[go: up one dir, main page]

JPS60217322A - Focus detecting device - Google Patents

Focus detecting device

Info

Publication number
JPS60217322A
JPS60217322A JP7424484A JP7424484A JPS60217322A JP S60217322 A JPS60217322 A JP S60217322A JP 7424484 A JP7424484 A JP 7424484A JP 7424484 A JP7424484 A JP 7424484A JP S60217322 A JPS60217322 A JP S60217322A
Authority
JP
Japan
Prior art keywords
light
photoelectric
signal
lens
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7424484A
Other languages
Japanese (ja)
Inventor
Takeshi Sudo
武司 須藤
Junji Hazama
間 潤治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP7424484A priority Critical patent/JPS60217322A/en
Publication of JPS60217322A publication Critical patent/JPS60217322A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/245Devices for focusing using auxiliary sources, detectors
    • G02B21/247Differential detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/30Systems for automatic generation of focusing signals using parallactic triangle with a base line
    • G02B7/32Systems for automatic generation of focusing signals using parallactic triangle with a base line using active means, e.g. light emitter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To detect a focal shift with high sensitivity by providing two photoelectric detecting means each having a non-photosensitive body part of the almost same shape as a spot optical image, on a part of the photodetecting surface by shifting them from the image forming surface separated by a half mirror. CONSTITUTION:A luminous flux from a light source 1 is made parallel by a lens 2, reflected by a half mirror 3 and made to form an image on a data 5 by a lens 4. Its reflected light is divided into two by a half mirror 8 through the lenses 4, 7, provided onto glass plates 9a, 10a having circular light shielding parts 9b, 10b, and photoelectrically converted 9, 10. Glass plates 9, 10, for instance, are shifted by (d) forward and backward from surfaces FP1, FP2 on which the reflected light is to be focused. Output of the detectors 9, 10 are amplified by a circuit which is not shown in the figure and denoted as A and B, A+B and A-B are derived and a division (A-B)/(A+B) is executed, and the lens 4 is moved forward and backward by driving a motor 12 so that said value becomes minimum. In such a way, the focusing which is precise and has high sensitivity is executed. It is suitable for observing a pattern of a mask or a wafer.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は光学系の焦点検出装置に関し、特に微小な物体
の観察装置や検査装置等に用いられる顕微鏡光学系等に
好適な焦点検出装置に関する。。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a focus detection device for an optical system, and particularly to a focus detection device suitable for a microscope optical system used in an observation device or an inspection device for minute objects. .

(発明の背景) S**対物レンズを用いてマスクのパターンやウェハ上
のパターンを観察する際、その対物レンズをマスクやウ
ェハ等の試料表面に正確に焦点合゛ せする必要がある
。この焦点合せを自動的に行なうためには、対物レンズ
によって形成された光学像の結像状態を正確に検出する
焦点検出装置が必要である。従来、対物1/ンズを介し
てレーザ光のスポットを試料表面に照射し、その反射光
を対物レンズを介して所定の結像面に向けて収束し、そ
の結像面から離れた位置(デフォーカス位置)に2分割
や4分割の受光素子を配置し、その受光素子の受光面に
形成されたスポット光のデフォーカス像の位置や中心を
測定すると七によって、焦点検出を行なう装置が考えら
れている。このように2分割や4分割の受光素子を用い
るものは、試料が静止している場合は良いが、試料が移
動ステージ上に載置されて検査や観察のために高速に移
動する場合や、試料表面のコントラストが一定でなく変
化する場合は、2分割、又は4分割された各受光素子に
受光される光量に差が生じ、正確な焦点検出が困難にな
るという欠点があった。
(Background of the Invention) When observing a pattern on a mask or a pattern on a wafer using an S** objective lens, it is necessary to accurately focus the objective lens on the surface of a sample such as a mask or wafer. In order to automatically perform this focusing, a focus detection device is required to accurately detect the imaging state of the optical image formed by the objective lens. Conventionally, a spot of laser light is irradiated onto the sample surface through an objective lens, the reflected light is focused through the objective lens toward a predetermined imaging plane, and the spot is focused at a position away from the imaging plane (device). A device that performs focus detection can be considered by arranging a 2-split or 4-split light-receiving element at a focus position) and measuring the position and center of the defocused image of the spot light formed on the light-receiving surface of the light-receiving element. ing. Using a two- or four-split photodetector like this is good when the sample is stationary, but when the sample is placed on a moving stage and moved at high speed for inspection or observation, When the contrast on the sample surface is not constant and changes, there is a problem that a difference occurs in the amount of light received by each of the two or four divided light receiving elements, making accurate focus detection difficult.

(発明の目的) 本発明は上記欠点を解決し、試料の高速な移動や、表面
のコントラストの変化にも影響されず、容易にかつ高精
度に焦点ずれを検出する焦点検出装置を提供することを
目的とする。
(Object of the Invention) The present invention solves the above-mentioned drawbacks and provides a focus detection device that easily and accurately detects defocus without being affected by high-speed movement of a sample or changes in surface contrast. With the goal.

(発明の概要) 本発明は、結像光学系を介して試料(対象物)の表面に
収束したスポット光を照射し、該スポット光の試料表面
での反射光を結像光学系を介して所定の結像面に向けて
収束し、その結像面に形成されたスポット光の像の結像
状態から焦点ずれを検出する装置において、前記結像光
学系を通って収束された反射光の光路中で、結像光学系
の光軸方向の前後に所定の距離だけ離した2つの位置に
、一部にスポット光像の形状と略相似な形の不感光部を
設けた受光面が配置され、その受光面の不感光部以外の
部分に達する反射光の量に応じた光電信号を出力する2
つの光電検出手段と、その2つの光電検出手段の光電信
号に基づいて焦点ずれを検出する検出回路とを設けるこ
とを技術点要点としている。
(Summary of the Invention) The present invention irradiates a focused spot light onto the surface of a sample (object) through an imaging optical system, and reflects light of the spot light on the sample surface through an imaging optical system. In a device that detects a defocus from the imaging state of a spot light image that is converged towards a predetermined imaging plane and formed on the imaging plane, the reflected light that has passed through the imaging optical system is In the optical path, a light-receiving surface is placed at two positions separated by a predetermined distance in the front and rear directions of the optical axis of the imaging optical system, with a light-insensitive area partially having a shape similar to that of the spot light image. outputs a photoelectric signal according to the amount of reflected light that reaches the part of the light-receiving surface other than the light-insensitive area.
The key technical point is to provide two photoelectric detection means and a detection circuit that detects defocus based on the photoelectric signals of the two photoelectric detection means.

