exhaust valve.

従来のこの種エンジンにおけるスワール可変構造として
は、吸気2弁のうちの一方の吸気弁を必要に応じて完全
閉成するようになっている。
The conventional variable swirl structure in this type of engine is such that one of the two intake valves is completely closed as required.

すなわち、各吸気弁により開閉される吸気弁座は、吸気
ボートの先端部から分岐した分岐吸気ボー・トに連通す
る。一方の吸気弁で吸気弁座を完全閉成し、他方の吸気
弁のみ開閉作用を行うと、吸気流路断面積が半減するの
でこの吸気弁座を流通する吸気の流速が速くなり、シリ
ンダ室では高スワール状態となる。また、両方の吸気弁
を開閉作用すると、各吸気弁座を流通する吸気の流速が
低下して低スワール状態が得られる0 このように、3弁式もしくは4弁式のエンジンにおいて
もスワール可変ができるが、特に高スワール時において
はシリンダ室における体積効率が低下するという不具合
がある。すなわち、一方の吸気弁座からは吸気が全くな
されないため、吸気量が著しく不足して燃焼効率に悪影
響がでる。
That is, the intake valve seat opened and closed by each intake valve communicates with a branch intake boat branched from the tip of the intake boat. When one intake valve completely closes the intake valve seat and only the other intake valve opens and closes, the cross-sectional area of the intake flow path is halved, so the flow rate of the intake air flowing through this intake valve seat increases, and the cylinder chamber This will result in a high swirl state. Additionally, when both intake valves are opened and closed, the flow velocity of the intake air flowing through each intake valve seat is reduced, resulting in a low swirl state.In this way, variable swirl is also possible in 3-valve or 4-valve engines. However, there is a problem in that the volumetric efficiency in the cylinder chamber decreases, especially during high swirl. That is, since no air is taken in from one intake valve seat, the amount of intake air is significantly insufficient, which adversely affects combustion efficiency.

本発明は上記事情に着目してなされたものてあり、その
目的とするところは、3弁式もしくは4弁式のエンジン
1において、簡単な構造でありながらスワール状態を容
易に可変でき、しかも常に充分な吸気量を確保できるエ
ンジンの吸気装置を提供しようとするものである。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to easily vary the swirl state in a three-valve or four-valve engine 1 with a simple structure, and to constantly change the swirl state. The present invention aims to provide an engine intake device that can secure a sufficient amount of intake air.

以下、本発明の一実施例を図面にもとづいて説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

第6図および第7図に示すように、図中21はたとえば
6気筒直列のシリンダライナ、22はシリンダ室、23
はシリンダヘッド24、は吸気マニホールド、Sは後述
する吸気装置である。この吸気装置Sはシリンダヘッド
20および吸気マニホールド24に設けられていて、そ
れぞれ一対の吸気ボート25,2s吸気弁座26,25
、吸気弁27.27、これら吸気弁27.27近傍周壁
に開口部28.28を有するスワール制御通路29.2
9およびシ31は排気マニホールド32から分岐して罵
通する排気弁座であり、それぞれ図示しない排気弁テ開
閉されるようになっている4弁式エンジンである。上記
吸気ボート25は、高スワール状態を得るのに最適な「
偏心」奢加えられる。
As shown in FIGS. 6 and 7, 21 is a cylinder liner for six cylinders in series, 22 is a cylinder chamber, and 23 is a cylinder liner for six cylinders in series.
is a cylinder head 24, is an intake manifold, and S is an intake device to be described later. This intake device S is provided in a cylinder head 20 and an intake manifold 24, and includes a pair of intake boats 25, 2s and intake valve seats 26, 25, respectively.
, intake valves 27.27, and a swirl control passage 29.2 having an opening 28.28 in the peripheral wall near these intake valves 27.27.
Reference numerals 9 and 31 are exhaust valve seats that branch off from the exhaust manifold 32, and the engine is of a four-valve type in which exhaust valves (not shown) are opened and closed, respectively. The above-mentioned intake boat 25 is the most suitable for obtaining a high swirl state.
"Eccentricity" is a luxury.

