JPS60218834A - Deposited film forming method - Google Patents
Deposited film forming methodInfo
- Publication number
- JPS60218834A JPS60218834A JP7493084A JP7493084A JPS60218834A JP S60218834 A JPS60218834 A JP S60218834A JP 7493084 A JP7493084 A JP 7493084A JP 7493084 A JP7493084 A JP 7493084A JP S60218834 A JPS60218834 A JP S60218834A
- Authority
- JP
- Japan
- Prior art keywords
- film
- gas
- compound
- silicon
- deposited film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 23
- 239000000758 substrate Substances 0.000 claims abstract description 45
- 150000001875 compounds Chemical class 0.000 claims abstract description 28
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 26
- 239000010703 silicon Substances 0.000 claims abstract description 26
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 17
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000001257 hydrogen Substances 0.000 claims abstract description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 10
- 230000000737 periodic effect Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 abstract description 57
- 239000012535 impurity Substances 0.000 abstract description 29
- 230000008021 deposition Effects 0.000 abstract description 17
- -1 silicon halide compound Chemical class 0.000 abstract description 14
- 230000003287 optical effect Effects 0.000 abstract description 12
- 229920000642 polymer Polymers 0.000 abstract description 2
- 150000002431 hydrogen Chemical class 0.000 abstract 2
- 125000005843 halogen group Chemical group 0.000 abstract 1
- 239000010408 film Substances 0.000 description 81
- 238000000151 deposition Methods 0.000 description 23
- 239000002994 raw material Substances 0.000 description 14
- 238000000354 decomposition reaction Methods 0.000 description 11
- 230000005284 excitation Effects 0.000 description 8
- 150000003377 silicon compounds Chemical class 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 125000004429 atom Chemical group 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- 229910052753 mercury Inorganic materials 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 229910017050 AsF3 Inorganic materials 0.000 description 1
- 229910015845 BBr3 Inorganic materials 0.000 description 1
- 229910015844 BCl3 Inorganic materials 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 244000089486 Phragmites australis subsp australis Species 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910007264 Si2H6 Inorganic materials 0.000 description 1
- LOPFACFYGZXPRZ-UHFFFAOYSA-N [Si].[As] Chemical compound [Si].[As] LOPFACFYGZXPRZ-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- JCMGUODNZMETBM-UHFFFAOYSA-N arsenic trifluoride Chemical compound F[As](F)F JCMGUODNZMETBM-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000001017 electron-beam sputter deposition Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 102220024392 rs267607495 Human genes 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052990 silicon hydride Inorganic materials 0.000 description 1
- 239000010454 slate Substances 0.000 description 1
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 1
- LTKWZIUEGOOERX-UHFFFAOYSA-N trihydridoarsenic(.1+) Chemical compound [AsH3+] LTKWZIUEGOOERX-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/60—Deposition of organic layers from vapour phase
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
- C23C16/482—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
- C23C16/483—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
- C23C16/487—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using electron radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
- C23C16/488—Protection of windows for introduction of radiation into the coating chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/0245—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02576—N-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02579—P-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/06—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Computer Hardware Design (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Inorganic Chemistry (AREA)
- Optics & Photonics (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
本発明はドーピングされたシリコンを含有する堆積膜、
とシわけ光導電膜、半導体膜などとして有用なドーピン
グされたアモルファスシリコン(以下、a−81という
)あるいは多結晶シリコンの堆積膜を形成するのに好適
な方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a deposited film containing doped silicon;
In particular, the present invention relates to a method suitable for forming a deposited film of doped amorphous silicon (hereinafter referred to as a-81) or polycrystalline silicon useful as a photoconductive film, a semiconductor film, etc.
従来、例えばN型及びP型a−81の堆積膜を、191
H4又は512H6を原料として用いたグロー放電堆積
法又は熱エネルギー堆積法で形成することが知られてい
る。即ち、SiH4やS i 2H6を電気エネルギー
や熱エネルギーを用いて励起分解して基体上にa−81
の堆積膜を形成し、この膜を種々の目的で利用すること
が周知である。Conventionally, for example, N-type and P-type a-81 deposited films were deposited using 191
It is known to form by a glow discharge deposition method or a thermal energy deposition method using H4 or 512H6 as a raw material. That is, SiH4 or Si2H6 is excited and decomposed using electrical energy or thermal energy to form a-81 on the substrate.
It is well known to form a deposited film of 100% or less and use this film for various purposes.
しかし、これらSiH4及びS s 2H6を原料とし
て用いた場合、グロー放電堆積法においては、高出力下
で堆積中の膜への放電エネルギーの影響が大きく、再現
性のある安定した条件とする制御が難しい。特に、広面
積、厚膜の堆積膜を形成する場合に、これが顕著である
。However, when these SiH4 and S s 2H6 are used as raw materials, in the glow discharge deposition method, the discharge energy has a large influence on the film being deposited under high output, and it is difficult to control to maintain reproducible and stable conditions. difficult. This is particularly noticeable when forming a thick deposited film over a wide area.
また、熱エネルギー堆積法においても1.高温が必要と
なることから、使用される基体が限定されると共K、高
温によjl) a−8t中の有用な結合水素原子が離脱
してしまう確率が増え、所望の特性が得にくくなる。Also, in the thermal energy deposition method, 1. Since high temperatures are required, the substrates that can be used are limited, and the probability that useful bonded hydrogen atoms in a-8t will dissociate increases, making it difficult to obtain the desired properties. Become.
この様に、5IH4及び812H6を用いて堆積膜を形
成する場合、均一な電気的・光学的特性及び品質の安定
性の確保が難しく、堆積中の膜表面の乱れ及びバルク内
の欠陥が生じ易いなどの解決されるべき問題点が残され
ているのが現状である。In this way, when forming a deposited film using 5IH4 and 812H6, it is difficult to ensure uniform electrical and optical properties and quality stability, and it is easy to cause disturbances on the film surface and defects in the bulk during deposition. At present, there are still problems that need to be resolved.