(実施例) 第1図は本発明の実施例による焦点検出装置の概略的な
光学配置図である。光源1は試料上にスポット光を形成
するための発光素子、例えば1ノ−ザダイオード、LE
Dあるいは白熱電球等と、該発光素子によって照明され
るピンホールを持った遮光板とを有する。そのピンホー
ルからの光束はレンズ2によって平行光束にされ、ノ・
−フミラー3によって反射されて対物レンズ4に入射す
る。
(Embodiment) FIG. 1 is a schematic optical layout diagram of a focus detection device according to an embodiment of the present invention. The light source 1 includes a light emitting element, such as a laser diode, an LE, for forming a spot light on the sample.
It has an incandescent light bulb or the like, and a light shielding plate having a pinhole that is illuminated by the light emitting element. The light flux from the pinhole is made into a parallel light flux by lens 2, and
- It is reflected by the mirror 3 and enters the objective lens 4.

この平行光束は対物レンズ4によって収光され、試料5
の表面にピンホールの像、すなわちスポット光を形成す
る。ステージ6は試料5を載置して、試料5表面の任意
の位置にスポット光が形成されるように2次元移動する
。試料゛5の表面で反射した光は再び対物1ノンズ4、
ハーフミラ−3を通過して集光1/ンズ7に至る。集光
レンズ7で収束された反射光はハーフプリズム8でほぼ
1対1の光強度になるように2つの方向に分割される。
This parallel light beam is converged by the objective lens 4, and the sample 5
A pinhole image, or spot light, is formed on the surface of the The stage 6 places the sample 5 on it and moves two-dimensionally so that a spot light is formed at an arbitrary position on the surface of the sample 5. The light reflected on the surface of the sample 5 is again transmitted to the objective 1 and lens 4.
The light passes through the half mirror 3 and reaches the condensing 1/lens 7. The reflected light converged by the condenser lens 7 is split into two directions by the half prism 8 so that the light intensity is approximately 1:1.

ノ・−フプリズム8を通過した反射光は対物レンズ4と
集光1ノンズ7によって決まる所定の結像面FPIに向
けて収れんする。この結像面FPは対物1/ンズ4の焦
点が試料5の表面と正確に一致したとき、光源1のピン
ホールの像が正確に結像する位置である。そして、結像
面F’PIから対物レンズ4側に距離dだけ離れた位置
(前ピン位置)に第′1の光電検出器9を配置する。光
電検出器9の受光面は所定の直径を有する円形であり、
その受光面上には円形のガラス板9aが設けられている
。そしてガラス板9aの中心部には、光源1のピンホー
ルの像が正確に結像面FPIに結像するような状態、す
なわち対物1/ンズ4の焦点合せが達成されたとき、ハ
ーフプリズム8を通過した反射光がほぼ全部遮光される
ような直径を有する円形遮光部9bが低反射クロム等で
設けられている。
The reflected light that has passed through the Nof prism 8 is converged toward a predetermined image plane FPI determined by the objective lens 4 and the condensing lens 7. This imaging plane FP is the position where the image of the pinhole of the light source 1 is accurately formed when the focal point of the objective 1/lens 4 exactly coincides with the surface of the sample 5. Then, the '1st photoelectric detector 9 is placed at a position (front focus position) a distance d away from the imaging plane F'PI toward the objective lens 4. The light receiving surface of the photoelectric detector 9 is circular with a predetermined diameter,
A circular glass plate 9a is provided on the light receiving surface. In the center of the glass plate 9a, there is a half prism 8 which is placed in a state where the image of the pinhole of the light source 1 is accurately formed on the imaging plane FPI, that is, when the focusing of the objective 1/lens 4 is achieved. A circular light-shielding portion 9b having a diameter such that almost all of the reflected light passing through the circular light-shielding portion 9b is blocked is provided with low-reflection chrome or the like.

一方、ハーフプリズム8で反射された試料5からの反射
光は結像面FPIと共役な結像面F’P2に収束する。
On the other hand, the reflected light from the sample 5 reflected by the half prism 8 converges on an image plane F'P2 that is conjugate with the image plane FPI.

そして、光電検出器9と同一形状の第2の光電検出器1
0け、結像面FP2から距離dだけ対物レンズ4と反対
側に離れた位置(後ピン位置)に配置されている。との
光電検出器10も、円形のガラス板10aと円形遮光部
10bを有1円形遮光部10bの周辺を通る反射光の量
に応じた光電信号を出力する。また自動焦点合せの際、
対物レンズ4を光軸方向に移動させるために、対物レン
ズ4と一体に設けられたナツト部4aと、このナツト部
4aと螺合する送りネジ11と、この送りネジ11を所
定量だけ正逆回転するサーボモータ12とが設けられて
いる。ここでは対物レンズ4を移動させるものとするが
、ステージ6を光軸方向に移動させてもよい。
Then, a second photoelectric detector 1 having the same shape as the photoelectric detector 9 is provided.
0, it is arranged at a position away from the imaging plane FP2 by a distance d on the opposite side from the objective lens 4 (rear focus position). The photoelectric detector 10 also includes a circular glass plate 10a and a circular light shielding part 10b, and outputs a photoelectric signal according to the amount of reflected light passing around the circular light shielding part 10b. Also, during automatic focusing,
In order to move the objective lens 4 in the optical axis direction, a nut portion 4a provided integrally with the objective lens 4, a feed screw 11 screwed into this nut portion 4a, and a feed screw 11 that is rotated forward and backward by a predetermined amount. A rotating servo motor 12 is provided. Although the objective lens 4 is assumed to be moved here, the stage 6 may be moved in the optical axis direction.

