[go: up one dir, main page]

JPS60215812A - Polyimide fiber and its manufacturing method - Google Patents

Polyimide fiber and its manufacturing method

Info

Publication number
JPS60215812A
JPS60215812A JP6907984A JP6907984A JPS60215812A JP S60215812 A JPS60215812 A JP S60215812A JP 6907984 A JP6907984 A JP 6907984A JP 6907984 A JP6907984 A JP 6907984A JP S60215812 A JPS60215812 A JP S60215812A
Authority
JP
Japan
Prior art keywords
component
fibers
formula
polyimide
copolyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6907984A
Other languages
Japanese (ja)
Other versions
JPS6329008B2 (en
Inventor
Takaho Kaneda
金田 尭穂
Toshio Katsura
桂 利雄
Kanji Nakagawa
中川 貫次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP6907984A priority Critical patent/JPS60215812A/en
Publication of JPS60215812A publication Critical patent/JPS60215812A/en
Publication of JPS6329008B2 publication Critical patent/JPS6329008B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE:To obtain the titled fibers having a high level of strength and elasticity and further improved moisture and light resistance, by melt spinning a copolyimide having repeating units derived from a specific aromatic diamine component and aromatic tetracarboxylic acid component. CONSTITUTION:A copolyimide, having repeating units derived from (A) an aromatic diamine component constituted of a mol component of formula I and if necessary b mol component of formula II and (B) an aromatic tetracarboxylic acid component constituted of c mol component of formula III and if necessary d mol component of formula IV in amounts satisfying the formula a+b= c+d at 0-1 ratio (b/a) and 0-3/7 ratio (d/c) and >=1.5 logarithmic viscosity number (inherent viscosity) is dissolved in a phenolic solvent to prepare a dope, which is then extruded into air, molded into a filament shape and coagulated in a coagulation bath. The resultant filaments are wound, washed, dried and hot-drawn at 250-420 deg.C at >=2 draw ratio to give the aimed fibers.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は新規な芳香族ポリイミド繊維及びその製造法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a novel aromatic polyimide fiber and a method for producing the same.

〔従来技術〕[Prior art]

芳香族ポリイミドは芳香族ジアミン成分から誘導される
反復単位とこの反復単位に対して当量の芳香族テトラカ
ルボン酸成分から誘導される反復単位とから成る高分子
化合物でちゃ、耐熱性に優れているため、既にフィルム
、ワニス等に多用されている。オた、芳香族ポリイミド
の繊維化も試みられており、これらは次の(1)及び(
2)の2つの方法に大別される。
Aromatic polyimide is a polymer compound consisting of repeating units derived from an aromatic diamine component and repeating units derived from an aromatic tetracarboxylic acid component equivalent to the repeating unit, and has excellent heat resistance. Therefore, it is already widely used in films, varnishes, etc. In addition, attempts have been made to make aromatic polyimide into fibers, and these are as follows (1) and (
It can be roughly divided into two methods: 2).

(1) テトラカルボン酸無水物とジアミンを反応させ
てポリアミ、り酸溶液を作り、これを湿式紡糸して繊維
状とした後、加熱によシポリイミド繊維に転換する方法
(1) A method in which a polyamide and phosphoric acid solution is prepared by reacting a tetracarboxylic acid anhydride and a diamine, which is wet-spun into fibers, and then converted into polyimide fibers by heating.

(2) 溶媒可溶性のポリイミドを合成し、これを湿式
紡糸してポリイミド繊維を得る方法。
(2) A method of synthesizing solvent-soluble polyimide and wet-spinning it to obtain polyimide fibers.

