JPS60217634A - Method for plasma etching - Google Patents
Method for plasma etchingInfo
- Publication number
- JPS60217634A JPS60217634A JP7294484A JP7294484A JPS60217634A JP S60217634 A JPS60217634 A JP S60217634A JP 7294484 A JP7294484 A JP 7294484A JP 7294484 A JP7294484 A JP 7294484A JP S60217634 A JPS60217634 A JP S60217634A
- Authority
- JP
- Japan
- Prior art keywords
- etching
- gas
- aluminum
- hydrogen gas
- plasma etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001020 plasma etching Methods 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims abstract description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 25
- 239000007789 gas Substances 0.000 claims abstract description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000000460 chlorine Substances 0.000 claims abstract description 8
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 8
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 5
- 238000005530 etching Methods 0.000 abstract description 46
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 abstract description 16
- 229920000642 polymer Polymers 0.000 abstract description 14
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 abstract description 12
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 7
- 229930195733 hydrocarbon Natural products 0.000 abstract description 7
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 7
- 239000012495 reaction gas Substances 0.000 abstract description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 3
- 239000001301 oxygen Substances 0.000 abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 abstract description 3
- 238000009832 plasma treatment Methods 0.000 abstract description 3
- 238000005260 corrosion Methods 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 5
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 101100536577 Caenorhabditis elegans cct-4 gene Proteins 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
- ing And Chemical Polishing (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はプラズマエツチング法に係シ、特にアルミニウ
ム又はアルミニウム合金をプラズマエツチングするに際
して用いられるエツチング用ガスに関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plasma etching method, and particularly to an etching gas used in plasma etching aluminum or an aluminum alloy.
従来、例えば半導体デバイスの微細加工に際してのアル
ミニウム又はアルミニウム合金(以下単にアルミニウム
と称す)のエツチング加工は、平行平板型のりアクタ−
に塩素系の反応ガスを導入し、1’ 3.56 MHz
の高周波電力によってプラズマを発生させて異方性エツ
チング(膜面に垂直なエツチング面を有するようなエツ
チング)を実現させることによって行なわれている。Conventionally, etching processing of aluminum or aluminum alloy (hereinafter simply referred to as aluminum) during microfabrication of semiconductor devices, for example, has been carried out using a parallel plate type glue actuator.
1' 3.56 MHz
This is done by generating plasma using high frequency power and realizing anisotropic etching (etching with an etching surface perpendicular to the film surface).
すなわち、第1図にプラズマエツチングの概略を示すよ
うに、アルミニウム膜1はレジスト膜2をマスクとして
プラズマ中の塩素ラジカルによってエツチングされるが
、この際異方性エツチングが進行するには、アルミニウ
ム膜1の側壁に保護膜3がエツチング中に生成され、ア
ルミニウム膜1の側壁部分が塩素ラジカルの攻撃から護
られることが大きく要求されている。That is, as shown in the outline of plasma etching in FIG. 1, the aluminum film 1 is etched by chlorine radicals in the plasma using the resist film 2 as a mask. It is highly desirable that a protective film 3 be formed on the sidewalls of the aluminum film 1 during etching to protect the sidewall portions of the aluminum film 1 from attack by chlorine radicals.
又、アルミニウム膜に対するエツチング速度が速いこと
、つまりアルミニウム膜とレジスト膜とに対するエツチ
ング速度を比べた場合、アルミニウム膜に対するエツチ
ング速度が大きい(選択比が高い)こと、さらにはエツ
チング終了後Sin。In addition, the etching rate for the aluminum film is high, that is, when the etching rates for the aluminum film and the resist film are compared, the etching rate for the aluminum film is high (high selectivity), and furthermore, the etching rate for the aluminum film is high (selectivity is high).
等の下地層4上にエツチング残等の残漬が生じないこと
も要求されている。It is also required that no etching residue or the like remains on the underlying layer 4 of the substrate.
又、アルミニウム膜のプラズマエツチングに独特な現象
であるアフターコロ−ジョン(エツチング終了後ウニノ
・−を大気中に取り出した際に進行するアルミニウム膜
の腐蝕現象)が起きにくいことも要求されている。It is also required that after-corrosion (a phenomenon in which the aluminum film is corroded when it is taken out into the atmosphere after etching), which is a phenomenon unique to plasma etching of aluminum films, does not easily occur.