ここでガラス板QallO&に設けられた円形遮光部9
b 、10bの形状について、第2図を用いて説明する
。第2図(a)はガラス板9aと円形遮先部9bの平面
図であシ、第2図(b)Fiその断面図である。円形の
ガラス板9aの中心を対物レンズ4の光軸lが通るよう
に、かつガラス板9aの表面と結像面FPIの距離がd
になるように配置し、さらに試料5からの反射光1dが
結像面FP1に正確に結像したとき、円形遮光部9bの
直径Cは、本実施例では結像面F’PIから距離dの位
置にデフナーカスしてできるスポット光像の強度分布の
大きさとほぼ同じになるように定められているものとす
る。ただし、必らずしも直径Cと距離dにおける強度分
布の大きさとは同じである必要はなく、第2図(b)の
ような状態(すなわち対物1/ンズ4の焦点合せが達成
された状態)で直径Cをその距離dにおけるデフォーカ
ス像の強度分布の大きさよりも小さくしてもよい。逆に
、直径Cをその強度分布の大きさよりも大きくすると、
焦点検出の際、合焦点付近に不感帯が生じてしまい好ま
しくない。このことについては後述する。
Here, the circular light shielding part 9 provided on the glass plate QallO&
The shape of b and 10b will be explained using FIG. 2. FIG. 2(a) is a plan view of the glass plate 9a and the circular shield portion 9b, and FIG. 2(b) is a sectional view thereof. The distance between the surface of the glass plate 9a and the imaging plane FPI is d so that the optical axis l of the objective lens 4 passes through the center of the circular glass plate 9a.
Further, when the reflected light 1d from the sample 5 is accurately focused on the imaging plane FP1, the diameter C of the circular light shielding part 9b is the distance d from the imaging plane F'PI in this embodiment. It is assumed that the intensity distribution is determined to be approximately the same as the intensity distribution of the spot light image formed by the differential focus at the position. However, the magnitude of the intensity distribution at diameter C and distance d does not necessarily have to be the same, and the state shown in Fig. 2(b) (i.e., the focusing of objective 1/lens 4 is achieved) (state), the diameter C may be made smaller than the size of the intensity distribution of the defocused image at the distance d. Conversely, if the diameter C is made larger than the size of its intensity distribution,
During focus detection, a dead zone occurs near the in-focus point, which is undesirable. This will be discussed later.

第3図は第1図の光電検出器9,10の各光電信号に基
づいて焦点検出を行なう検出回路の回路ブロック図であ
る。光電検出器9の光電信号はプリアンプ20で一定量
だけ増幅され、光電検出器10の光電信号はプリアンプ
21で一定量だけ増幅される。減算器22はプリアンプ
20で増幅された光電信号Aのアナログ値から、プリア
ンプ21で増幅された光電信号Bのアナログ値を減算し
た信号(A−B)を出力する。信号(h、l B )は
光電検出器9と10の受光量の差に比例したアナログ値
で得られ、その極性(正負)Fi焦点ずれの方向(前ピ
ンか後ピンか)を表わし、その絶対値は焦点のずれ量に
対応している。原理的にはこの信号(A−B)を得るだ
けで焦点検出が可能であるが、もし試料5表面の反射率
が一様でなく変化する場合、光電検出器9,10に入射
する光量はその反射率に依存して変化する。この為信号
(A−B)の極性による焦点ずれの方向検出はできるも
のの、焦点ずれの正確な量は把握できないことになる。
FIG. 3 is a circuit block diagram of a detection circuit that performs focus detection based on the photoelectric signals of the photoelectric detectors 9 and 10 of FIG. 1. The photoelectric signal from the photoelectric detector 9 is amplified by a predetermined amount by a preamplifier 20, and the photoelectric signal from the photoelectric detector 10 is amplified by a predetermined amount by a preamplifier 21. The subtracter 22 outputs a signal (AB) obtained by subtracting the analog value of the photoelectric signal B amplified by the preamplifier 21 from the analog value of the photoelectric signal A amplified by the preamplifier 20 . The signal (h, l B ) is obtained as an analog value proportional to the difference in the amount of light received by the photoelectric detectors 9 and 10, and its polarity (positive/negative) represents the direction of the defocus (front focus or rear focus). The absolute value corresponds to the amount of focus shift. In principle, focus detection is possible just by obtaining this signal (A-B), but if the reflectance of the surface of the sample 5 is not uniform and changes, the amount of light incident on the photoelectric detectors 9 and 10 will be It changes depending on its reflectance. Therefore, although the direction of defocus can be detected based on the polarity of the signal (A-B), the exact amount of defocus cannot be determined.

そこで本実施例では、さらに光電信号Aのアナログ値と
光電信号Bのアナログ値とを加算して、信号(A+B 
)を出力する加算器23と、信号(A−B)を分子とし
て入力し、信号(A十B)を分母として入力し、(A−
B)/(A十B)の除算を行ない、その除算値を表わす
信号Eを出力する除算器24とを設ける。信号(A+B
 )は2つの光電検出器9と10に入射した総光量に応
じたアナログ値を表わすから、信号Eは信号(A−B)
を試料5の反射率に依存しないように正規化したアナロ
グ値を表わす。そしてこの信号Eはサーボアンプ25を
介して焦点調整用のモータ12に印加される。
Therefore, in this embodiment, the analog value of the photoelectric signal A and the analog value of the photoelectric signal B are further added to produce a signal (A+B
), the signal (A-B) is input as the numerator, the signal (A + B) is input as the denominator, and (A-
A divider 24 is provided which performs division of B)/(A + B) and outputs a signal E representing the divided value. Signal (A+B
) represents an analog value according to the total amount of light incident on the two photoelectric detectors 9 and 10, so the signal E is the signal (A-B)
represents an analog value normalized so as not to depend on the reflectance of sample 5. This signal E is applied to the focus adjustment motor 12 via the servo amplifier 25.