(1)の方法は、例えば特公昭42−2936号公報、
特公昭57−37687号公報に開示されている。しか
しながら、この方法ではポリアミック酸繊維をイミド化
する際に水が発生するため、慎重な制御が必要であり、
また水の発生によシ繊維中に空孔が生じ易く、高強度の
繊維を作ることができない。具体的には、特公昭42−
2936号公報に開示された方法では、得られる繊維の
強度は僅か2.8〜6.6 fI/dであり、また初期
弾性率も31〜77 f/dと小さい。これに対し、特
公昭57−37687号公報の方法では改良が施されて
はいるものの、繊維強度は10 Vd程度のものが多く
、未だ不十分なものであった。
Method (1) is disclosed in, for example, Japanese Patent Publication No. 42-2936,
It is disclosed in Japanese Patent Publication No. 57-37687. However, this method requires careful control because water is generated when imidizing polyamic acid fibers.
In addition, pores are likely to be formed in the fibers due to the generation of water, making it impossible to produce high-strength fibers. Specifically, the special public
In the method disclosed in Japanese Patent No. 2936, the strength of the obtained fibers is only 2.8 to 6.6 fI/d, and the initial modulus of elasticity is as low as 31 to 77 f/d. In contrast, although improvements were made in the method disclosed in Japanese Patent Publication No. 57-37687, the fiber strength was still insufficient, with most of the fibers having a strength of about 10 Vd.

これに対し、(2)の方法は例えば特公昭52−171
33号公報に開示されているが、得られる繊維の強度は
僅か1.27〜2.65 Vd 、初期弾性率は32〜
70 Vdと倒れも満足できる特性が得られていない。
On the other hand, method (2), for example,
Although it is disclosed in Japanese Patent No. 33, the strength of the obtained fiber is only 1.27 to 2.65 Vd, and the initial elastic modulus is 32 to 2.65 Vd.
70 Vd, and satisfactory characteristics were not obtained.

一般的に、溶媒に溶は易い軟い分子を用いると十分に窩
い強度及び弾性率を有する繊維を作ることは難しく、ま
た剛直な高分子は、溶媒に溶けに(く、繊維化しにぐい
In general, it is difficult to make fibers with sufficient strength and elastic modulus when using soft molecules that are easily soluble in solvents, and rigid polymers are difficult to dissolve in solvents and are difficult to form into fibers. .

オだ、高強度、高弾性のポリアミド繊維として、デュポ
ン社製ケプラー(Kevlar 、商品名)があるが、
この繊維は耐湿性、耐光性の点で十分な特性を発揮する
ことができない。
Kevlar (trade name) manufactured by DuPont is a high-strength, high-elasticity polyamide fiber.
This fiber cannot exhibit sufficient properties in terms of moisture resistance and light resistance.

〔発明の目的〕[Purpose of the invention]

本発明の第1の目的は、従来のポリイミド繊維では達成
し得なかった高水準の強度及び弾性率を有すると共に、
耐湿性及び耐光性にも優れているポリイミド繊維を提供
することにある。
The first object of the present invention is to have a high level of strength and elastic modulus that could not be achieved with conventional polyimide fibers, and
It is an object of the present invention to provide a polyimide fiber having excellent moisture resistance and light resistance.

本発明の第2の目的は、この様に優れた特性が付与され
たポリイミド繊維を安定的にかつ再現性よく製造するこ
とのできるポリイミド繊維の製造法を提供することにあ
る。
A second object of the present invention is to provide a method for producing polyimide fibers that can stably and reproducibly produce polyimide fibers endowed with such excellent properties.

上記本発明の第1の目的は、芳香族ジアミン成分と芳香
族テトラカルピン酸成分とから誘導される反復単位を有
するポリイミド繊維であって、前記芳香族ジアミン成分
は、下記式(A)の成分aモル及び必要に応じて式(B
)の成分bモルから成シ、前記芳香族テトラカルピン酸
成分は、下記式(C)の成分Cモル及び必要に応じて式
■)の成分dモルから成シ、かつa+b=e+dが成り
立ち、b/aが0〜1の範囲、d/aが0〜3/7の範
囲にある(但し、bとdとが同時に0となることはない
。)ことを特徴とするポリイミド繊維によシ達成される
The first object of the present invention is to provide a polyimide fiber having repeating units derived from an aromatic diamine component and an aromatic tetracarpinic acid component, wherein the aromatic diamine component is a component of the following formula (A). a mol and optionally formula (B
), the aromatic tetracarpinic acid component is composed of C moles of the component of the following formula (C) and optionally d moles of the component of the formula (2), and a + b = e + d, A polyimide fiber characterized in that b/a is in the range of 0 to 1 and d/a is in the range of 0 to 3/7 (however, b and d are never 0 at the same time). achieved.