そこで、近年、これらの問題点を解消すべく、5in4
及び812H6を原料とするa−8iの光エネルギー堆
積法(光CVD法)が提案され、注目を集めている。こ
の光エネルギー堆積法によると、a−81堆積膜を低温
で作製できる利点などにより、上記問題点を大幅に改善
することができる。しかしながら、光エネルギーといっ
た比較的僅少な励起エネルギー下でのSiH4及び5i
2n6を原料とした光エネルギー堆積法では、飛躍的に
効率の良い分解を期待することができないため、成膜速
度の向上が期待できず、量産性に難点があるという新た
な問題点が生じている。Therefore, in recent years, in order to solve these problems, 5in4
A light energy deposition method (photoCVD method) of a-8i using 812H6 as a raw material has been proposed and is attracting attention. According to this optical energy deposition method, the above-mentioned problems can be significantly improved due to the advantage that the A-81 deposited film can be produced at a low temperature. However, SiH4 and 5i under relatively small excitation energy such as light energy
With the optical energy deposition method that uses 2n6 as a raw material, it is not possible to expect dramatically efficient decomposition, so an improvement in the film formation rate cannot be expected, and a new problem has arisen in that there are difficulties in mass production. There is.
本発明は、現状におけるこれら問題点を解消すべくなさ
れたものである。The present invention has been made to solve these current problems.
本発明の目的は、高品質を維持しつつ成膜速度を高くす
ることのできるドーピングされたシリコンを含有する堆
積膜の形成方法を提供することにある。An object of the present invention is to provide a method for forming a deposited film containing doped silicon, which can increase the film formation rate while maintaining high quality.
本発明の他の目的は、広面積、厚膜の場合においても、
均一な電気的・光学的特性及び品質の安定性を確保しつ
つ高品質のドーピングされたシリコンを含有する堆積膜
を作製することのできる堆積膜形成方法を提供すること
にある。Another object of the present invention is that even in the case of a large area and a thick film,
An object of the present invention is to provide a method for forming a deposited film that can produce a deposited film containing high quality doped silicon while ensuring uniform electrical and optical characteristics and stability of quality.
上記目的は、基体を収容した室内に、一般式5ifl′
xrnYt(X及びYはそれぞれ別異の)−ログ/原子
、nは1〜6の整数、m及びtはそれぞれ1以上の整数
であυ、m + L = 2 n ’+ 2である。)
で表わされる鎖状ノ10rン化ケイ素化合物、周期律表
第■族又は第■族に属する元素(以下、不純物元素とい
う)を成分とする化合物及び水素の気体状雰囲気を形成
し、光エネルギーを利用することによって前記化合物及
び水素を励起して分解し、前記基体上に不純物元素でド
ーぎングされたシリコンを含有する堆積膜を形成するこ
とを特徴とする堆積膜形成方法によって達成される。For the above purpose, the general formula 5ifl' is
xrnYt (X and Y are each different) - log/atom, n is an integer from 1 to 6, m and t are each an integer of 1 or more υ, m + L = 2 n ' + 2. )
Forms a gaseous atmosphere of hydrogen and a chain-like silicon compound represented by the formula, a compound containing an element belonging to Group Ⅰ or Group Ⅲ of the periodic table (hereinafter referred to as an impurity element), and emits light energy. This is achieved by a deposited film forming method characterized in that the compound and hydrogen are excited and decomposed by utilizing the silicon, and a deposited film containing silicon doped with an impurity element is formed on the substrate.
本発明方法によりて形成される不純物元素でドーピング
されたシリコンを含有する堆積膜は、結晶質でも非晶質
でもよく、膜中のシリコンの結合は、オリゴマー状から
ポリマー状までの何れの形態でもよい。また、原料中の
水素原子及びハロダン原子などを構造中にとシ込んでい
てもよい。The deposited film containing silicon doped with an impurity element formed by the method of the present invention may be crystalline or amorphous, and the silicon bonds in the film may be in any form from oligomers to polymers. good. Further, hydrogen atoms, halodane atoms, etc. in the raw materials may be incorporated into the structure.
以下、主としてa−81堆積膜の場合について、本発明
の実施態様を説明する。Hereinafter, embodiments of the present invention will be described mainly in the case of an A-81 deposited film.
前記一般式の鎖状ノーロダン化ケイ素化合物は、直鎖又
は分岐状の鎖状水素化ケイ素化合物(鎖状シラン化合物
) St Hの7・ロダン誘導体であつyl 2Q+2
て、製造が容易でIJ)かつ安定性の高い化合物である
。一般式中、X及びYは、それぞれフッ素、塩素、臭素
及びヨウ素から選ばれる別異のノ・ロダン原子を表わす
。nの値を1〜6に限定したのは、nが大きくなる程分
解が容易となるが気化しにく(たり合成本困難である上
、分解効率も悪くなるためである。The chain no-rhodanide silicon compound of the general formula is a linear or branched chain silicon hydride compound (chain silane compound), a 7-rhodan derivative of St H, and is easy to produce (IJ) and It is a highly stable compound. In the general formula, X and Y represent different rhodane atoms selected from fluorine, chlorine, bromine and iodine, respectively. The value of n is limited to 1 to 6 because as n increases, decomposition becomes easier, but it becomes difficult to vaporize (or difficult to synthesize), and the decomposition efficiency also deteriorates.
前記一般式の鎖状ハロゲン化ケイ素化合物の好適例を、
以下に列挙する。Preferred examples of the chain halogenated silicon compounds of the general formula are:
They are listed below.
■ FとCtを含む化合物:
SiFmCt4−nl(mは1〜3の整数)、S12F
ntCt6−m(mは1〜5の整数)、Si3FmCt
9−in(mは1〜7の整数)、5t4pn1cz、。■ Compound containing F and Ct: SiFmCt4-nl (m is an integer from 1 to 3), S12F
ntCt6-m (m is an integer from 1 to 5), Si3FmCt
9-in (m is an integer from 1 to 7), 5t4pn1cz.
−、、(mは1〜9の整数)、■ FとBrを含む化合
物:
81FmBr4−ffI(mは1〜3の整数)、Si2
FmBr6−m(mは1〜5の整数)、S15FmBr
6−m(mは1〜7の整数)、SlaFmBrlo−m
(mは1〜9の整数)、■ CtとBrを含む化合物
:
SSiC4Br4−rn(は1〜3の整数)、Si2C
tmBr6−m(mは1〜5の整数)、st、c4nn
r、m(mは1〜7の整数)、514C4nBr、o−
m (mは1〜9の整数)、■ Fと!を含む化合物:
81%I4−m(mは1〜3の整数)、812FmI6
−1n(mは1〜5の整数)。-,, (m is an integer of 1 to 9), ■ Compound containing F and Br: 81FmBr4-ffI (m is an integer of 1 to 3), Si2
FmBr6-m (m is an integer from 1 to 5), S15FmBr
6-m (m is an integer from 1 to 7), SlaFmBrlo-m
(m is an integer of 1 to 9), ■ Compound containing Ct and Br: SSiC4Br4-rn (m is an integer of 1 to 3), Si2C
tmBr6-m (m is an integer from 1 to 5), st, c4nn
r, m (m is an integer from 1 to 7), 514C4nBr, o-
m (m is an integer from 1 to 9), ■ F! Compounds containing: 81%I4-m (m is an integer of 1 to 3), 812FmI6
-1n (m is an integer from 1 to 5).