次に本実施例の動作を第4図、第5図、及び第6図を参
照して説明する。第4図はスポット光像の結像状態を模
式的に表わしたものである。対物1/ンズ4の焦点位置
が試料5の表面に正確に一致した合焦状態のときけ、第
4図(a)に示すように対物レンズ4、集光レンズ7を
通った反射光1dの収束位置は結像面FPI、FP2と
一致する。このため2つの光電検出器9,10の円形遮
光部9b、10b上での光強度分布けともに第5図(a
)に示すようになる。第5図で縦軸は円形遮光部9b、
10bの位置における反射光ldの光強度工を表わし、
横軸は反射光ldの横断面の直径方向の位置を表わす。
Next, the operation of this embodiment will be explained with reference to FIGS. 4, 5, and 6. FIG. 4 schematically represents the imaging state of the spot light image. When the focus position of the objective 1/lens 4 is in the focused state exactly matching the surface of the sample 5, the reflected light 1d passing through the objective lens 4 and the condenser lens 7 is reflected as shown in FIG. 4(a). The convergence position coincides with the imaging planes FPI and FP2. Therefore, both the light intensity distributions on the circular light shielding parts 9b and 10b of the two photoelectric detectors 9 and 10 are
). In FIG. 5, the vertical axis is the circular light shielding part 9b,
represents the light intensity of the reflected light ld at the position 10b,
The horizontal axis represents the position in the diametrical direction of the cross section of the reflected light ld.

合焦状態のときは第5図(a)のように光強度分布P1
は直径Cとほぼ等しくなって大部分が遮光されるので、
反射光ldのうち光強度分布P1の両端の極めて小さな
裾野部分(斜線部)のみが光電検出器9,10に受光さ
れる。
When in focus, the light intensity distribution P1 as shown in Fig. 5(a)
is almost equal to the diameter C and most of the light is blocked, so
Of the reflected light ld, only extremely small base portions (hatched portions) at both ends of the light intensity distribution P1 are received by the photoelectric detectors 9 and 10.

このため光電信号AとBのアナログ値はともに等しい値
に逐り、信号Eのアナログ値は零になる。
Therefore, the analog values of the photoelectric signals A and B both become equal, and the analog value of the signal E becomes zero.

この信号Eはモータ12に印加され、モータ12を回転
させるが、この場合信号Eのアナログ値が零であるため
、モータ12は回転せず、合焦状態を裸つ。
This signal E is applied to the motor 12 to rotate the motor 12, but in this case, since the analog value of the signal E is zero, the motor 12 does not rotate and the focus state is left blank.

次に例えばステージ6を移動して試料5表面の別の位置
を観察するとき、何らかの原因で試料5の光軸方向の位
置が合焦状態のときの位置よりも下がった位置、すなわ
ち対物レンズ4からより遠ざかった位置(後ピン状態)
に変化したものとする。このときは第4図(b)に示す
ように反射光ldの収束位置は結像面FP1.FP2か
ら後の位置、すなわち光電検出器10に近づく方向に変
化する。
Next, for example, when moving the stage 6 to observe another position on the surface of the sample 5, for some reason the position of the sample 5 in the optical axis direction is lower than the position in the focused state, that is, the objective lens 4 position further away from (rear pin state)
Assume that it has changed to . At this time, as shown in FIG. 4(b), the convergence position of the reflected light ld is on the imaging plane FP1. It changes in a position after FP2, that is, in a direction closer to photoelectric detector 10.

このため円形遮光部10b上での光強度分布は第5図(
b)に示すように、第5図(a)の光強度分布P1より
も幅が狭くシャープな光強度分布P2に変化する。そし
て光強度分布P2は直径Cで全て遮光され、光電検出器
10の光電信号Bは、合焦状態のときのアナログ値より
も小さくほぼ零になる。
Therefore, the light intensity distribution on the circular light shielding part 10b is as shown in FIG.
As shown in b), the light intensity distribution P2 changes to a narrower and sharper light intensity distribution than the light intensity distribution P1 in FIG. 5(a). The light intensity distribution P2 is completely blocked by the diameter C, and the photoelectric signal B of the photoelectric detector 10 is smaller than the analog value in the focused state and becomes almost zero.

一方、この後ピン状態では反射光1dの収束位置は光電
検出器9から遠ざかる方向に変化したことになる。この
ため円形遮光部9b上での光強度分布は第5図(C)に
示すように、第5図(a)の光強度分布P1よりも幅が
広くブロードな光強度分布P3に変化する。そして光強
度分布P3の直径Cで遮光されなかった裾野部分は急激
に大きくなるので、光電検出器9の光電信号Aは合焦状
態のときのアナログ値よりも大きくなる。以上のように
して、後ピン状態のときは信号(A−B)は正極性にな
り、信号Eは後ピンのずれ量に応じたアナログ値に変化
する。そのときの信号Eのアナログ値を十E1とし、合
焦状態のときの対物レンズ4と試料5の光軸方向(2方
向とする)における相対的な間隔をzOとし、後ピン状
態のときの間隔を21とすると、信号Eの変化特性は第
6図のようにほぼ直線的な関係になる。このためモータ
121d’信号Eのアナログ値が十E1から零になるま
で回転L2、対物レンズ4の位置を合焦状態まで引き戻
す。
On the other hand, in the pinned state after this, the convergence position of the reflected light 1d has changed in the direction away from the photoelectric detector 9. Therefore, the light intensity distribution on the circular light shielding portion 9b changes to a light intensity distribution P3 that is wider and broader than the light intensity distribution P1 in FIG. 5(a), as shown in FIG. 5(C). Since the base portion of the light intensity distribution P3 that is not blocked by the diameter C rapidly increases, the photoelectric signal A of the photoelectric detector 9 becomes larger than the analog value in the focused state. As described above, in the rear pin state, the signal (A-B) has a positive polarity, and the signal E changes to an analog value according to the amount of displacement of the rear pin. The analog value of the signal E at that time is 10E1, the relative distance between the objective lens 4 and the sample 5 in the optical axis direction (two directions) in the in-focus state is zO, and the relative distance in the optical axis direction (assumed to be two directions) is When the interval is set to 21, the change characteristics of the signal E have a substantially linear relationship as shown in FIG. Therefore, the rotation L2 is performed until the analog value of the motor 121d' signal E becomes zero from 10E1, and the position of the objective lens 4 is pulled back to the in-focus state.