QC C〇− 着た、上記本発明の第2の目的は、芳香族ジアミン成分
と芳香族テトラカルがン酸成分とから誘導される反復単
位を有するコポリイミドであって、前記芳香族ジアミン
成分は、下記式(A)の成分aモル及び必要に応じて式
(B)の成分bモルから成り、前記芳香族テトラカルゼ
ン酸成分は、下記式(む)の成分Cモル及び必をに応じ
て式(D)の成分dモルから成り、かつa+b=a+d
が成フ立ち、b/aがθ〜1の範囲、d/cが0〜3/
7の範囲にあり(但し、bとdとが同時に0となること
はない。)、しかも対数粘度1.5以上のコポリイミド
をフェノール系溶媒に溶解してドープを調製し、このド
ープをノズルよシ空気中に吐出させフィラメント状に成
形した後、このフィラメントを前記フェノール系溶媒と
相溶性を有しかつ?リイミド不溶の凝固浴中に導入して
繊維を凝固させた後、巻取り、洗浄及び乾燥を行なった
後、250〜420℃で2倍以上の熱延伸を行なうこと
を特徴とするポリイミド繊維の製造法によシ達成される
A second object of the present invention is to provide a copolyimide having repeating units derived from an aromatic diamine component and an aromatic tetracarboxylic acid component, wherein the aromatic diamine component is , consisting of a mole of component of the following formula (A) and optionally b mole of component of formula (B), and the aromatic tetracarzene acid component is composed of mole of component C of the following formula (M) and, as necessary, of the formula consisting of d moles of component (D), and a+b=a+d
holds true, b/a is in the range θ ~ 1, d/c is 0 ~ 3/
7 (however, b and d are never 0 at the same time) and has a logarithmic viscosity of 1.5 or more, is dissolved in a phenolic solvent to prepare a dope, and this dope is passed through a nozzle. After the filament is discharged into the air and formed into a filament, the filament is formed into a filament that is compatible with the phenolic solvent and is made of a filament. Production of polyimide fibers characterized by introducing the fibers into a coagulation bath in which polyimide is not soluble, coagulating the fibers, winding them up, washing and drying them, and then hot-drawing them at 250 to 420°C to double or more. This is achieved by law.

ハ /) O− 〔実施態様〕 上述した様に、本発明のポリイミド繊mは、前stF 
式(A)の3.4′−ジアミノジフェニルエーテルr(
必要に応じて前記式(B)の・9ラフエニレンジアミン
を加えた芳香族ジアミン成分と、前記式(C)の3.3
’、4.4’−ジフェニルテトラカルデン酸無水物に必
要に応じて前記式(b)のピロメリウド酸熱水物を加え
た芳香族テトラカルがン酸岬水物とから誘導される反復
単位を有するものであf) 、a’ + b = c 
+ dなる条件は高い分子量のポリイミドが生成するた
めの必要条件である。
c/) O- [Embodiment] As mentioned above, the polyimide fiber m of the present invention
3,4′-diaminodiphenyl ether r(
An aromatic diamine component to which 9-rough ethylenediamine of the formula (B) is added as necessary, and 3.3 of the formula (C)
', 4,4'-Diphenyltetracaldic acid anhydride optionally added with pyromelliudic acid hydrothermal hydrate of the formula (b) above to form an aromatic tetracal repeating unit derived from phosphoric acid cape hydrate. f) , a' + b = c
The condition +d is a necessary condition for producing a high molecular weight polyimide.