そして、上記のようなエツチング特性は反応ガスの種類
によって大きく影響を受けることがわかり、最近におい
てはエツチング速度の大きな四塩化炭素と選択比の高い
三塩化ホウ素との混合ガスが良いと言われている。It has been found that the etching characteristics mentioned above are greatly affected by the type of reaction gas, and recently it has been said that a mixed gas of carbon tetrachloride, which has a high etching rate, and boron trichloride, which has a high selectivity, is good. There is.
しかし、四塩化炭素と三塩化ホウ素との混合ガスをエツ
チング用ガスとして用いた場合、四塩化炭素と三塩化ホ
ウ素との混合比によってエツチング特性が大きく変わる
為、例えば四塩化炭素の割合が太きいと、プラズマ中で
クロロカーボン(CnCtm)系のポリマーが生成しや
すく、とのポリマーが前記保護膜としての役割を果すも
のの、プラズマエツチング終了後にあっては除去困難な
ポリマーで残渣として残してしまうものとなり、逆に三
塩化ホウ素の割合が大きくなると、保護膜としてのポリ
マーが出来にくくなシ、異方性エツチングが実現しに<
<、微細加工には適さないものとなるといった欠点があ
る。However, when a mixed gas of carbon tetrachloride and boron trichloride is used as an etching gas, the etching characteristics vary greatly depending on the mixing ratio of carbon tetrachloride and boron trichloride. In the plasma, chlorocarbon (CnCtm)-based polymers are easily generated, and although these polymers play the role of the above-mentioned protective film, they are difficult to remove and remain as a residue after plasma etching is completed. On the other hand, when the proportion of boron trichloride increases, it becomes difficult to form a polymer as a protective film, and it becomes difficult to realize anisotropic etching.
The disadvantage is that it is not suitable for microfabrication.
そこで、上記のような点を勘案すると、三塩化ホウ素の
割合が80係位の混合ガスが良いと言われている。Therefore, taking the above points into consideration, it is said that a mixed gas with a boron trichloride ratio of 80 is good.
しかし、このような三塩化ホウ素の割合が約80係とい
った条件が満足されていても、プラズマエツチングに際
しての投入電力密度が通常の約0.2W/cr&以下程
度のものでは異方性エツチングが実現されず、すなわち
約0.3W/ff1以上の電力供給がなければ異方性エ
ツチングが行なわれない。However, even if the condition that the proportion of boron trichloride is approximately 80% is satisfied, anisotropic etching is not achieved if the input power density during plasma etching is about 0.2 W/cr& or less. In other words, anisotropic etching will not be performed unless power is supplied at approximately 0.3 W/ff1 or more.
しかし、投入電力密度が大きくなると、レジスト膜に対
するエツチング速度が速くなり、つまり選択比が低くな
り、例えば投入電力密度が約03W / cr& 位の
場合にはアルミニウム/レジス14)選択比が約2程度
にすぎず、そして投入電力密度の増加に伴なって選択比
は急激に低下し、アルミニウム膜のエツチングが完了す
る前にマスクとじてのレジスト膜がなくなってしまう等
の致命的欠点が起きてしまう。However, as the input power density increases, the etching speed for the resist film increases, which means that the etching selectivity decreases. For example, when the input power density is about 0.3 W/cr&, the aluminum/resist etching selectivity is about 2. However, as the input power density increases, the selectivity decreases rapidly, resulting in fatal drawbacks such as the resist film used as a mask disappearing before etching of the aluminum film is completed. .
又、四塩化炭素と三塩化ホウ素との二成分混合ガスが用
いられた場合には、プラズマエツチング終了後において
クロロカーボン系のポリマーカする為、アフターコロ−
ジョンが激しい等の問題もある。In addition, when a binary gas mixture of carbon tetrachloride and boron trichloride is used, after the plasma etching is completed, the chlorocarbon-based polymer remains, so the after-color
There are also problems such as John being intense.
本発明者は、アルミニウム又はアルミニウム合金のプラ
ズマエツチングに際しての反応ガスとして、四塩化炭素
と三塩化ホウ素といった混合系又はジクロルジフルオル
メタンといった塩素系の反応ガスの他に水素をも加えた
混合ガスを用いると、極めて望ましいプラズマエツチン
グの行なわれることを見い出した。The present inventor has proposed that a mixed gas such as carbon tetrachloride and boron trichloride, or a mixed gas containing hydrogen in addition to a chlorine-based reactive gas such as dichlorodifluoromethane, be used as a reactive gas during plasma etching of aluminum or aluminum alloy. It has been found that extremely desirable plasma etching can be achieved using the following methods.