このように対物レンズ4の2方向の移動は信号Eが常に
零に々るようにサーボ制御される。
In this way, the movement of the objective lens 4 in two directions is servo-controlled so that the signal E always remains at zero.

さて、試料5が合焦状態のときの位置ZOから対物1/
ンズ4に近づいた位置Z2(前ピン状態)に変化したも
のとする。このときは第4図(C)に示すように反射光
ldの収束位置は結像面FPI。
Now, from the position ZO when the sample 5 is in focus, the objective 1/
It is assumed that the position has changed to position Z2 (front focus state), which is closer to the lens 4. At this time, as shown in FIG. 4(C), the convergence position of the reflected light ld is at the imaging plane FPI.

FP2から前の位置に変化する。このため後ピン状態の
ときとけ逆に信号EI−i負極性のアーナログ値−E2
に変化する。従ってモータ12は後ピン状態のときとは
逆に回転し、対物1/ンズ4の位置を信号Eのアナログ
値が零になる位置zOまで引き戻す。
Change from FP2 to the previous position. Therefore, in the rear pin state, the negative polarity of the signal EI-i is the analog value -E2.
Changes to Therefore, the motor 12 rotates in the opposite direction to that in the rear focus state, and returns the position of the objective 1/lens 4 to the position zO where the analog value of the signal E becomes zero.

以上、本実施例を説明したが、ここで円形遮光部9b、
10bの直径Cが反射光ldの強度分布の径よりも大き
い場合について説明する。この場合、合焦状態のとき光
電信号A、Bはともにほぼ零であり、信号Eも零である
。しかしながらこの合焦状態かられずかに非合焦になっ
た状態でも光電信号A、Bがともに零から変化しないこ
とが起り得る。そして非合焦の量がある大きさになった
とき始めて光電信号AとBに差が生じて信号Eは零から
変化する。このように円形遮光部9b、10bの直径が
大きすぎると、合焦状態として検出される範囲が見かけ
上広がることになり、精密な焦点合せには好ましくない
。ただし、焦点合せの動作が速くなるという利点がある
ので、対物レンズ4の焦点深度が大きい場合には実用上
十分に実施し得る。
The present embodiment has been described above, but here, the circular light shielding part 9b,
A case will be described in which the diameter C of the beam 10b is larger than the diameter of the intensity distribution of the reflected light ld. In this case, in the focused state, both photoelectric signals A and B are approximately zero, and signal E is also zero. However, it is possible that both the photoelectric signals A and B do not change from zero even when the in-focus state becomes slightly out of focus. Only when the amount of out-of-focus reaches a certain level does a difference occur between photoelectric signals A and B, and signal E changes from zero. If the diameters of the circular light-shielding parts 9b and 10b are too large as described above, the range in which the in-focus state is detected will apparently expand, which is not preferable for precise focusing. However, since there is an advantage that the focusing operation becomes faster, this method can be implemented satisfactorily in practice when the depth of focus of the objective lens 4 is large.

次に本発明の他の実施例を第7図によシ説明する。第7
図は検出回路のブロック図であシ、第3図と同じ作用、
動作するものについては同一の符号を付しである。この
実施例では光源1から射出した光ビームに特定の周波数
で強度変調を与える。
Next, another embodiment of the present invention will be explained with reference to FIG. 7th
The figure is a block diagram of the detection circuit, and has the same effect as in Figure 3.
Components that operate are given the same reference numerals. In this embodiment, intensity modulation is applied to the light beam emitted from the light source 1 at a specific frequency.

光源1としてレーザダイオードやLEDを用いた場合は
、駆動電流に変調をかければよい。また白熱電球の場合
は、機械的なチョッパー(例えば回転スリン、ト板等)
を用いて光ビームをオン・オンすればよい。このため、
光電信号A、Bは焦点ずれに応じたアナログ値が、光源
1の変調周波数で変調された交流信号になる。
When a laser diode or an LED is used as the light source 1, the drive current may be modulated. In the case of incandescent light bulbs, a mechanical chopper (e.g. rotating sulin, top plate, etc.)
The light beam can be turned on and off using the . For this reason,
The photoelectric signals A and B become alternating current signals whose analog values corresponding to the defocus are modulated at the modulation frequency of the light source 1.

さて、光電信号A、Bは各々、光源1の変調周波数と一
致した周波数成分を通すバンドパスフィルター(以下B
PFとする)30.32に入力する。BPF30,32
の各出力信号はそれぞれAC/DCコンバータ31,3
3に入力して、交流信号の振幅成分に対応した直流電圧
に変換される。
Now, the photoelectric signals A and B are each passed through a bandpass filter (hereinafter referred to as B) that passes a frequency component that matches the modulation frequency of the light source 1.
PF) 30.32. BPF30,32
Each output signal of
3 and is converted into a DC voltage corresponding to the amplitude component of the AC signal.

A C/D Cコンバータ31,3.9は一例として正
弦波状の交流信号の実効値を検出するRMS/DCコン
バータが好適である。このAC/DCコンバータ31.
33の各出力信号i、jは光源1の変調がないときの光
電信号A、Hに対応したものである。
As an example of the AC/DC converters 31, 3.9, an RMS/DC converter that detects the effective value of a sinusoidal AC signal is suitable. This AC/DC converter 31.
The output signals i and j of 33 correspond to the photoelectric signals A and H when the light source 1 is not modulated.