前記(A)乃至初の成分の配合割合のうち、最も好まし
い配合割合は下記(:)乃至011)の3つの場合であ
る。
Among the blending ratios of the above-mentioned (A) to the first component, the most preferable blending ratios are the following three cases (:) to 011).

(1)d=o即ちa+b=cであシ、かつb / a 
= 1/9〜1の場合、 0i)b=0即ちame+dであり、かつd / e 
= 1/4〜3/7の場合、10 b/a = 1/9
〜3/7、かつd / c = 1/4〜3/7の場合
(1) d=o, that is, a+b=c, and b/a
= 1/9 to 1, 0i) b=0, i.e. ame+d, and d/e
= 1/4 to 3/7, 10 b/a = 1/9
~3/7, and d/c = 1/4~3/7.

即ち、(1)〜(liD K挙げた最適割合を含めて前
記b/a及びd/cの配合割合は、分子剛直性の好適範
囲を規定するものである。つまり、前記(B)成分及び
O))成分は剛直な成分であシ、(C)成分はやや歌い
成分、(A)は最も軟い成分であるが、(B)及びい)
の如き剛直な成分のみから成るポリイミドを合成しよう
とすると、沈澱重縮合系となシ、高い分子量のポリイミ
ドを得ることができない。また、生成するポリマーはフ
ェノール系溶媒に溶解しないため、紡糸を行うことが困
難となる。ところが、(A)及び(C)の如き軟い成分
のみから成るポリイミドは溶媒に溶は易く、紡糸も行い
易いが、得られる繊維は軟いため、(B)及(D)の一
方又は両方を加えることが必要であル、更にb/a及び
d/eの割合を選定して、分子剛直性の好適範囲を規定
することが好捷しい。
That is, the blending ratios of b/a and d/c, including the optimal ratios listed above (1) to (liDK), define the preferred range of molecular rigidity.In other words, the (B) component and O)) component is a rigid component, (C) component is a slightly singing component, (A) is the softest component, but (B) and
If an attempt is made to synthesize a polyimide consisting only of such rigid components, it will not be possible to obtain a polyimide with a high molecular weight due to the precipitation polycondensation system. Furthermore, since the produced polymer does not dissolve in phenolic solvents, it becomes difficult to perform spinning. However, polyimides consisting only of soft components such as (A) and (C) are easily dissolved in solvents and can be easily spun, but the resulting fibers are soft. Furthermore, it is preferable to select the ratios of b/a and d/e to define a suitable range of molecular rigidity.

この点で付言すれは、従来のポリイミド繊維で高強度、
高弾性が得られない原因は分子剛的性の不足にあると考
えられる。
In this regard, it should be noted that conventional polyimide fibers have high strength and
The reason why high elasticity cannot be obtained is thought to be due to insufficient molecular rigidity.

本発明におりては、前記(1)乃至011)の配合割合
によって、フェノール系溶媒を用いた紡糸並びに熱処理
の後、初期弾性車400 fI/A以上、引張フ強さ1
3 P/d以上を有するポリイミド繊維が得られるのを
はじめとして、おしなべて高い水準の強度及び弾性率を
有し、かつ耐熱性、It酸性は言うに及はず1、耐湿性
及び耐光性にも優れたポリイミド繊維を得ることができ
る。
In the present invention, according to the blending ratios (1) to 011), after spinning using a phenolic solvent and heat treatment, an initial elastic wheel of 400 fI/A or more and a tensile strength of 1
In addition to being able to obtain polyimide fibers with a P/d or higher, it has generally high levels of strength and elastic modulus, as well as excellent heat resistance, It acidity, 1, moisture resistance, and light resistance. polyimide fibers can be obtained.

