[go: up one dir, main page]

JPS60217634A - Method for plasma etching - Google Patents

Method for plasma etching

Info

Publication number
JPS60217634A
JPS60217634A JP7294484A JP7294484A JPS60217634A JP S60217634 A JPS60217634 A JP S60217634A JP 7294484 A JP7294484 A JP 7294484A JP 7294484 A JP7294484 A JP 7294484A JP S60217634 A JPS60217634 A JP S60217634A
Authority
JP
Japan
Prior art keywords
etching
gas
aluminum
hydrogen gas
plasma etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7294484A
Other languages
Japanese (ja)
Inventor
Masaki Shintani
正樹 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Nippon Victor KK
Original Assignee
Victor Company of Japan Ltd
Nippon Victor KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd, Nippon Victor KK filed Critical Victor Company of Japan Ltd
Priority to JP7294484A priority Critical patent/JPS60217634A/en
Publication of JPS60217634A publication Critical patent/JPS60217634A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To obtain the state wherein an anisotropic etching is easily accomplished and to have the state suited for employment of microscopic working technique by a method wherein a mixed gas, in which hydrogen gas is added besides chlorine reaction gas, is used as the reaction gas to be used when a plasma etching is performed on aluminum or an aluminum alloy. CONSTITUTION:A mixed gas in which hydrogen gas is added besides carbon tetrachloride and trichloroboron is used as the reaction gas to be used when a plasma etching is performed on aluminum. When said plasma etching is going to be performed, a hydrocarbon polymer is grown on the side wall part of an aluminum film, and an anisotropic etching can be accomplished. This hydrocarbon polymer can be removed easily by performing an oxygen plasma treatment. The content of hydrogen gas of approximately 10-50vol% is considered practicable. When hydrogen gas is mixed, cathode dropping voltage is boosted, an anisotropic etching can be accomplished even when making power density is low, and the ratio of selectivity can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラズマエツチング法に係シ、特にアルミニウ
ム又はアルミニウム合金をプラズマエツチングするに際
して用いられるエツチング用ガスに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plasma etching method, and particularly to an etching gas used in plasma etching aluminum or an aluminum alloy.

〔従来技術とその問題点〕[Prior art and its problems]

従来、例えば半導体デバイスの微細加工に際してのアル
ミニウム又はアルミニウム合金(以下単にアルミニウム
と称す)のエツチング加工は、平行平板型のりアクタ−
に塩素系の反応ガスを導入し、1’ 3.56 MHz
の高周波電力によってプラズマを発生させて異方性エツ
チング(膜面に垂直なエツチング面を有するようなエツ
チング)を実現させることによって行なわれている。
Conventionally, etching processing of aluminum or aluminum alloy (hereinafter simply referred to as aluminum) during microfabrication of semiconductor devices, for example, has been carried out using a parallel plate type glue actuator.
1' 3.56 MHz
This is done by generating plasma using high frequency power and realizing anisotropic etching (etching with an etching surface perpendicular to the film surface).

すなわち、第1図にプラズマエツチングの概略を示すよ
うに、アルミニウム膜1はレジスト膜2をマスクとして
プラズマ中の塩素ラジカルによってエツチングされるが
、この際異方性エツチングが進行するには、アルミニウ
ム膜1の側壁に保護膜3がエツチング中に生成され、ア
ルミニウム膜1の側壁部分が塩素ラジカルの攻撃から護
られることが大きく要求されている。
That is, as shown in the outline of plasma etching in FIG. 1, the aluminum film 1 is etched by chlorine radicals in the plasma using the resist film 2 as a mask. It is highly desirable that a protective film 3 be formed on the sidewalls of the aluminum film 1 during etching to protect the sidewall portions of the aluminum film 1 from attack by chlorine radicals.

又、アルミニウム膜に対するエツチング速度が速いこと
、つまりアルミニウム膜とレジスト膜とに対するエツチ
ング速度を比べた場合、アルミニウム膜に対するエツチ
ング速度が大きい(選択比が高い)こと、さらにはエツ
チング終了後Sin。
In addition, the etching rate for the aluminum film is high, that is, when the etching rates for the aluminum film and the resist film are compared, the etching rate for the aluminum film is high (high selectivity), and furthermore, the etching rate for the aluminum film is high (selectivity is high).

等の下地層4上にエツチング残等の残漬が生じないこと
も要求されている。
It is also required that no etching residue or the like remains on the underlying layer 4 of the substrate.