これら信号i、jは減算器22、加算器23に入力し、
除算器24によって焦点ずれに応じた信号Eが作られる
These signals i and j are input to a subtracter 22 and an adder 23,
A divider 24 generates a signal E depending on the defocus.

この実施例では、光源1を光強度変調し、光電信号から
変調周波数成分のみを抽出するから、外乱光の影響を受
けず、又、回路上で発生する雑音に対しても高い除去率
を得ることができる。このために焦点ずれに応じた信号
EのS/N比が向上し、良好な焦点合せ精度を得られる
という効果がある。
In this embodiment, the light intensity of the light source 1 is modulated and only the modulated frequency component is extracted from the photoelectric signal, so it is not affected by ambient light and a high rejection rate is obtained for noise generated on the circuit. be able to. This has the effect of improving the S/N ratio of the signal E in response to defocus, and achieving good focusing accuracy.

以上本発明の各実施例を説明したが、以下、各実施例に
共通の変形例を述べる。
Each embodiment of the present invention has been described above, and modifications common to each embodiment will be described below.

第1図、第2図に示したように2つの円形遮光部9b、
10bはともに同一の直径Cで、結像面FPI、F’P
2から同一の距離dの位置に配置したが、その距離dけ
円形遮光部9b、10bで異なったものにしてもよい。
As shown in FIGS. 1 and 2, two circular light shielding parts 9b,
10b both have the same diameter C, and the imaging planes FPI, F'P
2, the circular light shielding parts 9b and 10b may be different by the distance d.

その場合、信号Eは合焦状態のとき零とはならず、一定
のオフセット電圧が重畳された変化特性を示す。すなわ
ち第6図の特性はそのまま信号Eの正方向又は負方向に
一定量だけシフトした特性に変わる。また円形遮光部9
b、10bの直径を異なったものにし、合焦状態のとき
信号Eが零になるようにそれぞれ結像面F’PI、FP
2から離れた位置に配置してもよい〇 一方、スポット光像の形状も円形である必要はなく、矩
形、三角形等にしてもよい。その場合、光源1には視野
絞りを設け、さらにその視野絞シの位置、又はそれと共
役な位置にピンホールの代りに矩形、三角形等の微小開
孔をもつ遮光板を設け、試料5の表面に矩形、三角形の
スポット光像を結像させる。そして光電検出器9,10
にそのスポット光像の形と相似な矩形、又は三角形の遮
光部9b、10bを設けることによって同様の効果を得
ることができる。
In that case, the signal E does not become zero in the focused state, but exhibits a change characteristic in which a certain offset voltage is superimposed. That is, the characteristic shown in FIG. 6 is changed to a characteristic in which the signal E is shifted by a certain amount in the positive or negative direction. Also, the circular light shielding part 9
b and 10b are made to have different diameters, and the imaging planes F'PI and FP are respectively set so that the signal E becomes zero when in focus.
On the other hand, the shape of the spot light image does not have to be circular, and may be rectangular, triangular, etc. In that case, the light source 1 is provided with a field diaphragm, and a light shielding plate having a rectangular, triangular, or other minute aperture instead of a pinhole is provided at the position of the field diaphragm or a position conjugate thereto, and the surface of the sample 5 is A rectangular or triangular spot light image is formed. and photoelectric detectors 9, 10
A similar effect can be obtained by providing rectangular or triangular light shielding portions 9b and 10b similar to the shape of the spot light image.

また、光電検出器9,10とガラス板9a19bとは密
着している必要はなく、光電検出器9,10をそれぞれ
ガラス板9 a + 9 bから離して設け、その間に
集光1/ンズ等を設けてもよい。
Further, the photoelectric detectors 9, 10 and the glass plate 9a19b do not need to be in close contact with each other, and the photoelectric detectors 9, 10 are provided separately from the glass plates 9a + 9b, and a condensing lens etc. may be provided.

さらに、第1図に示したハーフプリズム8と光電検出器
10との間に、反射部材等を入れて、光電検出器9と1
0を同一平面上に配置してもよい。
Furthermore, a reflective member or the like is inserted between the half prism 8 and the photoelectric detector 10 shown in FIG.
0 may be placed on the same plane.

この場合さらに発展させて、光電検出器9,10は受光
面の大きな単一の受光素子とし、その受光面の前に2つ
の円形遮光部9b、10bをガラス板上に離して形成し
、さらに2つの円形遮光部9b、10bの前にチョッパ
ー板を設け、反射光ldが円形遮光部9bにのみ向う時
間と、反射光ldが円形遮光部10bにのみ向う時間と
が極めて短かい間隔で交互に繰シ返されるようにそのチ
ョッパー板を振動、又は回転させる。そして検出回路に
は単一の受光素子からの時系列的な光電信号をチョッパ
ー板の繰シ返しサイクルで2つの光電信号A、Hに分離
(復調)するマルチプレクサ−等を設ける。そしてこの
2つに分けられた光電信号A、Bから同様に信号Eを作
シ出すことができる。このようにすると単一の受光素子
からそれぞれ前ピン情報と後ピン情報を持つ2つの光電
信号を得るため、2つの光電検出器を使うよりも検出精
度の゛向上が期待できる。それは光電検出器の受光感度
のバラつきがなくなるからである。
In this case, the photoelectric detectors 9 and 10 are made into a single light-receiving element with a large light-receiving surface, and in front of the light-receiving surface, two circular light-shielding parts 9b and 10b are formed spaced apart on a glass plate. A chopper plate is provided in front of the two circular light shielding parts 9b and 10b, and the time during which the reflected light ld is directed only to the circular light shielding part 9b and the time during which the reflected light ld is directed only towards the circular light shielding part 10b are alternated at extremely short intervals. The chopper plate is vibrated or rotated repeatedly. The detection circuit is provided with a multiplexer or the like that separates (demodulates) a time-series photoelectric signal from a single light-receiving element into two photoelectric signals A and H using a repeated cycle of a chopper plate. Signal E can be similarly generated from these two divided photoelectric signals A and B. In this way, since two photoelectric signals each having front pin information and rear pin information are obtained from a single light receiving element, it is expected that the detection accuracy will be improved more than using two photoelectric detectors. This is because variations in the light receiving sensitivity of the photoelectric detector are eliminated.