すなわち、反応ガス中に水素ガスが含まれていると、プ
ラズマ中でハイドロカーボン(CnHm)系のポリマー
が生成し、このポリマーがクロロカーボン系のポリマー
に代わって保護膜としての役割を果すようになる。そし
て、このノ・イドロカーボン系のポリマーは、例えば三
塩化ホウ素の量が多くても生成しやすく、従って異方性
エツチングが行なわれやすいことになる。In other words, when hydrogen gas is contained in the reaction gas, a hydrocarbon (CnHm)-based polymer is generated in the plasma, and this polymer acts as a protective film instead of the chlorocarbon-based polymer. Become. This hydrocarbon-based polymer is easily formed even when the amount of boron trichloride is large, and therefore anisotropic etching is easily performed.
又、ハイドロカーボン系のポリマーは、クロロカーボン
系のポリマーと異なり、エツチング終了後の酸素プラズ
マ処理によシ容易に分解処理でき、残渣として残って悪
影響を起こすものとなら々い。Furthermore, unlike chlorocarbon polymers, hydrocarbon polymers can be easily decomposed by oxygen plasma treatment after etching, and do not remain as residues that may cause adverse effects.
又、水素ガスが含まれていると、陰極降下電圧(平行平
板電極でプラズマを発生させた場合必ず試料側、つまシ
高周波電力投入側の電極電位が下がるものであって、こ
の高周波電力投入側の電位がプラズマ電位より下がる時
の電位差)が約1.5倍位上昇し、この陰極降下電圧の
上昇は投入電力を上げたことに匹敵し、すなわち低い投
入電力でもって従来の場合の高い投入電力の時と同じよ
うなエツチング特性が得られることになり、つまり小さ
な投入電力密度で異方性エツチングが実現し、かつレジ
ストとの選択比が高いエツチングが実現することを意味
する。In addition, if hydrogen gas is included, the cathode drop voltage (when plasma is generated with parallel plate electrodes, the electrode potential on the sample side and the high-frequency power input side of the tweezers always decreases, and this high-frequency power input side (potential difference when the potential of Etching characteristics similar to those obtained with electric power can be obtained, which means that anisotropic etching can be achieved with a small input power density, and etching with a high selectivity to the resist can be achieved.
さらには、アフターコロ−ジョンも起きにくくなる。す
なわち、アフターコロ−ジョンの原因は、エツチング終
了後ウェハー上に残る塩素と大気中の水分との反応によ
シ生成する塩化水素がアルミニウムを腐蝕させるもので
あるから、従ってウニ・・−上の塩素を大気中に取シ出
す前に塩素を除去してやればアフターコロ−ジョンの防
止になる。Furthermore, after-corrosion is less likely to occur. In other words, the cause of after-corrosion is that hydrogen chloride, which is generated by the reaction between chlorine remaining on the wafer after etching and moisture in the atmosphere, corrodes aluminum. After-corrosion can be prevented by removing chlorine before it is released into the atmosphere.
つまり、エツチング終了後過剰の塩素を水素と反応させ
、この反応物を真空中で除去してやればアフターコロ−
ジョンが防止されることになる。In other words, if excess chlorine is reacted with hydrogen after etching and this reactant is removed in a vacuum, after-coloring can be achieved.
John will be prevented.
四塩化炭素、三塩化ホウ素及び水素の混合ガスを、例え
ば半導体デバイスに用いられるアルミニウム膜のプラズ
マエツチングに際しての反応ガスとして用いる。A mixed gas of carbon tetrachloride, boron trichloride, and hydrogen is used as a reactive gas during plasma etching of aluminum films used in semiconductor devices, for example.
つマリ、アルミニウムのプラズマエツチングニおける反
応ガスと従来の四塩化炭素及び三塩化ホウ素の他に水素
ガスをも加えたものを用い、他は従来の場合と略同様に
行なう。In addition, the reaction gas used in the plasma etching of aluminum is hydrogen gas in addition to the conventional carbon tetrachloride and boron trichloride, and the other steps are substantially the same as in the conventional case.