上記吸気弁27は、タイミングをとって吸気弁座26を
開閉させるよう図示しないタイミング機構に連結される
0上記スワ一ル制御通路29は、吸気ボート25に導び
がれる吸気のうち、流速の遅い流れがシリンダ室22に
導入される直前の位置、ずなゎち吸気ボート25の終端
部1 周壁に開口する。また、スワール制御通路29の
中途部は吸気ボート25に沿っていて、他端部はこの上
方部位に揃って開口することとなる。
The intake valve 27 is connected to a timing mechanism (not shown) to open and close the intake valve seat 26 in a timely manner. An opening is opened in the peripheral wall of the terminal end 1 of the intake boat 25 at a position immediately before the slow flow is introduced into the cylinder chamber 22. Further, a midway portion of the swirl control passage 29 is along the intake boat 25, and the other end thereof opens at the upper portion thereof.

なお、これら吸気ボート25およびスワール制 。In addition, these intake boats 25 and swirl system.

御通路29は、鋳物構造としてシリンダヘッド23と吸
気マニホールド24に一体に設けられる。上記シャント
弁3oは、それぞれのスワール制御通路29,290他
端部側開口部に回転自在に設けられる。なお説明すると
、これは第8図および第9図に示すようになっていて、
一本の丸棒の中途部を両側から切削加工したものであり
、軸方向に沿う部分のみ薄肉状に残してなる。スワール
制御通路29の上下方向寸法りはシャフト弁30の直径
dφよりもわずかに小であり、このことからシャフト弁
30の薄肉部30gが垂直方向に向けばスワール制御通
路29を完全閉成でき、かついずれかの方向に回動する
ことにより開放して流量調節をするようになっている。
The control passage 29 is integrally provided in the cylinder head 23 and the intake manifold 24 as a cast structure. The shunt valve 3o is rotatably provided at the opening at the other end of each of the swirl control passages 29, 290. To explain, this is as shown in Figures 8 and 9,
It is made by cutting the middle part of a single round bar from both sides, leaving only the part along the axial direction thin. The vertical dimension of the swirl control passage 29 is slightly smaller than the diameter dφ of the shaft valve 30. Therefore, if the thin wall portion 30g of the shaft valve 30 is oriented vertically, the swirl control passage 29 can be completely closed. By rotating it in either direction, it opens to adjust the flow rate.

したがって、薄肉部30aが水平方向に沿えば完全開放
状態となる。このようにして形成されるシャフト弁30
は、一端部のみ吸気マニホールド24から突出し、駆動
機構が機械的に連結される。この駆動機構はエンジン回
転数を検知する検知体およびアクセルペタルの踏込み角
度を検知する検知体あるいは直接負荷状態を検知する検
知体からそれぞれ検出信号を受けるマイコン等からなる
制御回路と電気的に接続される。上記吸気マニホールド
24は、図示しないエアクリーナに接続され、各吸気ボ
ート26.25およびスワール制御通路29゜29に外
部新鮮空気を案内できるようになっている。
Therefore, if the thin portion 30a extends in the horizontal direction, it will be in a completely open state. Shaft valve 30 formed in this way
protrudes from the intake manifold 24 only at one end, and is mechanically connected to the drive mechanism. This drive mechanism is electrically connected to a control circuit consisting of a microcomputer, etc., which receives detection signals from a sensor that detects the engine speed, a sensor that detects the depression angle of the accelerator pedal, or a sensor that directly detects the load condition. Ru. The intake manifold 24 is connected to an air cleaner (not shown) so that fresh air from outside can be guided to each intake boat 26, 25 and the swirl control passages 29, 29.