また、単一の受光素子を用いる場合は、さらに第8図に
示すような実施例も考えられる。基本的な光学系は第1
図のものと同一であり、異なる点はレンズ7によって収
束された反射光ldの光路中に中央部に円形遮光部を形
成したフィルター40を設け、このフィルター40を光
軸方向に一定振幅で振動させる駆動部41と、振動のた
めの発振信号を出力する発振器42と、フィルター40
の後に配置された受光素子43からの光電信号を発振信
号で同期検波する検波回路44とを設ける点である。こ
のようにすると、検波された信号(所謂Sカーブ信号)
は焦点ずれの量と方向とに対応したものとなシ、同様に
焦点検出が可能である。
Furthermore, when a single light receiving element is used, an embodiment as shown in FIG. 8 is also conceivable. The basic optical system is the first
It is the same as the one in the figure, except that a filter 40 with a circular light shielding part formed in the center is provided in the optical path of the reflected light ld converged by the lens 7, and this filter 40 is vibrated with a constant amplitude in the optical axis direction. an oscillator 42 that outputs an oscillation signal for vibration, and a filter 40.
The point is that a detection circuit 44 is provided which synchronously detects a photoelectric signal from a light receiving element 43 placed after the light receiving element 43 using an oscillation signal. In this way, the detected signal (so-called S curve signal)
corresponds to the amount and direction of defocus, and similarly focus detection is possible.

ここでフィルター40の振動中心は反射光ldの所定の
結像面FPと一致させることが望ましいが、必らずしも
その必要はない。フィルター40の円形遮光部が反射光
ldの光路中で光軸方向に離れた2つの位置すなわち単
位面積あたシの光景に差がある位置の間で振動していれ
ば同様に焦点検出できる。またその2つの位置にそれぞ
れ液晶板を設け、液晶によって円形遮光部を表示したシ
、透明にしたシすることを、2つの液晶板について交互
に繰シ返し、単一の受光素子で同期検波してもよい。
Here, it is desirable that the center of vibration of the filter 40 coincides with a predetermined imaging plane FP of the reflected light ld, but this is not always necessary. If the circular light-shielding portion of the filter 40 vibrates between two positions separated in the optical axis direction in the optical path of the reflected light ld, that is, a position where there is a difference in sight per unit area, focus detection can be performed in the same way. In addition, a liquid crystal plate is installed at each of the two positions, and the liquid crystal displays the circular light-shielding area and makes it transparent, which is repeated alternately for the two liquid crystal plates, and synchronous detection is performed using a single light-receiving element. It's okay.

また第1図の光学系において、目視等のための接眼光学
系を設けるために、集光】/ンズ7とノ・−フジリズム
80間にり1/−光学系を入れて、対物1/ンズ4と集
光レンズ7による結像面と共役な面の前後に光電検出器
9,10を配置しても同様の効果が得られる。さらに光
電検出器(受光素子)としては、受光面の中央部に遮光
部9b、10bに和尚する不感光部を設けて、ドーナツ
(輪帯)状の受光面となるようなものを作り、これをそ
のまま使ってもよい。
In addition, in the optical system shown in Fig. 1, in order to provide an eyepiece optical system for visual observation, etc., a 1/- optical system is inserted between the condensing lens 7 and the lens 80, and the objective 1/lens A similar effect can be obtained by arranging photoelectric detectors 9 and 10 before and after a surface that is conjugate with the image forming surface formed by the condenser lens 4 and the condenser lens 7. Furthermore, as a photoelectric detector (light-receiving element), a light-insensitive part is provided in the center of the light-receiving surface to form a donut (ring zone)-shaped light-receiving surface, which is similar to the light shielding parts 9b and 10b. You can use it as is.

(発明の効果) 以上本発明によれば、受光面の一部にスポット光像の形
状と略相似な形の不感光部を有する2つの光電検出手段
を、それぞれ所定の結像面からずれた位置に設けたので
、合焦状態からのずれによるスポット光像の強度分布の
広がりのみを光電検出でき、焦点ずれを高い感度で検出
することができるという効果がある。
(Effects of the Invention) According to the present invention, two photoelectric detection means each having a light-insensitive portion having a shape substantially similar to the shape of a spot light image on a part of the light-receiving surface are shifted from a predetermined image-forming plane. Since it is provided at a certain position, it is possible to photoelectrically detect only the spread of the intensity distribution of the spot light image due to deviation from the focused state, and there is an effect that defocus can be detected with high sensitivity.