ここで耐光性に優れていると表現したのは、高強度高弾
性繊維として現在唯一の市販品である芳香族ポリアミド
(商品名ケブラー)ti比較して優れているという意味
である。ポリアミド繊維の耐光性が劣る理由は、アミド
結合におけるN−Hの結合が光で切れやすく、これが開
始反応となって光分解連鎖反応を生じるため耐光性が低
いと思わ成シN−H結合を含まないため光に対する抵抗
力が大きいと考えられる。本発明のポリイミド繊維の原
料であるコポリイミドは前記芳香族ジアミン成分と芳香
族テトラカル?ン酸成分とを溶媒中で重縮合して作る事
ができる。その方法は特願昭58−173394号明細
1に記載された方法と同一であるといえる。
Here, the expression "excellent in light resistance" means that it is superior to aromatic polyamide (trade name: Kevlar) ti, which is currently the only commercially available high-strength, high-elastic fiber. The reason for the poor light resistance of polyamide fibers is that the N-H bonds in the amide bonds are easily broken by light, which becomes an initiation reaction and causes a photodegradation chain reaction. It is thought that it has high resistance to light because it does not contain it. The copolyimide that is the raw material for the polyimide fiber of the present invention is composed of the aromatic diamine component and the aromatic tetracal. It can be produced by polycondensation of phosphoric acid components in a solvent. The method can be said to be the same as the method described in Japanese Patent Application No. 173394/1983.

重縮合反応は連続操作又はパッチ操作のいずれの操作で
も実施できる。重縮合反応装置としては、攪拌槽型、ニ
ーダ−ミキサー型など各種の物を用いる事が出来る。反
応は空気及水分を遮断して行う必要がある。また、縮合
反応で生成する水を系外に排出するために、乾燥した不
活性がス(例えは高純度窒素ガス)を反応系に流通させ
る事が有用である。溶媒や原料が室温において固体であ
る場合にはそれらを固体のまま反応容器に供給した後、
徐々に加熱融解させて反応液とすることもできる。ある
いは、固体状の溶媒を加熱融解させ、これに芳香族ジア
ミン成分及び芳香族テトラカルゼン酸成分を添加し溶解
させる方法を利用することもできる。
The polycondensation reaction can be carried out either in a continuous operation or in a patch operation. As the polycondensation reaction apparatus, various types such as a stirring tank type and a kneader-mixer type can be used. The reaction must be carried out with air and moisture excluded. Furthermore, in order to discharge water produced in the condensation reaction out of the system, it is useful to flow dry inert gas (for example, high-purity nitrogen gas) into the reaction system. If the solvent or raw materials are solid at room temperature, they are supplied as solids to the reaction vessel, and then
The reaction solution can also be prepared by gradually heating and melting it. Alternatively, a method can also be used in which a solid solvent is heated and melted, and the aromatic diamine component and the aromatic tetracarzenic acid component are added thereto and dissolved.

上記の溶液重縮合反応に使用される溶媒の例としては、
p−クロルフェノール、フェノール、m−クレゾール、
p−クレゾール、2.4−ジクロルフェノールもしくは
これらの混合物を挙げることができる。また、この時反
応促進助剤としてp−ヒドロキシ安息香酸を添加するこ
ともできる。反応液中のモノマー濃度は2〜15重量係
の範囲にあることが好適である。
Examples of solvents used in the above solution polycondensation reaction are:
p-chlorophenol, phenol, m-cresol,
Mention may be made of p-cresol, 2,4-dichlorophenol or mixtures thereof. Moreover, at this time, p-hydroxybenzoic acid can also be added as a reaction promoting agent. The monomer concentration in the reaction solution is preferably in the range of 2 to 15 parts by weight.

反応温度は、溶媒の沸点によっても異なるが、一般には
、160〜210℃の&四が好適である。
The reaction temperature varies depending on the boiling point of the solvent, but is generally preferably 160 to 210°C.

反応時間は、数時間乃至数百時間が好適である。The reaction time is preferably several hours to several hundred hours.