又、アルミニウム膜のプラズマエツチングに独特な現象
であるアフターコロ−ジョン(エツチング終了後ウニノ
・−を大気中に取り出した際に進行するアルミニウム膜
の腐蝕現象)が起きにくいことも要求されている。
It is also required that after-corrosion (a phenomenon in which the aluminum film is corroded when it is taken out into the atmosphere after etching), which is a phenomenon unique to plasma etching of aluminum films, does not easily occur.

そして、上記のようなエツチング特性は反応ガスの種類
によって大きく影響を受けることがわかり、最近におい
てはエツチング速度の大きな四塩化炭素と選択比の高い
三塩化ホウ素との混合ガスが良いと言われている。
It has been found that the etching characteristics mentioned above are greatly affected by the type of reaction gas, and recently it has been said that a mixed gas of carbon tetrachloride, which has a high etching rate, and boron trichloride, which has a high selectivity, is good. There is.

しかし、四塩化炭素と三塩化ホウ素との混合ガスをエツ
チング用ガスとして用いた場合、四塩化炭素と三塩化ホ
ウ素との混合比によってエツチング特性が大きく変わる
為、例えば四塩化炭素の割合が太きいと、プラズマ中で
クロロカーボン(CnCtm)系のポリマーが生成しや
すく、とのポリマーが前記保護膜としての役割を果すも
のの、プラズマエツチング終了後にあっては除去困難な
ポリマーで残渣として残してしまうものとなり、逆に三
塩化ホウ素の割合が大きくなると、保護膜としてのポリ
マーが出来にくくなシ、異方性エツチングが実現しに<
<、微細加工には適さないものとなるといった欠点があ
る。
However, when a mixed gas of carbon tetrachloride and boron trichloride is used as an etching gas, the etching characteristics vary greatly depending on the mixing ratio of carbon tetrachloride and boron trichloride. In the plasma, chlorocarbon (CnCtm)-based polymers are easily generated, and although these polymers play the role of the above-mentioned protective film, they are difficult to remove and remain as a residue after plasma etching is completed. On the other hand, when the proportion of boron trichloride increases, it becomes difficult to form a polymer as a protective film, and it becomes difficult to realize anisotropic etching.
The disadvantage is that it is not suitable for microfabrication.

そこで、上記のような点を勘案すると、三塩化ホウ素の
割合が80係位の混合ガスが良いと言われている。
Therefore, taking the above points into consideration, it is said that a mixed gas with a boron trichloride ratio of 80 is good.

しかし、このような三塩化ホウ素の割合が約80係とい
った条件が満足されていても、プラズマエツチングに際
しての投入電力密度が通常の約0.2W/cr&以下程
度のものでは異方性エツチングが実現されず、すなわち
約0.3W/ff1以上の電力供給がなければ異方性エ
ツチングが行なわれない。
However, even if the condition that the proportion of boron trichloride is approximately 80% is satisfied, anisotropic etching is not achieved if the input power density during plasma etching is about 0.2 W/cr& or less. In other words, anisotropic etching will not be performed unless power is supplied at approximately 0.3 W/ff1 or more.

しかし、投入電力密度が大きくなると、レジスト膜に対
するエツチング速度が速くなり、つまり選択比が低くな
り、例えば投入電力密度が約03W / cr& 位の
場合にはアルミニウム/レジス14)選択比が約2程度
にすぎず、そして投入電力密度の増加に伴なって選択比
は急激に低下し、アルミニウム膜のエツチングが完了す
る前にマスクとじてのレジスト膜がなくなってしまう等
の致命的欠点が起きてしまう。
However, as the input power density increases, the etching speed for the resist film increases, which means that the etching selectivity decreases. For example, when the input power density is about 0.3 W/cr&, the aluminum/resist etching selectivity is about 2. However, as the input power density increases, the selectivity decreases rapidly, resulting in fatal drawbacks such as the resist film used as a mask disappearing before etching of the aluminum film is completed. .

又、四塩化炭素と三塩化ホウ素との二成分混合ガスが用
いられた場合には、プラズマエツチング終了後において
クロロカーボン系のポリマーカする為、アフターコロ−
ジョンが激しい等の問題もある。
In addition, when a binary gas mixture of carbon tetrachloride and boron trichloride is used, after the plasma etching is completed, the chlorocarbon-based polymer remains, so the after-color
There are also problems such as John being intense.