さらに2つの光電検出手段からの光電信号の差に基づい
て焦点ずれを検出するので、検出感度はさらに高くなる
という効果もある。さらに試料(対象物)が結像光学系
の光軸方向に高速移動している最中でも、常に焦点ずれ
の量とその方向が検出できるから、結像光学系を用いた
試料の観察が破骨を伴うことなくすみやかにできるとと
もに、試料の検査にあたっては処理時間が短縮される可
能性もある。
Furthermore, since defocus is detected based on the difference between the photoelectric signals from the two photoelectric detection means, there is also the effect that the detection sensitivity is further increased. Furthermore, even when the sample (object) is moving at high speed in the direction of the optical axis of the imaging optical system, the amount and direction of defocus can always be detected, making it possible to observe specimens using the imaging optical system. It can be done quickly without any complication, and it may also shorten the processing time when testing samples.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による焦点検出装置の概略的な
光学配置図、第2図(a) 、 (b)は光電検出器の
円形遮光部の形状を示す平面図と断面図、第3図は検出
回路の回路ブロック図、第4図は焦点状態の様子を模式
的に示す図、第5図は光電検出器の円形遮光部にできる
反射光の強度分布の変化を示す図、第6図は焦点ずれに
応じた信号Eの特性図、第7図は本発明の他の実施例に
よる検出回路のブロック図、第8図はさらに別の実施例
による焦点検出装置の構成図、である。 〔主要部分の符号の説明〕 1・・・・・・光源、 4・・・・・・対物1/ンズ、
5・・・・・・試料、 9,10・・・・・光電検出器
、9a、10k・・・・・・ガラス板、9b、10b・
・・・・・円形遮光部、12・・・・・・モーター、 
22・・・・・・減算器、23・・・・・・加算器、 
24・・・・・・除算器。 出願人 日本光学工業株式会社 代理人渡辺隆男 第1図 第2図 (θ)(O) 第3図 ((1) (C)
FIG. 1 is a schematic optical layout diagram of a focus detection device according to an embodiment of the present invention, FIGS. Figure 3 is a circuit block diagram of the detection circuit, Figure 4 is a diagram schematically showing the state of focus, Figure 5 is a diagram showing changes in the intensity distribution of reflected light produced at the circular light shielding part of the photoelectric detector, 6 is a characteristic diagram of the signal E according to the focus shift, FIG. 7 is a block diagram of a detection circuit according to another embodiment of the present invention, and FIG. 8 is a configuration diagram of a focus detection device according to yet another embodiment. be. [Explanation of symbols of main parts] 1...Light source, 4...Objective 1/lens,
5...Sample, 9,10...Photoelectric detector, 9a, 10k...Glass plate, 9b, 10b...
...Circular light-shielding part, 12...Motor,
22...subtractor, 23...adder,
24...Divider. Applicant Nippon Kogaku Kogyo Co., Ltd. Agent Takao Watanabe Figure 1 Figure 2 (θ) (O) Figure 3 ((1) (C)

Claims (1)

【特許請求の範囲】[Claims] 結像光学系を介して対象物の表面に収束したスポット光
を照射し、該スポット光の前記表面での反射光を前記結
像光学系を介して所定の結像面に向けて収束し、該結像
面に形成されたスポット光の像の結像状態から前記結像
光学系の前記表面に対する焦点ずれを検出する装置にお
いて、前記結像大学系を通って収束された反射光の光路
中で、所定の距離だけ前記結像光学系の光軸方向に離し
た2つの位置に、一部に前記スポット光像の形状と略相
似な形の不感光部を設けた受光面が人々配置され、該受
光面の前記不感光部以外の部分に達する前記反射光の量
に応じた光電信号を出力する2つの光電検出手段と;該
2つの光電検出手段の光電信号に基づいて、前記焦点ず
れを検出する検出回路とを備えたことを特徴とする焦点
検出装置。
irradiating a focused spot light onto the surface of the object via an imaging optical system, and converging the reflected light of the spot light on the surface toward a predetermined imaging plane via the imaging optical system; In the device for detecting a focal shift of the imaging optical system with respect to the surface from the imaging state of a spot light image formed on the imaging surface, in the optical path of the reflected light converged through the imaging system, At two positions separated by a predetermined distance in the optical axis direction of the imaging optical system, light-receiving surfaces each having a light-insensitive portion having a shape substantially similar to the shape of the spot light image are arranged. , two photoelectric detection means for outputting a photoelectric signal according to the amount of the reflected light reaching a portion of the light-receiving surface other than the light-insensitive portion; A focus detection device comprising: a detection circuit for detecting.
JP7424484A 1984-04-13 1984-04-13 Focus detecting device Pending JPS60217322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7424484A JPS60217322A (en) 1984-04-13 1984-04-13 Focus detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7424484A JPS60217322A (en) 1984-04-13 1984-04-13 Focus detecting device

Publications (1)

Publication Number Publication Date
JPS60217322A true JPS60217322A (en) 1985-10-30

Family

ID=13541551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7424484A Pending JPS60217322A (en) 1984-04-13 1984-04-13 Focus detecting device

Country Status (1)

Country Link
JP (1) JPS60217322A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6974938B1 (en) 2000-03-08 2005-12-13 Tibotec Bvba Microscope having a stable autofocusing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887514A (en) * 1981-11-20 1983-05-25 Olympus Optical Co Ltd Focus detecting device and focused position setting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887514A (en) * 1981-11-20 1983-05-25 Olympus Optical Co Ltd Focus detecting device and focused position setting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6974938B1 (en) 2000-03-08 2005-12-13 Tibotec Bvba Microscope having a stable autofocusing apparatus
US7016110B2 (en) 2000-03-08 2006-03-21 Tibotec Bvba Microscope suitable for high-throughput screening having an autofocusing apparatus

Similar Documents

Publication Publication Date Title
US7436507B2 (en) Method and apparatus for inspecting a pattern
US5208451A (en) Method and apparatus for automated focusing of an interferometric optical system
US4686360A (en) Device for the automatic focussing of optical instruments with complementary measuring and detecting diaphragms
JPS61219805A (en) Surface shape measuring device
JPH10161195A (en) Autofocusing method and device
US4625103A (en) Automatic focusing device in microscope system
JPS60217322A (en) Focus detecting device
JPH10133117A (en) Microscope equipped with focus detecting device
JPH08334317A (en) Measuring microscope
JPS63241407A (en) Method and device for measuring depth of fine recessed part
JP2828145B2 (en) Optical section microscope apparatus and method for aligning optical means thereof
JP2003148939A (en) Autocollimator provided with microscope, and instrument for measuring shape using the same
JPH05312510A (en) Position detector
JPH1123953A (en) Microscope equipped with focus detector and displacement measuring device
JPS6236502A (en) Microcsope for measuring minute displacement
JP5394718B2 (en) Microscopic observation equipment
JP2593727Y2 (en) Displacement detector
JP2502741Y2 (en) Autofocus device for optical measuring machine
JPH1047918A (en) Displacement-measuring device and microscope with auto-focusing function
JP3003730B2 (en) Near field microscope
JP2003042720A (en) Height measuring apparatus
JPS61143710A (en) Focus adjusting device
JPS63128213A (en) Optical measuring machine
JPS63138310A (en) Focus detector
JPH08106040A (en) Position detector