上記■〜■のうち、最も好ましい具体例としては、以下
の化合物を挙げることができる。Among the above-mentioned compounds (1) to (2), the most preferred specific examples include the following compounds.
(1) SiF、Ct、 (2) 5iF2Ct2 、
(3) SIF、Ct。(1) SiF, Ct, (2) 5iF2Ct2,
(3) SIF, Ct.
(4) ss、rct5. (5) 5t2r2cz4
. (6) 5i2FsCt3゜(7) 5s2y4c
t2. (s) 5s2y5ct 、 (9) 81.
F、Ct。(4) ss, rct5. (5) 5t2r2cz4
.. (6) 5i2FsCt3゜(7) 5s2y4c
t2. (s) 5s2y5ct, (9) 81.
F.Ct.
01) st、r6cz2.αυ5i3F、C4+ (
135iF3Br rα35iF2Br2. Q4)
5iFBr、 、 (1!19512FsBr 、αQ
5i2F4Br2゜(lη812F、Br51 (1
1195iCt5Br 、σl 5iCt2Br2 。01) st, r6cz2. αυ5i3F, C4+ (
135iF3Br rα35iF2Br2. Q4)
5iFBr, , (1!19512FsBr, αQ
5i2F4Br2゜(lη812F, Br51 (1
1195iCt5Br, σl 5iCt2Br2.
(245iCZBr3.ぐl SIF、I 、 fi
5iF2I2゜この様な化合物としては、PH,、P2
H4,PF、。(245iCZBr3.gl SIF, I, fi
5iF2I2゜Such compounds include PH,, P2
H4, PF.
PF5a PCl5* AsH3+ AsF3. As
F5+ ktrct5+ 5bH5*SbF5.5LH
5,BF、、 BCl3. BBr3. B2H6,B
4H1゜。PF5a PCl5* AsH3+ AsF3. As
F5+ ktrct5+ 5bH5*SbF5.5LH
5, BF, BCl3. BBr3. B2H6,B
4H1°.
B5H,、B5H11,B6H1゜、 B6H,2,A
tC1,等を挙げることができる。不純物元素を含む化
合物は、1種用いても2種以上併用してもよい。B5H,, B5H11, B6H1゜, B6H,2,A
tC1, etc. can be mentioned. The compounds containing impurity elements may be used alone or in combination of two or more.
本発明においてシリコンを含有する堆積膜を形成する前
記室は、減圧下におかれるのが好ましいが、常圧下ない
し加圧下においても本発明方法を実施することができる
。In the present invention, the chamber in which the silicon-containing deposited film is formed is preferably placed under reduced pressure, but the method of the present invention can also be carried out under normal pressure or increased pressure.
本発明において使用される前記励起エネルギーは、光エ
ネルギーに限定されるものであるが、前記一般式の鎖状
ハロダン化ケイ素化合物は、光エネルギー等比較的低い
エネルギーの付与によル容易に励起・分解し、良質なシ
リコン堆積膜を形成することができ、またこの場合、基
体の温度も比較的低い温度とすることができるという特
長を有する。また、励起エネルギーは基体近傍に到達し
た原料に一様にあるいは選択的制御的に付与されるが、
光エネルギーを使用すれば、適宜の光学系を用いて基体
の全体に照射して堆積膜を形成することができるし、あ
るいは所望部分のみに選択的制御的に照射して部分的に
堆積膜を形成することができ、またレジスト等を使用し
て所定の図形部分のみに照射し堆積膜を形成できるなど
の便利さを有しているため、有利に用いられる。The excitation energy used in the present invention is limited to light energy, but the chain silicon halide compound of the general formula can be easily excited and excited by applying relatively low energy such as light energy. It has the advantage that it can be decomposed to form a high-quality silicon deposited film, and in this case, the temperature of the substrate can also be kept relatively low. In addition, excitation energy is applied uniformly or selectively to the raw material that reaches the vicinity of the substrate, but
Using light energy, it is possible to irradiate the entire substrate using an appropriate optical system to form a deposited film, or to selectively control and irradiate only desired areas to form a deposited film. It is advantageously used because it has the convenience of being able to form a deposited film by irradiating only a predetermined graphical portion using a resist or the like.
本発明においては、前記室内に前記一般式の鎖状ハロダ
ン化ケイ素化合物、不純物元素を成分とする化合物及び
水素の気体状雰囲気を形成することによシ、励起・分解
反応の過程で生成する水素ラジカルが反応の効率を高め
る。その上、形成される堆積膜中に水素がとシ込まれ、
St結合構造の欠陥を減らす役割を果たす。また、前記
一般式の鎖状ハロゲン化ケイ素化合物は、分解の過程で
SIX 、5IX2 + 5IX5 * 8に2X5
r 812X4 r 515X4 。In the present invention, by forming a gaseous atmosphere of a chain silicon halide compound of the general formula, a compound containing an impurity element, and hydrogen in the chamber, hydrogen generated in the process of excitation/decomposition reaction is produced. Radicals increase the efficiency of the reaction. Moreover, hydrogen is injected into the deposited film that is formed.
It plays a role in reducing defects in the St bond structure. Furthermore, the chain halogenated silicon compound of the general formula is converted into 2X5 into SIX, 5IX2 + 5IX5 * 8 during the decomposition process.
r 812X4 r 515X4.
815X5 、 SiY 、 5IY2.5iY5 、
512Y3 、5i2Y4゜5i5Y4 、815Y5
、5iXY 、 5iXY2 、5i2XY2 。815X5, SiY, 5IY2.5iY5,
512Y3, 5i2Y4゜5i5Y4, 815Y5
, 5iXY, 5iXY2, 5i2XY2.
812XY、 、 813XY5. st、x2y2.
5t5XY4゜S l 、X2Y、なでのラジカルを発
生させ、また水素ガスの導入によって、5ilx、y及
びHが結合したラジカルが発生するため、これらのラジ
カルを含む反応プロセスを経て、最終的に、Slのダン
グリングがンドをH,X又はYで十分にターミネートし
た局在準位密度の小さい良質の膜が得られる。812XY, , 813XY5. st, x2y2.