〔発明の開示〕[Disclosure of the invention]

本発明者は、アルミニウム又はアルミニウム合金のプラ
ズマエツチングに際しての反応ガスとして、四塩化炭素
と三塩化ホウ素といった混合系又はジクロルジフルオル
メタンといった塩素系の反応ガスの他に水素をも加えた
混合ガスを用いると、極めて望ましいプラズマエツチン
グの行なわれることを見い出した。
The present inventor has proposed that a mixed gas such as carbon tetrachloride and boron trichloride, or a mixed gas containing hydrogen in addition to a chlorine-based reactive gas such as dichlorodifluoromethane, be used as a reactive gas during plasma etching of aluminum or aluminum alloy. It has been found that extremely desirable plasma etching can be achieved using the following methods.

すなわち、反応ガス中に水素ガスが含まれていると、プ
ラズマ中でハイドロカーボン(CnHm)系のポリマー
が生成し、このポリマーがクロロカーボン系のポリマー
に代わって保護膜としての役割を果すようになる。そし
て、このノ・イドロカーボン系のポリマーは、例えば三
塩化ホウ素の量が多くても生成しやすく、従って異方性
エツチングが行なわれやすいことになる。
In other words, when hydrogen gas is contained in the reaction gas, a hydrocarbon (CnHm)-based polymer is generated in the plasma, and this polymer acts as a protective film instead of the chlorocarbon-based polymer. Become. This hydrocarbon-based polymer is easily formed even when the amount of boron trichloride is large, and therefore anisotropic etching is easily performed.

又、ハイドロカーボン系のポリマーは、クロロカーボン
系のポリマーと異なり、エツチング終了後の酸素プラズ
マ処理によシ容易に分解処理でき、残渣として残って悪
影響を起こすものとなら々い。
Furthermore, unlike chlorocarbon polymers, hydrocarbon polymers can be easily decomposed by oxygen plasma treatment after etching, and do not remain as residues that may cause adverse effects.

又、水素ガスが含まれていると、陰極降下電圧(平行平
板電極でプラズマを発生させた場合必ず試料側、つまシ
高周波電力投入側の電極電位が下がるものであって、こ
の高周波電力投入側の電位がプラズマ電位より下がる時
の電位差)が約1.5倍位上昇し、この陰極降下電圧の
上昇は投入電力を上げたことに匹敵し、すなわち低い投
入電力でもって従来の場合の高い投入電力の時と同じよ
うなエツチング特性が得られることになり、つまり小さ
な投入電力密度で異方性エツチングが実現し、かつレジ
ストとの選択比が高いエツチングが実現することを意味
する。
In addition, if hydrogen gas is included, the cathode drop voltage (when plasma is generated with parallel plate electrodes, the electrode potential on the sample side and the high-frequency power input side of the tweezers always decreases, and this high-frequency power input side (potential difference when the potential of Etching characteristics similar to those obtained with electric power can be obtained, which means that anisotropic etching can be achieved with a small input power density, and etching with a high selectivity to the resist can be achieved.

さらには、アフターコロ−ジョンも起きにくくなる。す
なわち、アフターコロ−ジョンの原因は、エツチング終
了後ウェハー上に残る塩素と大気中の水分との反応によ
シ生成する塩化水素がアルミニウムを腐蝕させるもので
あるから、従ってウニ・・−上の塩素を大気中に取シ出
す前に塩素を除去してやればアフターコロ−ジョンの防
止になる。
Furthermore, after-corrosion is less likely to occur. In other words, the cause of after-corrosion is that hydrogen chloride, which is generated by the reaction between chlorine remaining on the wafer after etching and moisture in the atmosphere, corrodes aluminum. After-corrosion can be prevented by removing chlorine before it is released into the atmosphere.

つまり、エツチング終了後過剰の塩素を水素と反応させ
、この反応物を真空中で除去してやればアフターコロ−
ジョンが防止されることになる。
In other words, if excess chlorine is reacted with hydrogen after etching and this reactant is removed in a vacuum, after-coloring can be achieved.
John will be prevented.

〔実施例〕〔Example〕

四塩化炭素、三塩化ホウ素及び水素の混合ガスを、例え
ば半導体デバイスに用いられるアルミニウム膜のプラズ
マエツチングに際しての反応ガスとして用いる。
A mixed gas of carbon tetrachloride, boron trichloride, and hydrogen is used as a reactive gas during plasma etching of aluminum films used in semiconductor devices, for example.