しかして、上記各吸気弁27.27が同時に下降し、吸
気弁座26,26がともに開放する吸込行程時に、吸気
ボート25,25で1偏心」を加えられた吸込空気がシ
リンダ室22に導ひかれ、ここでその円周方向に沿って
スワールが強制的に形成されることとなる。この空気は
、図示しない噴射ノズルから噴出される燃料と混信し、
燃焼する。
Therefore, during the suction stroke in which the intake valves 27 and 27 are simultaneously lowered and both the intake valve seats 26 and 26 are opened, the intake air that has been subjected to one eccentricity by the intake boats 25 and 25 is introduced into the cylinder chamber 22. At this point, a swirl is forcibly formed along the circumferential direction. This air mixes with the fuel injected from the injection nozzle (not shown),
Burn.

エンジン回転数およびアクセルペタルの踏込み角度(負
荷)の検出信号を制御回路を介して受けると駆動機構は
シャフト弁3oを適宜回動する。シリンダ室22に導入
さテ吸気のスワール比を高くとりたい場合にスワール制
御通路29.29を閉成し、低いスワール比をとりたい
場合に開放する。すなわち、吸気ボート25は高スワー
ル状態を得るのに最適形状である。
When the drive mechanism receives detection signals of the engine rotational speed and the depression angle (load) of the accelerator pedal via the control circuit, the drive mechanism rotates the shaft valve 3o as appropriate. The swirl control passages 29 and 29 are closed when a high swirl ratio of the intake air introduced into the cylinder chamber 22 is desired, and are opened when a low swirl ratio is desired. That is, the intake boat 25 has an optimal shape to obtain a high swirl state.

しだがって、シャフト弁30がスワール制御通路29.
29を閉成させることにより吸気は全て吸気ボート25
を流れて高スワール状態となり、かつ充分な吸気量が得
られる。このとき、上記スワール制御通路29の開口部
28は吸気ボート25に対向しているが、吸気の流れを
阻害するようなことはない。何故なら、開口部28は吸
気ボート25の吸気弁27近傍周壁に開口していて、こ
こでは既に吸気の主流がシリンダ室22に吸込まれ、残
りの流速の遅い流れが存在するにすぎない。さらに、開
口部28は凸部でなく凹部であるので流れの抵抗とはな
らない。これらのことから高スワール状態など、スワー
ル制御通路29が機能しない場合においてスワール性能
に悪影響を及ぼすことはない。
Therefore, the shaft valve 30 is connected to the swirl control passage 29.
By closing 29, all intake air is transferred to the intake boat 25.
The air flows through the air, creating a high swirl state and providing a sufficient amount of intake air. At this time, the opening 28 of the swirl control passage 29 faces the intake boat 25, but does not obstruct the flow of intake air. This is because the opening 28 opens in the peripheral wall of the intake boat 25 near the intake valve 27, where the main flow of intake air has already been sucked into the cylinder chamber 22, and only the remaining flow with a slow flow velocity exists. Furthermore, since the openings 28 are not convex portions but concave portions, they do not act as resistance to flow. For these reasons, the swirl performance is not adversely affected when the swirl control passage 29 does not function, such as in a high swirl state.

シャフト弁30を回動してスワール制御通路29.29
をわずかでも開放すれば、シリンダ室22のスワール比
が低下する。すなわち、第10図に示すように各吸気ボ
ート25.25から吸気弁座26.26を介してシリン
ダ室22に、また上記スワール制御通路29.29から
開口部28.28および吸気弁座26,26をかれる。
Swirl control passage 29.29 by rotating shaft valve 30
If the cylinder chamber 22 is opened even slightly, the swirl ratio of the cylinder chamber 22 will decrease. That is, as shown in FIG. 10, from each intake boat 25.25 to the cylinder chamber 22 via the intake valve seat 26.26, and from the swirl control passage 29.29 to the opening 28.28 and the intake valve seat 26, 26.