Radicals such as 5t5XY4゜S l , A high-quality film with a low localized level density in which the dangling bonds of Sl are sufficiently terminated with H, X, or Y can be obtained.
また、前記一般式の鎖状ノーログン化ケイ素化合物は、
2′8i以上を併用してもよいが、この場合、各化合物
によって期待される膜特性を平均化した程度の特性、な
いしは相乗的に改良された特性が得られる。Further, the chain nologonated silicon compound of the general formula is:
Although 2'8i or more may be used in combination, in this case, properties that are averaged over the film properties expected by each compound, or properties that are synergistically improved can be obtained.
図面は、本発明方法によって光導電膜、半導体膜等とし
て用いられるa−81堆積膜を形成するのに使用する装
置の1例を示した模式図である。The drawing is a schematic diagram showing an example of an apparatus used to form an A-81 deposited film used as a photoconductive film, a semiconductor film, etc. by the method of the present invention.
図中、1は堆積室であシ、内部の基体支持台2上に所望
の基体3が載置される。基体3は、導電性、半導電性あ
るいは電気絶縁性の何れの基体でもよい。In the figure, 1 is a deposition chamber, and a desired substrate 3 is placed on a substrate support 2 inside. The base 3 may be a conductive, semiconductive, or electrically insulating base.
4は基体加熱用のヒーターであシ、導線5を介して給電
され、発熱する。基体温度は特に制限されないが、本発
明方法を実施するにあたっては、好ましくは50〜15
0℃、よシ好ましくは100〜150℃であることが望
ましい。Numeral 4 is a heater for heating the substrate, which is supplied with electricity through a conductor 5 and generates heat. The substrate temperature is not particularly limited, but in carrying out the method of the present invention, it is preferably 50 to 15
The temperature is preferably 0°C, more preferably 100 to 150°C.
6乃至9は、ガス供給源でアシ、前記一般式で示される
鎖状ハロゲン化ケイ素化合物及び不純物元素を成分とす
る化合物のうち液状のものを使用する場合には、適宜の
気化装置を具備させる。気化装置には加熱沸騰を利用す
るタイプ、液体原料Φにキャリアーガスを通過させるタ
イプ等があシ、倒れでもよい。また、水素ガスは分子状
のままでス供給源の個数は4に限定されず、使用する前
記一般式の鎖状ハロダン化ケイ素化合物及び不純物元素
を成分とする化合物の数、キャリヤーガス、希釈ガス、
触媒ガス等を使用する場合においてこれらと原料ガスで
ある前記一般式の化合物不純物元素を成分とする化合物
及び水素ガスとの予備混合の有無、N型及びP型の膜を
同一基体上に形成する場合の便宜を考慮して適宜選択さ
れる。図中、ガス供給源6乃至9の符号に、aを付した
のは分岐管、bを付したのは流量計、Cを付したのは各
流量計の高圧側の圧力を計測する圧力計、d又はeを付
したのは各気体流量を調整するための・々ルプである。6 to 9, when using a liquid compound among the gas supply sources consisting of reeds, a chain halogenated silicon compound represented by the above general formula, and an impurity element, an appropriate vaporization device is provided. . The vaporizer may be of any type, such as a type that utilizes heating and boiling, or a type that allows a carrier gas to pass through the liquid raw material Φ, or may be of any type. In addition, the hydrogen gas remains in molecular form, and the number of gas supply sources is not limited to four, and the number of chain silicon halide compounds of the general formula used, the number of compounds containing impurity elements, the carrier gas, and the diluent gas. ,
When catalyst gas etc. are used, the presence or absence of pre-mixing of these with hydrogen gas and a compound containing impurity elements of the above general formula as raw material gases, and formation of N-type and P-type films on the same substrate. It is selected appropriately considering the convenience of the case. In the figure, to the gas supply sources 6 to 9, a is added to the branch pipes, b is the flowmeter, and C is the pressure meter that measures the pressure on the high pressure side of each flowmeter. , d or e are the loops for adjusting each gas flow rate.
各ガス供給源から供給される原料ガス等は、ガス導入管
10の途中で混合され、図示しない排気装置に付勢され
て、室1内に導入される。11は室1内に導入されるガ
スの圧力を計測するだめの圧力計でおる。また、12は
ガス排気管であシ、堆積室1内を減圧したシ、導入ガス
を強制排気するための図示しない排気装置と接続されて
いる。Raw material gases and the like supplied from each gas supply source are mixed in the middle of the gas introduction pipe 10, and are introduced into the chamber 1 by being energized by an exhaust device (not shown). 11 is a pressure gauge for measuring the pressure of the gas introduced into the chamber 1. Further, reference numeral 12 is a gas exhaust pipe, which is connected to an exhaust device (not shown) for forcibly exhausting the pressure inside the deposition chamber 1 and the introduced gas.
13はレギュレーター・パルプである。13 is regulator pulp.
本発明で使用する励起エネルギー供給源の1例として、
14は光エネルギー発生装置であって、例えば水銀ラン
グ、キセノンランプ、炭酸がスレーテ、アルゴンイオン
レーデ、エキシマレーザ−等が用いられる。なお、本発
明で用いる光エネルギーは紫外線エネルギーに限定され
ず、原料ガスを励起、分解せしめ、分解生成物を堆積さ
せることができるものであれば、波長域を問うものでは
ない。また、光エネルギーが原料ガス又は基板に吸収さ
れて熱エネルギーに変換し、その熱エネルギーによって
原料ガスの励起・分解がもたらされて堆積膜が形成され
る場合を排除するものでもない。光エネルギー発生装置
14から適宜の光学系を用いて基体全体あるいは基体の
所望部分に向けられた光15は、矢印16の向きに流れ
ている原料ガス等に照射され、励起・分解を起こして基
体3上の全体あるいは所望部分にa−81の堆積膜を形
成する。As an example of an excitation energy supply source used in the present invention,
Reference numeral 14 denotes a light energy generator, for example, a mercury lung, a xenon lamp, a carbon dioxide slate, an argon ion laser, an excimer laser, or the like. Note that the light energy used in the present invention is not limited to ultraviolet energy, and any wavelength range may be used as long as it can excite and decompose the source gas and deposit decomposition products. Furthermore, the present invention does not exclude the case where light energy is absorbed by the source gas or the substrate and converted into thermal energy, and the thermal energy causes excitation and decomposition of the source gas to form a deposited film. Light 15 is directed from the optical energy generator 14 to the entire substrate or a desired portion of the substrate using an appropriate optical system, and is irradiated to the raw material gas flowing in the direction of the arrow 16, causing excitation and decomposition, and causing the substrate to be heated. A deposited film of a-81 is formed on the entire surface of 3 or on a desired portion.