つマリ、アルミニウムのプラズマエツチングニおける反
応ガスと従来の四塩化炭素及び三塩化ホウ素の他に水素
ガスをも加えたものを用い、他は従来の場合と略同様に
行なう。
In addition, the reaction gas used in the plasma etching of aluminum is hydrogen gas in addition to the conventional carbon tetrachloride and boron trichloride, and the other steps are substantially the same as in the conventional case.

このプラズマエツチングに際しては、アルミニウム膜の
側壁部分にはハイドロカーボン系ポリマーが生成し、異
方性エツチングが実現している。
During this plasma etching, a hydrocarbon polymer is generated on the side wall portion of the aluminum film, realizing anisotropic etching.

そして、このハイドロカーボン系ポリマーは、エツチン
グ終了後の酸素プラズマ処理(プラズマアッシング)に
よって簡単に除去できるものであった。
This hydrocarbon polymer could be easily removed by oxygen plasma treatment (plasma ashing) after etching.

又、投入電力密度を約0; 2 W/c++tとし、か
つBCt3十vct4 +H2(流量比16:4:5)
ガスの圧力に対して陰極降下電圧の変化を調べると、第
2図に示す通りである。同、第2図中、実線は本発明の
エツチング用ガスを用いた特性を示し、点線はエツチン
グ用ガスとしてBClN +CCt4 (流量比4:1
)ガスを用いた特性を示す。・すなわち、水素ガスが混
合されていると、陰極降下電圧が上昇しており、このこ
とは投入電力密度が小さくても異方性エツチングが実現
し、かつ選択比が高いものであることを意味している。
In addition, the input power density is approximately 0; 2 W/c++t, and BCt30vct4 +H2 (flow rate ratio 16:4:5)
When examining the change in cathode fall voltage with respect to gas pressure, it is as shown in FIG. In the same figure, the solid line shows the characteristics using the etching gas of the present invention, and the dotted line shows the characteristics using the etching gas of BClN + CCt4 (flow rate ratio 4:1).
) shows the characteristics using gas.・In other words, when hydrogen gas is mixed, the cathode drop voltage increases, which means that anisotropic etching can be achieved even if the input power density is low, and the selectivity is high. are doing.

又、水素ガスの添加量によってアルミニウム膜のエツチ
ング速度/レジスト膜のエツチング速度である選択比が
どのように変化するかを調べると、第3図に示す通シで
ある。伺、BCt3 : CC24=4:1とし、これ
に水素ガスを加えて行なったものである。すなわち、水
素ガスが、例えば20体積飴含まれていると、水素ガス
が含まれていない場合に比べて選択比が約2,5倍にも
向上し、そして水素ガス含有量が約10〜50体積係の
場合に実用的に用いられる望ましい選択比の異方性エツ
チングの行なわれる。ものであった。
Further, when examining how the selectivity, which is the etching rate of the aluminum film/the etching rate of the resist film, changes depending on the amount of hydrogen gas added, the results are shown in FIG. The test was carried out by setting BCt3:CC24=4:1 and adding hydrogen gas to this. That is, when hydrogen gas is included, for example, 20 volumes of candy, the selectivity is improved by about 2.5 times compared to when no hydrogen gas is included, and the hydrogen gas content is about 10 to 50%. In the volume-related case, anisotropic etching is carried out with a desirable selectivity for practical use. It was something.

又、プラズマエツチング終了後ケウエハーを取シ出して
も、アフターコロ−ジョンの起きにくいものであった。
Further, even when the wafer was taken out after plasma etching was completed, after-corrosion was unlikely to occur.

〔効果〕 異方性エツチングが実犯されやすく、従って微細加工技
術に適している。
[Effect] Anisotropic etching is easy to perform and is therefore suitable for microfabrication technology.

又、異方性エツチング実現の為の保護膜はエツチング終
了後簡単に除去でき、従って実施に際して伺等不都合な
ことは起きない。
In addition, the protective film for realizing anisotropic etching can be easily removed after etching is completed, so that no inconveniences such as scratches occur during implementation.

又、プラズマ異方性エツチングが低い電力密度で実現で
き、経済的でもあり、そして低い電力密度で行なえかつ
水素ガスを含んでいることによって選択比も高いものと
なる。
In addition, plasma anisotropic etching can be achieved at low power density, making it economical, and because it can be performed at low power density and contains hydrogen gas, the etching selectivity is high.