吸気ボート25.25から導びかれた吸気は図中白矢印
および白破線矢印で示すようにシリンダ室22で図中時
計廻り方向の順スワール方向成分となる。これに対して
スワール制御通路29.29から導びかれた吸気は図中
黒矢印および黒破線矢印で示すようにシリンダ室22で
図中反時計廻り方向の逆スワール方向成分となる。これ
らスワールはシリンダ室22で互いに衝突し、相殺する
。各ポート25、通路29の形状および吸気導入量から
轟然順スワール方向成分が逆スワール方向成分より大で
あり、スワールが消滅することはないが、スワール比が
低下して低スワール状態を得る。しかも、本来の吸気ボ
ー)25.;t5から流入する吸気に加えて、スワール
制御通路29.29からも吸気があるので、吸気総量は
充分確保される0特に、エンジンが高回転域の場合には
低スワール状態が良いことは先きに説明した通りである
が、スワール制御通路29.29を開放すれば充分な吸
気量を確保し℃その状態が得られる0また、吸気ボート
25.25からの順方向高スワールと、スワール制御通
路29.29からの逆方向スワールとがシリンダ室22
で互いに干渉し合い、回転方向の異る2つの渦を発生さ
せるとともにこれらの周辺にも多数の小さな渦あるいは
乱れを多数生じさせる。これら多数の渦あるいは乱れは
、圧縮行程後も君子残留して噴霧と望気との混合を良好
化し、燃焼効率の改善、スモークおよび排気ガスの低減
に役立つ。高スワール状態では、流線形の滑らかな吸気
ボート25.25形状に沿つ゛C吸気は必要最小限の速
度で円滑に、かつ撰失珍〈導びかれる。しかも、各吸気
弁座26.26の全周から均等にシリンダ室22に導び
かれるので、スワールも高く、吸気量も非常に多い。
The intake air led from the intake boats 25 and 25 becomes a forward swirl direction component in the clockwise direction in the figure in the cylinder chamber 22, as shown by the white arrow and the white dashed line arrow in the figure. On the other hand, the intake air led from the swirl control passages 29 and 29 has a reverse swirl direction component in the counterclockwise direction in the figure in the cylinder chamber 22, as shown by the black arrow and the black dashed line arrow in the figure. These swirls collide with each other in the cylinder chamber 22 and cancel each other out. Due to the shape of each port 25 and passage 29 and the amount of intake air introduced, the forward swirl direction component is larger than the reverse swirl direction component, and although the swirl does not disappear, the swirl ratio decreases and a low swirl state is obtained. Moreover, the original intake bow) 25. ;In addition to the intake air flowing in from t5, there is also intake air from the swirl control passages 29 and 29, so the total amount of intake air is sufficiently secured. Especially when the engine is in a high rotation range, a good low swirl condition is a priority. As explained above, if the swirl control passage 29.29 is opened, a sufficient amount of intake air can be secured and the condition can be obtained at 0°C.Also, the forward high swirl from the intake boat 25.25 and the swirl control The reverse swirl from the passage 29.29 flows into the cylinder chamber 22.
They interfere with each other, producing two vortices with different rotational directions, and also producing many small vortices or disturbances around these vortices. These many vortices or turbulences remain even after the compression stroke and improve the mixing of the spray and desired air, helping to improve combustion efficiency and reduce smoke and exhaust gas. In a high swirl state, the intake air is guided smoothly and selectively along the streamlined and smooth intake boat 25.25 shape at the minimum necessary speed. Moreover, since the air is evenly introduced into the cylinder chamber 22 from the entire circumference of each intake valve seat 26, 26, the swirl is high and the intake air amount is also very large.

なお、上記実施例においては、直接噴射式ディーゼルエ
ンジンについて説明しだが、これに限定されるものでは
なく、ガソリンエンジンにも適用できること勿論である
In the above embodiments, a direct injection diesel engine has been described, but the present invention is not limited to this, and can of course be applied to a gasoline engine as well.