本発明方法によれば、所望によシ、薄膜から厚膜までの
任意の膜厚の堆積膜が得られ、また膜面積も所望によシ
任意に選択することができる。膜厚の制御は、原料ガス
の圧力、流量、濃度等の制御、励起エネルギー量の制御
等通常の方法で行なうことができる。According to the method of the present invention, a deposited film having any thickness from a thin film to a thick film can be obtained as desired, and the film area can also be arbitrarily selected as desired. The film thickness can be controlled by conventional methods such as controlling the pressure, flow rate, concentration, etc. of the source gas, controlling the amount of excitation energy, etc.
第2図は、本発明方法を実施して作製される不純物元素
によってドーピングされ九a−8i堆積膜を利用したP
IN型ダイオード・デノ々イスの典型例を示した断面図
である。FIG. 2 shows a PDP using a 9a-8i deposited film doped with an impurity element and produced by carrying out the method of the present invention.
FIG. 2 is a sectional view showing a typical example of an IN type diode denoise.
図中、21は基板、22及び27は薄膜電極、23は半
導体膜であ夛、P型のa−8i層24、■型のa−81
層25、及びN型のa−8a層26によって構成される
。28は導線である。In the figure, 21 is a substrate, 22 and 27 are thin film electrodes, 23 is a semiconductor film, P type a-8i layer 24, ■ type a-81
It is composed of a layer 25 and an N-type a-8a layer 26. 28 is a conducting wire.
基板21としては半導電性、好ましくは電気絶縁性のも
のが用いられる。半導電性基板としては、例えば、81
* Go等の半導体が挙げられる。The substrate 21 is semiconductive, preferably electrically insulating. As the semiconductive substrate, for example, 81
* Examples include semiconductors such as Go.
電気絶縁性基板としては、Iリエステル、ポリエチレン
、ポリカー?ネート、セルロースアセテート、ポリプロ
ピレン、Iり塩化ビニル、ポリ基金樹脂のフィルム又は
シート、ガラス、セラミック、紙等が通常使用される。As electrically insulating substrates, I-type polyester, polyethylene, polycarbonate, etc. Films or sheets of esters, cellulose acetate, polypropylene, polyvinyl chloride, polybase resins, glass, ceramics, paper, etc. are commonly used.
薄膜電極22.27は例えば、NlCr * At+
Cr * Mo 、 Au 、 It +Nb r T
a * V r Ti r Pt + Pd + In
2O,t 5n02 rITO(In2O3+ 5n0
2 )等の薄膜を真空蒸着、電子ビーム蒸着、スパッタ
リング等の処理で基板上に設けることによって得られる
。電極22の膜厚としては、好ましくは30〜5 X
10’ l、よシ好ましくは100〜5X10’Xとさ
れるのが望ましい0a−81の半導体層27を構成する
膜体を必要に応じてn型25又はp型23とするには、
層形成の際に、不純物元素のうちn型不純物又はp型不
純物、域いは両不純物を形成される層中にその量を制御
し乍らドーピングしてやる事によりて成される。The thin film electrode 22.27 is, for example, NlCr*At+
Cr*Mo, Au, It+NbrT
a * V r Ti r Pt + Pd + In
2O,t 5n02 rITO(In2O3+ 5n0
It can be obtained by providing a thin film such as 2) on a substrate by a process such as vacuum evaporation, electron beam evaporation, or sputtering. The thickness of the electrode 22 is preferably 30 to 5
In order to make the film forming the semiconductor layer 27 of 0a-81 preferably n-type 25 or p-type 23, preferably 10'l, preferably 100 to 5x10'x, as required,
During layer formation, the layer is doped with an n-type impurity, a p-type impurity, or both impurities among impurity elements while controlling the amount thereof.
次に、第2図に示したダイオードを第1、図に示した装
置を用い本発明方法によって作製する場合の操作を示す
。Next, the operation for manufacturing the diode shown in FIG. 2 by the method of the present invention using the apparatus shown in the first figure will be described.
電極22の薄膜が表面に設けられた基板21を、蝕踏官
1内のす桔台2トに置き、ガス排気管12を通して図示
しない排気装置により堆積室内を排気し減圧にする。減
圧下の堆積室内の気圧は、好ましくは5 X l 0−
5Torr以下、よシ好ましくは10”” Torr以
下が望ましい。薄膜電極22上にP型a−81膜24を
設けるために気体状態となっている前記一般式の鎖状ノ
10ダン化ケイ素化合物が貯蔵されているガス供給源6
のバルブ6d*6es気体状態となっているP型の不純
物元素を成分とする化合物が貯蔵されている供給源70
ノ々ルプ7d、7e及び水素ガスが貯蔵されている供給
源9のパルプ9 d e 9 eを各々開き、これら原
料ガスを混合して堆積室1内に送シこむ。このとき対応
するフローメータ6b、7b、9bで計測しながら流量
調整を行う。ノ10ダン化ケイ素ガスの流量は、好まし
くは10〜1000 SCCM、よシ好ましくは20〜
5008CCMの範囲が望ましい。P型−の不純物ガス
の流量は()・ロダン化ケイ素ガスの流量)×(ドーピ
ング濃度)から決定される。The substrate 21, on which the thin film of the electrode 22 is provided, is placed on a stool 2 in the etcher 1, and the deposition chamber is evacuated through the gas exhaust pipe 12 by an exhaust device (not shown) to reduce the pressure. The atmospheric pressure in the deposition chamber under reduced pressure is preferably 5 X l 0-
It is desirable that the pressure be 5 Torr or less, more preferably 10'' Torr or less. A gas supply source 6 in which the linear silicon compound of the general formula No. 10, which is in a gaseous state, is stored in order to provide the P-type a-81 film 24 on the thin film electrode 22.
A supply source 70 in which a compound containing a P-type impurity element in a gaseous state is stored.
The pulps 9d, 7e and the pulp 9de9e of the supply source 9 in which hydrogen gas is stored are opened, and these raw material gases are mixed and fed into the deposition chamber 1. At this time, the flow rate is adjusted while measuring with the corresponding flow meters 6b, 7b, and 9b. The flow rate of the silicon dedecide gas is preferably 10 to 1000 SCCM, more preferably 20 to 1000 SCCM.
A range of 5008 CCM is preferred. The flow rate of the P-type impurity gas is determined from ()·Flow rate of silicon rhodanide gas)×(doping concentration).