又、アフターコロ−ジョンの起きにくいものであシ、半
導体デバイス等の微細加工に適している。
In addition, it is resistant to after-corrosion and is suitable for microfabrication of semiconductor devices and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアルミニウム膜のプラズマエツチングの説明図
、第2図及び第3図は本発明のプラズマエツチング法の
実施の効果を示すグラフである。 特許出願人 日本ビクター株式会社。 ゛\−2,/ ”−N ← 咎 喚3し峡 冒 −い
FIG. 1 is an explanatory diagram of plasma etching of an aluminum film, and FIGS. 2 and 3 are graphs showing the effects of implementing the plasma etching method of the present invention. Patent applicant: Victor Company of Japan.゛\−2,/ ”−N ← Torture 3 Shikyo Explosion

Claims (1)

【特許請求の範囲】 ■ アルミニウム又はアルミニウム合金を塩素系の反応
ガスと水素ガスとを含む混合ガスでプラズマエツチング
することを特徴とするプラズマエツチング法。 ■ 特許請求の範囲第1項記載のプラズマエツチング法
において、水素ガス含有量が約10〜50体積チである
もの。
[Claims] ■ A plasma etching method characterized by plasma etching aluminum or an aluminum alloy with a mixed gas containing a chlorine-based reactive gas and hydrogen gas. (2) A plasma etching method according to claim 1, wherein the hydrogen gas content is about 10 to 50 vol.
JP7294484A 1984-04-13 1984-04-13 Method for plasma etching Pending JPS60217634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7294484A JPS60217634A (en) 1984-04-13 1984-04-13 Method for plasma etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7294484A JPS60217634A (en) 1984-04-13 1984-04-13 Method for plasma etching

Publications (1)

Publication Number Publication Date
JPS60217634A true JPS60217634A (en) 1985-10-31

Family

ID=13503995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7294484A Pending JPS60217634A (en) 1984-04-13 1984-04-13 Method for plasma etching

Country Status (1)

Country Link
JP (1) JPS60217634A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205915A (en) * 1987-02-23 1988-08-25 Tokuda Seisakusho Ltd Plasma etching method
DE4105103A1 (en) * 1990-02-20 1991-08-22 Mitsubishi Electric Corp METHOD FOR ANISOTROPIC ETCHING AND DEVICE FOR IMPLEMENTING IT
US5207868A (en) * 1990-09-11 1993-05-04 Sony Corporation Etching process for films of aluminum or its alloys

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205915A (en) * 1987-02-23 1988-08-25 Tokuda Seisakusho Ltd Plasma etching method
DE4105103A1 (en) * 1990-02-20 1991-08-22 Mitsubishi Electric Corp METHOD FOR ANISOTROPIC ETCHING AND DEVICE FOR IMPLEMENTING IT
US5223085A (en) * 1990-02-20 1993-06-29 Mitsubishi Denki Kabushiki Kaisha Plasma etching method with enhanced anisotropic property and apparatus thereof
US5207868A (en) * 1990-09-11 1993-05-04 Sony Corporation Etching process for films of aluminum or its alloys

Similar Documents

Publication Publication Date Title
US4615764A (en) SF6/nitriding gas/oxidizer plasma etch system
JPS60105235A (en) Method of reactive ion etching aluminum and aluminum alloy and mixture gas therefor
US4222838A (en) Method for controlling plasma etching rates
JPS627268B2 (en)
US4370196A (en) Anisotropic etching of aluminum
JPS6012779B2 (en) Manufacturing method of semiconductor device
JP4127869B2 (en) Dry etching method
JPS60217634A (en) Method for plasma etching
JP3587622B2 (en) Etching gas
JPH0312454B2 (en)
JPS63220525A (en) Diamond semiconductor etching method
JP3453337B2 (en) Method for cleaning a reaction chamber for forming a coating containing carbon or carbon as a main component
JPS6334927A (en) Working of diamond
JPS63174322A (en) Dry etching method
JPS6265331A (en) Etching method for copper or copper alloy
JPS5855568A (en) Reactive ion etching method
JP2003332304A (en) Method for cleaning dry-etching apparatus
JPS59121843A (en) Dry etching method
JPS62232926A (en) Dry etching
JP3256209B2 (en) Method of forming carbon or carbon-based coating
TW201735159A (en) Plasma etching method
JPH06104217A (en) Etching method
JPH0746689B2 (en) Aluminum-silicon-copper alloy dry etching method
JPS58193368A (en) Method for plasma etching for aluminum and aluminum alloy
JPH08330276A (en) Dry etching method