また、上記実施例においては、吸気2弁、排気2弁の4
弁式エンジンについて説明したが、これに限定されるも
のではなく、吸気2弁、排気1弁の3弁式エンジンにも
適用できること勿論である。
In addition, in the above embodiment, there are 4 valves, 2 intake valves and 2 exhaust valves.
Although the description has been made regarding a valve type engine, the present invention is not limited thereto, and can of course be applied to a three valve type engine with two intake valves and one exhaust valve.

この他、本発明の要旨を変えない範囲内で種々変形実施
可能なこと旨う迄もない。
It goes without saying that various other modifications can be made without departing from the gist of the present invention.

以上説明したように本発明によれば、吸気弁を2弁備え
た3弁式もしくは4弁式エンジンにおいて、各吸気弁近
傍周壁に臨む開口部を有する一対のスワール制御通路を
設け、上記開口部は、開口部から流入した空気が吸気ボ
ートからの吸気のスワール方向とは逆方向のスワール流
れとなる位置に設けたから、スワール状態を容易に可変
できるとともに噴霧状態に拘りなく充分な吸気量を確保
して燃焼効率の向上および排気ガスやスモークの低減化
を得る。しかも、簡単な構造であるのでコストに悪影響
を与えることなく、廉価な二′ンジンの吸気装置を提供
できる。
As explained above, according to the present invention, in a three-valve or four-valve engine equipped with two intake valves, a pair of swirl control passages each having an opening facing the circumferential wall near each intake valve is provided, and the opening is located at a position where the air flowing in from the opening swirls in the opposite direction to the swirl direction of the intake air from the intake boat, so the swirl state can be easily varied and a sufficient amount of intake air can be ensured regardless of the spray state. This improves combustion efficiency and reduces exhaust gas and smoke. Furthermore, since the structure is simple, an inexpensive two-engine intake device can be provided without adversely affecting the cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の従来例を示すエンジン要部の斜視図、
第2図(4)は吸気装置の横断平面図、同図(B)は同
図(4)のB−B、lilに沿う縦断面図、第3図は一
般のディーゼルエンジンにおケルスワ゛−ル比のエンジ
ン回転数に対するエンジン性能の特性図、第4図はスワ
ール比に対するNOx発生状態の特性図、第5図はスワ
ール比のエンジン回転数に対する最適負荷状態の特性図
、第6図は本発明の一実施例を示すエンジン要部の縦゛
断面図、第7図はその概略的斜視図、第8図は吸気装置
の一部切欠した斜視図、第9図はそのスワール制御通路
とシャフト弁との縦断面図、第1θ図はスツール状態を
説明する図である。 22・・・シリンダ室、27・・・吸気弁、25・・・
吸気ボート、28・・・開口部、29・・・スワール制
御通路。 出願人代理人 弁理士 鈴 江 武 彦エシジ〉回転数
− 第6図 n
FIG. 1 is a perspective view of the main parts of an engine showing a conventional example of the present invention;
Fig. 2 (4) is a cross-sectional plan view of the intake system, Fig. 2 (B) is a longitudinal sectional view taken along line B-B and lil in Fig. 2 (4), and Fig. 3 is a cross-sectional view of the intake system. Figure 4 is a characteristic diagram of NOx generation state as a function of swirl ratio, Figure 5 is a characteristic diagram of optimum load condition as a function of swirl ratio and engine revolution speed, and Figure 6 is a characteristic diagram of the present invention. 7 is a schematic perspective view thereof, FIG. 8 is a partially cutaway perspective view of the intake system, and FIG. 9 is a diagram illustrating its swirl control passage and shaft valve. The vertical cross-sectional view and the first θ diagram are diagrams illustrating the stool state. 22... Cylinder chamber, 27... Intake valve, 25...
Intake boat, 28...opening, 29...swirl control passage. Applicant's agent Patent attorney Takehiko Suzue〉Rotation speed - Figure 6 n

Claims (1)