しかしながら不純物ガスの混入は微量であるため、流量
制御が大変難解である。したがって、不純物ガスはH2
ガスで希釈された状態で貯蔵され、かつ、使用されるの
が普通である。However, since the amount of impurity gas mixed in is very small, controlling the flow rate is very difficult. Therefore, the impurity gas is H2
It is normally stored and used diluted with gas.
堆積室l内の混合ガスの圧力は、好ましくは10−2〜
100Torr、よシ好ましくは10〜I Torrの
範囲に維持されることが望ましい。光エネルギ発生装置
14の作動により発生する光エネルギーは堆積室1内に
収容された基板3を照射するように図示しない光学系が
組みこまれている。The pressure of the mixed gas in the deposition chamber 1 is preferably 10-2~
It is desirable to maintain it in the range of 100 Torr, more preferably 10 to I Torr. An optical system (not shown) is incorporated so that the substrate 3 housed in the deposition chamber 1 is irradiated with light energy generated by the operation of the light energy generator 14 .
かくして、基板30表面近傍を流れる混合ガス、即ちハ
ロダン化ケイ素ガス、水素ガス及び不純物ガスは光エネ
ルギーを付与され、光励起・光分解が促され、生成物質
であるa−81及び微量なP型不純物原子が基板上に堆
積される。a−8l以外の分解生成物及び分解しなかっ
た余剰の原料ガス等はfス排気管12を通して排出され
、一方、新たな混合ガスがガス導入管10を通して供給
される。In this way, the mixed gas flowing near the surface of the substrate 30, that is, silicon halide gas, hydrogen gas, and impurity gas, is given optical energy and is stimulated to be photoexcited and photodecomposed, resulting in the production of a-81 and a small amount of P-type impurity. Atoms are deposited onto the substrate. Decomposition products other than a-8l and undecomposed surplus raw material gas are discharged through the f gas exhaust pipe 12, while new mixed gas is supplied through the gas introduction pipe 10.
このようにしてP型のa−8i膜24が形成される。In this way, a P-type a-8i film 24 is formed.
P型のa−8tの膜厚としては100〜10’X、好ま
しくは300〜2.000 Xの範囲が望ましい。The thickness of the P-type a-8t is preferably in the range of 100 to 10'X, preferably 300 to 2.000X.
次にガス供給源6,7.9に連結するパルプ6d、6a
、7d、7e、9d、9sを全て閉め、堆積室1内への
ガスの導入を止める。図示しない排気装置の作動によシ
、堆積室内のガス、特に汚染ガス、P型の不純物ガス等
a−81の原料ガス以外のガスを排除した後、再びパル
プ6d16e#9d190を開はハロダン化ケイ素ガス
及び水素ガスを堆積室1内に導入する。この場合の好適
な流量条件、圧力条件はP型のa−81膜形成の場合と
同じであシ、同様の光エネルギ照射によシノンドーゾ、
即ち夏型のa−8l膜25が形成される。Pulp 6d, 6a then connected to gas supply source 6, 7.9
, 7d, 7e, 9d, and 9s are all closed to stop the introduction of gas into the deposition chamber 1. After removing the gas in the deposition chamber, especially the gases other than the raw material gas of a-81, such as contaminant gas and P-type impurity gas, by operating the exhaust system (not shown), the pulp 6d16e #9d190 is opened again and the silicon halide is removed. Gas and hydrogen gas are introduced into the deposition chamber 1. Suitable flow conditions and pressure conditions in this case are the same as in the case of forming the P-type a-81 film.
That is, a summer-type a-8l film 25 is formed.
夏型のa−81の膜厚は500〜5X10’X、好適に
は1000〜10,000 Xの範囲が望ましい。The film thickness of summer type a-81 is preferably in the range of 500 to 5 x 10'X, preferably 1000 to 10,000 x.
次にN型の不純物ガスが貯蔵されているガス供給源8に
連結するパルプ8d、8eを開き、堆積室1内にN型の
不純物ガスを導入する。Next, the pulps 8d and 8e connected to the gas supply source 8 in which the N-type impurity gas is stored are opened, and the N-type impurity gas is introduced into the deposition chamber 1.
N型の不純物ガスの流量はP型の不純物ガスの流量決定
の場合と同様に()・ロダン化ケイ素ガスの流量)×(
ドーピング濃度)から決定される。かくして、基板3の
表面近傍を流れるノ・ログン化ケネルギーが付与され、
光励起・光分解が促され、分解生成物のa−8Sが基板
上に堆積し、堆積物内に分解生成物の微量な4N型不純
物原子が混入することによ、9N型のa−81膜25が
形成される。N型のa−8t膜25の膜厚は、好ましく
は100〜10X1よシ好ましくは300〜2.000
1の範囲が望ましい。N型のa−81膜25上の薄膜電
極27は薄膜電極22の形成方法と同様の方法によ多形
成される。膜厚条件も同様である。The flow rate of N-type impurity gas is determined by ()・Flow rate of silicon rhodanide gas) × (as in the case of determining the flow rate of P-type impurity gas)
doping concentration). In this way, the energy flowing near the surface of the substrate 3 is imparted,
Photoexcitation and photodecomposition are promoted, and a-8S, a decomposition product, is deposited on the substrate, and a trace amount of 4N-type impurity atoms from the decomposition product is mixed into the deposit, resulting in a 9N-type a-81 film. 25 is formed. The thickness of the N-type a-8t film 25 is preferably 100 to 10X1, preferably 300 to 2.000
A range of 1 is desirable. The thin film electrode 27 on the N-type A-81 film 25 is formed by the same method as the method for forming the thin film electrode 22. The film thickness conditions are also similar.
以下に、本発明の具体的実施例を示す〇実施例1
前記一般式の鎖状ハロゲン化ケイ素化合物として、前記
例示化合物(1) 、 (2) 、 (7)又は(8)
を用い、また不純物元素を成分とする化合物としCPH
3又はB2H6を用い、第1図の装置によシ、不純物と
してP(N凰)又はB(P型)でドーピングされたa−
8i堆積膜を形成した。Specific examples of the present invention are shown below. Example 1 As the chain halogenated silicon compound of the general formula, the exemplified compound (1), (2), (7) or (8)
CPH is used as a compound containing an impurity element as a component.
3 or B2H6 and doped with P (N-type) or B (P-type) as an impurity using the apparatus shown in FIG.
An 8i deposited film was formed.