このプラズマエツチングに際しては、アルミニウム膜の
側壁部分にはハイドロカーボン系ポリマーが生成し、異
方性エツチングが実現している。During this plasma etching, a hydrocarbon polymer is generated on the side wall portion of the aluminum film, realizing anisotropic etching.
そして、このハイドロカーボン系ポリマーは、エツチン
グ終了後の酸素プラズマ処理(プラズマアッシング)に
よって簡単に除去できるものであった。This hydrocarbon polymer could be easily removed by oxygen plasma treatment (plasma ashing) after etching.
又、投入電力密度を約0; 2 W/c++tとし、か
つBCt3十vct4 +H2(流量比16:4:5)
ガスの圧力に対して陰極降下電圧の変化を調べると、第
2図に示す通りである。同、第2図中、実線は本発明の
エツチング用ガスを用いた特性を示し、点線はエツチン
グ用ガスとしてBClN +CCt4 (流量比4:1
)ガスを用いた特性を示す。・すなわち、水素ガスが混
合されていると、陰極降下電圧が上昇しており、このこ
とは投入電力密度が小さくても異方性エツチングが実現
し、かつ選択比が高いものであることを意味している。In addition, the input power density is approximately 0; 2 W/c++t, and BCt30vct4 +H2 (flow rate ratio 16:4:5)
When examining the change in cathode fall voltage with respect to gas pressure, it is as shown in FIG. In the same figure, the solid line shows the characteristics using the etching gas of the present invention, and the dotted line shows the characteristics using the etching gas of BClN + CCt4 (flow rate ratio 4:1).
) shows the characteristics using gas.・In other words, when hydrogen gas is mixed, the cathode drop voltage increases, which means that anisotropic etching can be achieved even if the input power density is low, and the selectivity is high. are doing.
又、水素ガスの添加量によってアルミニウム膜のエツチ
ング速度/レジスト膜のエツチング速度である選択比が
どのように変化するかを調べると、第3図に示す通シで
ある。伺、BCt3 : CC24=4:1とし、これ
に水素ガスを加えて行なったものである。すなわち、水
素ガスが、例えば20体積飴含まれていると、水素ガス
が含まれていない場合に比べて選択比が約2,5倍にも
向上し、そして水素ガス含有量が約10〜50体積係の
場合に実用的に用いられる望ましい選択比の異方性エツ
チングの行なわれる。ものであった。Further, when examining how the selectivity, which is the etching rate of the aluminum film/the etching rate of the resist film, changes depending on the amount of hydrogen gas added, the results are shown in FIG. The test was carried out by setting BCt3:CC24=4:1 and adding hydrogen gas to this. That is, when hydrogen gas is included, for example, 20 volumes of candy, the selectivity is improved by about 2.5 times compared to when no hydrogen gas is included, and the hydrogen gas content is about 10 to 50%. In the volume-related case, anisotropic etching is carried out with a desirable selectivity for practical use. It was something.
又、プラズマエツチング終了後ケウエハーを取シ出して
も、アフターコロ−ジョンの起きにくいものであった。Further, even when the wafer was taken out after plasma etching was completed, after-corrosion was unlikely to occur.
〔効果〕
異方性エツチングが実犯されやすく、従って微細加工技
術に適している。[Effect] Anisotropic etching is easy to perform and is therefore suitable for microfabrication technology.
又、異方性エツチング実現の為の保護膜はエツチング終
了後簡単に除去でき、従って実施に際して伺等不都合な
ことは起きない。In addition, the protective film for realizing anisotropic etching can be easily removed after etching is completed, so that no inconveniences such as scratches occur during implementation.
又、プラズマ異方性エツチングが低い電力密度で実現で
き、経済的でもあり、そして低い電力密度で行なえかつ
水素ガスを含んでいることによって選択比も高いものと
なる。In addition, plasma anisotropic etching can be achieved at low power density, making it economical, and because it can be performed at low power density and contains hydrogen gas, the etching selectivity is high.
又、アフターコロ−ジョンの起きにくいものであシ、半
導体デバイス等の微細加工に適している。In addition, it is resistant to after-corrosion and is suitable for microfabrication of semiconductor devices and the like.