【特許請求の範囲】[Claims] シリンダ室に対して吸気2弁、排気1弁を備λてなる3
弁式エンジンもしくは吸気2弁を備えてなる4弁式エン
ジンにおいて、上記各吸気弁上流側の吸気ボートであっ
て同吸気弁近傍周壁に臨む開口部を有するスワール制御
通路をそれぞれ備え、上記開口部を、同開口部からシリ
ンダ内に流入した空気が上記吸気ボートから上記シリン
ダ内に流入したときに生じる吸気のスワール方向とは逆
方向のスワール流れとなる位置に設けるよう構成したこ
とを特徴とするエンジンの吸気装置。
3 with 2 intake valves and 1 exhaust valve for the cylinder chamber
In a valve-type engine or a four-valve engine equipped with two intake valves, each intake boat on the upstream side of each intake valve is provided with a swirl control passage having an opening facing a peripheral wall near the intake valve, and the opening is provided at a position where a swirl flow occurs in a direction opposite to the swirl direction of intake air that occurs when air flowing into the cylinder from the opening flows into the cylinder from the intake boat. Engine intake system.
JP59074692A 1984-04-13 1984-04-13 Intake device for engine Pending JPS60219414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59074692A JPS60219414A (en) 1984-04-13 1984-04-13 Intake device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59074692A JPS60219414A (en) 1984-04-13 1984-04-13 Intake device for engine

Publications (1)

Publication Number Publication Date
JPS60219414A true JPS60219414A (en) 1985-11-02

Family

ID=13554526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59074692A Pending JPS60219414A (en) 1984-04-13 1984-04-13 Intake device for engine

Country Status (1)

Country Link
JP (1) JPS60219414A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2894615A1 (en) * 2005-12-14 2007-06-15 Renault Sas Air intake device for combustion engine cylinder, with optimum vortex ratio-permeability compromise, has intake pipe partitioned into parts opening into upper and lower parts of intake chamber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719292A (en) * 1980-07-10 1982-02-01 Tokyo Jiyairo Kk Unloader

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719292A (en) * 1980-07-10 1982-02-01 Tokyo Jiyairo Kk Unloader

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2894615A1 (en) * 2005-12-14 2007-06-15 Renault Sas Air intake device for combustion engine cylinder, with optimum vortex ratio-permeability compromise, has intake pipe partitioned into parts opening into upper and lower parts of intake chamber

Similar Documents

Publication Publication Date Title
US4523560A (en) Intake device of an internal combustion engine
JPH03264727A (en) Intake system for multiple valve engine
JPH02176116A (en) Combustion chamber for internal combustion engine
JP3422024B2 (en) Internal combustion engine control device and swirl generator
JPS5845574B2 (en) Internal combustion engine intake passage device
US4325346A (en) Four-cycle internal combustion engine
JPS5990717A (en) Intake device for 4-cycle internal-combustion engine
JPS5845573B2 (en) Internal combustion engine intake passage device
JPH0745817B2 (en) Direct injection multi-cylinder diesel engine
JPS58135323A (en) Air inlet device for diesel engine
JP2663723B2 (en) Intake device for double intake valve type internal combustion engine
JPS60219414A (en) Intake device for engine
JPH0423094B2 (en)
JP3726901B2 (en) Internal combustion engine control device and swirl generator
JPS60233314A (en) Aspiration control device for internal-combustion engine
JP2001055925A (en) Intake controlling device for direct injection type internal combustion engine
JPS6364616B2 (en)
JPH06213081A (en) Exhaust gas recirculation system of engine
JP3318357B2 (en) Engine intake control device
JPS60125723A (en) Intake apparatus for internal combustion engine
JPH0320503Y2 (en)
JPS61190115A (en) Intake air device for internal-combustion engine
JPH05179965A (en) Intake air control device for engine
JPS588230A (en) Suction device for multi-cylinder internal combustion engine
JPS641650B2 (en)