先づ、導電性フィぷム基板(コーニング社製、$705
9)を支持台2上に載置し、排気装置を用いて堆積室1
内を排気し、10Torrに減圧した。First, conductive fipsubstrate (manufactured by Corning, $705)
9) on the support stand 2, and use the exhaust device to remove the deposition chamber 1.
The inside was evacuated and the pressure was reduced to 10 Torr.
第1表に示した基板温度で、気体状態とされている前記
ハロゲン化ケイ素化合物とPH3ガス又はB2H6ガス
とを1:5X10 の比で混合したガスを1105CC
JilI、水素ガスを40 SCCM(D流量で堆積室
内に導入し、室内の気圧を0.1 Torrに保ちつつ
高圧水銀灯を光強度200 mW/z2で基板に垂直に
照射して、ドーピングされたa−8i膜を形成した。At the substrate temperature shown in Table 1, 1105 CC of a mixture of the silicon halide compound in a gaseous state and PH3 gas or B2H6 gas at a ratio of 1:5 x 10 was added.
Hydrogen gas was introduced into the deposition chamber at a flow rate of 40 SCCM (D), and the substrate was irradiated perpendicularly with a high-pressure mercury lamp at a light intensity of 200 mW/z while keeping the atmospheric pressure in the chamber at 0.1 Torr to deposit the doped a -8i film was formed.
成膜速度は3左X/II e cであった。The film formation rate was 3x/IIec.
比較のため、512H6を用いて同様にしてドーピング
されたa−8i膜を形成した。成膜速度は /りX/s
@ 0であった・
次いで、得られたa−81膜試料を蒸着槽に入れ、真空
度10 Torrでクシ型のAtギャップ電極(長さ2
50μ、巾5簡)を形成した後、印加電圧10Vで暗電
流を測定し、暗導電率σdをめて、a−81膜を評価し
た。結果を第1表に示した。For comparison, a similarly doped a-8i film was formed using 512H6. The film formation speed is /X/s
Next, the obtained a-81 film sample was placed in a vapor deposition tank, and a comb-shaped At gap electrode (length 2
After forming a film with a thickness of 50 μm and a width of 5 strips, the dark current was measured at an applied voltage of 10 V, and the dark conductivity σd was calculated to evaluate the a-81 film. The results are shown in Table 1.
第 1 表
第1表から、従来のS i 2H6を用いた場合と比較
して、本発明によるa−81膜は、低い基板温度でも十
分なドーピング効率が得られ、高いσdが得られる。Table 1 From Table 1, it can be seen that the a-81 film according to the present invention can obtain sufficient doping efficiency and high σd even at a low substrate temperature, compared to the case where conventional Si 2H6 is used.
実施例2
基板をポリイミド基板、前記一般式の鎖状ハロダン化ケ
イ素化合物として、前記例示化合物(121。Example 2 The exemplified compound (121) was prepared by using a polyimide substrate as a substrate and a chain halide silicon compound having the above general formula.
α階、αQを用いた以外は、実施例1と同様にa−8i
膜を形成し、σdをめた。結果を第2表に示した。a-8i in the same manner as in Example 1, except that α floor and αQ were used.
A film was formed and σd was determined. The results are shown in Table 2.
第 2 表
実施例3
前記一般式の鎖状ハロゲン化ケイ素化合物として前記例
示化合物(1) 、 (2) 、 (7) 、 (8)
を用い第1図の装置を用いて、第2図に示したPIN型
ダイオードを作製した。Table 2 Example 3 The exemplified compounds (1), (2), (7), (8) as chain halogenated silicon compounds of the general formula
The PIN type diode shown in FIG. 2 was manufactured using the apparatus shown in FIG.
先づ、1000 )f) ITOJIE22 tM着シ
タt!ラス板21を支持台に載置し、実施例1と同じ方
法でBでドーピングされたP Ml a−8t膜24(
膜厚400X)を形成した。なお光源及び光強度は、低
圧水銀灯100m塾−2とした。First, 1000) f) ITOJIE22 tM arrival location t! The lath plate 21 was placed on a support stand, and the P Mla-8t film 24 doped with B (
A film thickness of 400×) was formed. The light source and light intensity were a low pressure mercury lamp 100m Juku-2.
次いでB2H6ガスの導入を停止し堆積室内圧力を0、
5 Torrとした以外はP型a−8i膜の場合と同一
の方法f I fjll a−8t膜25 (II(厚
5000 K )を形成した。Next, the introduction of B2H6 gas was stopped and the pressure inside the deposition chamber was reduced to 0.
A fI fjll a-8t film 25 (II (thickness: 5000 K)) was formed using the same method as in the case of the P-type a-8i film except that the pressure was set at 5 Torr.
次いで、実施例1と同じ方法でPでドーピングサt’L
’c11!31a−8t膜26(膜厚400X)を形成
した。々お光照射条件はP型の場合と同一とした。Then, doping with P in the same manner as in Example 1
'c11!31a-8t film 26 (film thickness 400X) was formed. The light irradiation conditions were the same as for the P type.
更に、とのNIJ膜上に真空蒸着によシ膜厚1000又
のAt電極27を形成し、PIN型ダイオードを得た。Further, an At electrode 27 having a thickness of 1000 mm was formed on the NIJ film by vacuum evaporation to obtain a PIN type diode.
比較のため、512H6を用いて同様にしてPIN型ダ
イオードを形成した。For comparison, a PIN type diode was similarly formed using 512H6.
かくして得られたダイオード素子(面積1cW12)の
I−V特性を測定し、整流特性及び光起電力効・果を評
価した。結果を第1表に示した。The IV characteristics of the thus obtained diode element (area: 1 cW12) were measured, and the rectification characteristics and photovoltaic effect were evaluated. The results are shown in Table 1.
第 1 表
*1 電圧1vでの順方向電流と逆方向電流の比*2
p−n接合の電流式
に於けるη値
第1表から、従来の8 i 2H6を用いた場合と比較
して、本発明による堆積膜によって低い基板温度の場合
でも優れた整流特性が得られる。Table 1 *1 Ratio of forward current and reverse current at voltage 1V *2
From Table 1, the η value in the current equation of the p-n junction shows that the deposited film of the present invention provides superior rectification characteristics even at low substrate temperatures, compared to the case of using the conventional 8i2H6. .
また、光照射特性においても、基板側から光を導入し、
光照射強度AM1、(約100m1号戸2)で、変換効
率81以上、開放端電圧0.9 V 、短絡電流10
mA/esが得られた。In addition, regarding light irradiation characteristics, light is introduced from the substrate side,
Light irradiation intensity AM1, (approximately 100m No. 1 door 2), conversion efficiency 81 or more, open circuit voltage 0.9 V, short circuit current 10
mA/es was obtained.