第1図はアルミニウム膜のプラズマエツチングの説明図
、第2図及び第3図は本発明のプラズマエツチング法の
実施の効果を示すグラフである。
特許出願人 日本ビクター株式会社。
゛\−2,/
”−N
← 咎
喚3し峡 冒
−いFIG. 1 is an explanatory diagram of plasma etching of an aluminum film, and FIGS. 2 and 3 are graphs showing the effects of implementing the plasma etching method of the present invention. Patent applicant: Victor Company of Japan.゛\−2,/ ”−N ← Torture 3 Shikyo Explosion
Claims (1)
ガスと水素ガスとを含む混合ガスでプラズマエツチング
することを特徴とするプラズマエツチング法。 ■ 特許請求の範囲第1項記載のプラズマエツチング法
において、水素ガス含有量が約10〜50体積チである
もの。[Claims] ■ A plasma etching method characterized by plasma etching aluminum or an aluminum alloy with a mixed gas containing a chlorine-based reactive gas and hydrogen gas. (2) A plasma etching method according to claim 1, wherein the hydrogen gas content is about 10 to 50 vol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7294484A JPS60217634A (en) | 1984-04-13 | 1984-04-13 | Method for plasma etching |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7294484A JPS60217634A (en) | 1984-04-13 | 1984-04-13 | Method for plasma etching |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60217634A true JPS60217634A (en) | 1985-10-31 |
Family
ID=13503995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7294484A Pending JPS60217634A (en) | 1984-04-13 | 1984-04-13 | Method for plasma etching |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60217634A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63205915A (en) * | 1987-02-23 | 1988-08-25 | Tokuda Seisakusho Ltd | Plasma etching method |
DE4105103A1 (en) * | 1990-02-20 | 1991-08-22 | Mitsubishi Electric Corp | METHOD FOR ANISOTROPIC ETCHING AND DEVICE FOR IMPLEMENTING IT |
US5207868A (en) * | 1990-09-11 | 1993-05-04 | Sony Corporation | Etching process for films of aluminum or its alloys |
-
1984
- 1984-04-13 JP JP7294484A patent/JPS60217634A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63205915A (en) * | 1987-02-23 | 1988-08-25 | Tokuda Seisakusho Ltd | Plasma etching method |
DE4105103A1 (en) * | 1990-02-20 | 1991-08-22 | Mitsubishi Electric Corp | METHOD FOR ANISOTROPIC ETCHING AND DEVICE FOR IMPLEMENTING IT |
US5223085A (en) * | 1990-02-20 | 1993-06-29 | Mitsubishi Denki Kabushiki Kaisha | Plasma etching method with enhanced anisotropic property and apparatus thereof |
US5207868A (en) * | 1990-09-11 | 1993-05-04 | Sony Corporation | Etching process for films of aluminum or its alloys |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4615764A (en) | SF6/nitriding gas/oxidizer plasma etch system | |
JPS60105235A (en) | Method of reactive ion etching aluminum and aluminum alloy and mixture gas therefor | |
US4222838A (en) | Method for controlling plasma etching rates | |
JPS627268B2 (en) | ||
US4370196A (en) | Anisotropic etching of aluminum | |
JPS6012779B2 (en) | Manufacturing method of semiconductor device | |
JP4127869B2 (en) | Dry etching method | |
JPS60217634A (en) | Method for plasma etching | |
JP3587622B2 (en) | Etching gas | |
JPH0312454B2 (en) | ||
JPS63220525A (en) | Diamond semiconductor etching method | |
JP3453337B2 (en) | Method for cleaning a reaction chamber for forming a coating containing carbon or carbon as a main component | |
JPS6334927A (en) | Working of diamond | |
JPS63174322A (en) | Dry etching method | |
JPS6265331A (en) | Etching method for copper or copper alloy | |
JPS5855568A (en) | Reactive ion etching method | |
JP2003332304A (en) | Method for cleaning dry-etching apparatus | |
JPS59121843A (en) | Dry etching method | |
JPS62232926A (en) | Dry etching | |
JP3256209B2 (en) | Method of forming carbon or carbon-based coating | |
TW201735159A (en) | Plasma etching method | |
JPH06104217A (en) | Etching method | |
JPH0746689B2 (en) | Aluminum-silicon-copper alloy dry etching method | |
JPS58193368A (en) | Method for plasma etching for aluminum and aluminum alloy | |
JPH08330276A (en) | Dry etching method |