実施例4
基板として透明導電性フィルム(ポリエステルペース)
、前記一般式の鎖゛状710rンイヒケイ素化合物とし
て前記例示化合物az、α3 、 (usを用い、光源
及び光強度を、高圧水銀灯200 mW/z とした以
外は実施例3と同一の方法でPIN型ダイオードを作製
し、整流比及びη値をめた。結果を第2表に示した。Example 4 Transparent conductive film (polyester paste) as a substrate
, PIN was obtained in the same manner as in Example 3 except that the above-mentioned exemplified compounds az, α3, (us) were used as the chain-like 710r arsenic silicon compound of the above general formula, and the light source and light intensity were a high-pressure mercury lamp of 200 mW/z. A type diode was manufactured, and the rectification ratio and η value were determined.The results are shown in Table 2.
第 2 表
〔発明の効果〕
本発明によれば、低い基体温度でしかも高い成膜速度に
よって高品質のシリコン堆積膜を形成することかできる
。その上、形成する膜が広面積、厚膜の場合においても
、均一な電気的・光学的特性が得られ、品質の安定性も
確保できるという従来にない格別の効果が奏される。ま
た、はかにも、基体の高温加熱が不要であるためエネル
ギーの節約になる、耐熱性の乏しい基体上にも成膜でき
る、低温処理によって工程の短縮化を図れる、原料化合
物が容易に合成でき、安価でしかも安定性に優れ取扱上
の危険も少ない、といった効果が発揮される。Table 2 [Effects of the Invention] According to the present invention, a high quality silicon deposited film can be formed at a low substrate temperature and at a high film formation rate. Moreover, even when the film to be formed has a wide area and is thick, uniform electrical and optical characteristics can be obtained and quality stability can be ensured, which is an unprecedented and exceptional effect. In addition, there is no need for high-temperature heating of the substrate, which saves energy; it is possible to form a film even on substrates with poor heat resistance; low-temperature processing shortens the process; and the raw material compound can be easily synthesized. It is inexpensive, has excellent stability, and has few handling risks.
第1図は、本発明で使用する光エネルギー照射型堆積膜
形成製の1例を示した概略構成図でおる。
第2図は、本発明方法によって作製されるPIN型ダイ
オードの構成を示した断面図である。
1・・・堆積室、2・・・基体支持台、3・・・基体、
4・・・ヒーター、6〜9・・・ガス供給源、10・・
・がス導入管、12・・・ガス排気管、14・・・光エ
ネルギー発生装置、21・・・基板、22.27・・・
電極、24・・・P型a−8t膜、25 ・I型a−8
i膜、26 ・N型a−81膜、28・・・導線。FIG. 1 is a schematic diagram showing an example of the optical energy irradiation type deposited film forming method used in the present invention. FIG. 2 is a sectional view showing the structure of a PIN diode manufactured by the method of the present invention. DESCRIPTION OF SYMBOLS 1... Deposition chamber, 2... Substrate support stand, 3... Substrate,
4...Heater, 6-9...Gas supply source, 10...
- Gas introduction pipe, 12... Gas exhaust pipe, 14... Light energy generator, 21... Substrate, 22.27...
Electrode, 24... P type a-8t film, 25 ・I type a-8
i film, 26 - N type a-81 film, 28... conductor.
Claims (1)
式中、X及びYはそれぞれ別異のハロダン原子、nは1
〜6の整数、m及びtはそれぞれ1以上の整数でDi’
)、m+t=2 n +2である。)で表わされる鎖状
ハロゲン化ケイ素化合物、周期律表第■族又は第■族に
属する元素を成分とする化合物及び水素の気体状雰囲気
を形成し、光エネルギーを利用することによって前記化
合物及び水素を励起して分解し、前記基体上に前記元素
でドーピングされたシリコンを含有する堆積膜を形成す
ることを特徴とする堆積膜形成方法。General formula: 5lnXITIYt(
In the formula, X and Y are different halodane atoms, and n is 1
An integer of ~6, m and t are each an integer of 1 or more, Di'
), m+t=2 n +2. ), a compound containing an element belonging to group Ⅰ or group of the periodic table, and hydrogen by forming a gaseous atmosphere, and using light energy, the said compound and hydrogen A method for forming a deposited film, characterized in that a deposited film containing silicon doped with the element is formed on the substrate by exciting and decomposing the silicon.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7493084A JPS60218834A (en) | 1984-04-16 | 1984-04-16 | Deposited film forming method |
US06/722,468 US4683147A (en) | 1984-04-16 | 1985-04-12 | Method of forming deposition film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7493084A JPS60218834A (en) | 1984-04-16 | 1984-04-16 | Deposited film forming method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60218834A true JPS60218834A (en) | 1985-11-01 |
Family
ID=13561561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7493084A Pending JPS60218834A (en) | 1984-04-16 | 1984-04-16 | Deposited film forming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60218834A (en) |
-
1984
- 1984-04-16 JP JP7493084A patent/JPS60218834A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4683147A (en) | Method of forming deposition film | |
US4683146A (en) | Process for producing deposition films | |
JPS60218834A (en) | Deposited film forming method | |
JP3040247B2 (en) | Manufacturing method of silicon thin film | |
JPS60218831A (en) | Deposited film forming method | |
JPS60218832A (en) | Deposited film forming method | |
JPS60218837A (en) | Deposited film forming method | |
JPH0682616B2 (en) | Deposited film formation method | |
JPS60218841A (en) | Formation of deposited film | |
JPS60218829A (en) | Formation of deposited film | |
JPS60218839A (en) | Deposited film forming method | |
JPS60218473A (en) | Formation of deposited film | |
JPS60244022A (en) | Formation of deposition film | |
JPH1187751A (en) | Polycrystalline silicon thin film, photoelectric conversion element, and manufacturing method thereof | |
JPS60218828A (en) | Formation of deposited film | |
JPS6190418A (en) | Formation of deposited film | |
JPS60218835A (en) | Deposited film forming method | |
JPS60218838A (en) | Deposited film forming method | |
JPS60218836A (en) | Deposited film forming method | |
JPS60218840A (en) | Deposited film forming method | |
JPS60218830A (en) | Deposited film forming method | |
JPS60218833A (en) | Deposited film forming method | |
JPH03222321A (en) | Manufacture of amorphous semiconductor thin film | |
JPS60251613A (en) | Formation of deposited film | |
JPS60251614A (en) | Formation of deposited film |