上記の乃壓;合反応により生成するポリマー(コポリイ
ミド)の対数粘度(分子Jl)は灰地時間と共に増大す
る。物性の優れたポリイミド繊維を製造するためには、
その材料のポリイミドが高分子量ポリマーであることが
好ましい。しかし分子量の増大を0指して反応時間を余
シ長くすると、rルが生成し好ましくない。
The logarithmic viscosity (molecule Jl) of the polymer (copolyimide) produced by the above reaction increases with the ashing time. In order to produce polyimide fibers with excellent physical properties,
Preferably, the polyimide of the material is a high molecular weight polymer. However, if the increase in molecular weight is set to 0 and the reaction time is made longer, it is undesirable because R is generated.

反応が終了した後、反応液をメタノール、エタノール、
アセトン又はこれらの混合物等の析出用溶媒中に注ぎ、
激しく攪拌してポリマーと溶媒を分離する。このポリマ
ーを口過、洗滌して乾燥する。本発明の目的である所の
高弾性、高強度のポリイミド繊維を得るためには、上記
の如くして得られるポリイミドが対数粘度(1,V )
が1.5 dllノ以上であることが必要である。l、
Vの低いポリマーは、紡糸及び熱延伸操作中に糸切れし
やすく、又得られる繊維の強度も十分でない。尚(1,
V)は固有粘度の略号であるが対数粘度が固有粘度の近
似値として用いられるのは一般的である。本発明におけ
る対数粘度の測定条件は次の如きものである。
After the reaction is completed, the reaction solution is diluted with methanol, ethanol,
Pour into a precipitation solvent such as acetone or a mixture thereof,
Separate the polymer and solvent by stirring vigorously. This polymer is passed through the mouth, washed and dried. In order to obtain polyimide fibers with high elasticity and high strength, which is the object of the present invention, the polyimide obtained as described above has a logarithmic viscosity (1, V).
must be 1.5 dll or more. l,
Polymers with low V tend to break during spinning and hot drawing operations, and the resulting fibers do not have sufficient strength. Furthermore (1,
V) is an abbreviation for intrinsic viscosity, and logarithmic viscosity is generally used as an approximate value of intrinsic viscosity. The conditions for measuring logarithmic viscosity in the present invention are as follows.

溶媒:濃硫酸 99〜100係 ポリマー濃度: 0.5 t/d7! 測定温度:30℃ 対数粘度の測定はキャノンフェンスケ粘度計による測定
値から次式によって算出される。
Solvent: Concentrated sulfuric acid 99-100 Polymer concentration: 0.5 t/d7! Measurement temperature: 30° C. The logarithmic viscosity is calculated from the measured value using a Cannon-Fenske viscometer using the following formula.

I 、V = Lln (−) e t。I, V = Lln (-) et.

但し C:ポリマー8度 ’1fld7!ln=自然対
数 t:試料溶液の流下時間 to:溶媒の流下時間 次に以上のようにして製造したコポリイミド粉末をフェ
ノール系溶媒にとかしドープ(紡糸原液)を調製するが
、重縮合反応液をそのtまドーグ液として用いることも
できる。ドーグ液の製造に用いられるフェノール系溶媒
としてはフェノール、p−/ロルフェノール、m−クレ
ゾール、p−クレゾール又はこれらの混合物を挙げるこ
とができる。コポリイミドの溶解によるドープ液の調製
は攪拌槽、又はニーダ−等を用いて50〜120℃に加
温しつつ、減圧下に混練すること“が望ましい。
However, C: Polymer 8 degrees '1fld7! ln=Natural logarithm t: Flowing time of the sample solution to: Flowing time of the solvent Next, the copolyimide powder produced as described above is dissolved in a phenolic solvent to prepare a dope (spinning stock solution). It can also be used as a dogu solution. Examples of the phenolic solvent used in the production of Dogue's solution include phenol, p-/lorphenol, m-cresol, p-cresol, or mixtures thereof. Preparation of the dope solution by dissolving the copolyimide is preferably carried out by kneading under reduced pressure while heating to 50 to 120° C. using a stirring tank or a kneader.

次にドープ液は公知の湿式紡糸装置を用りてノズルよシ
空気中に吐出されフィラメント状に成形される。0.5
CrII乃至53の空気層中を通ったフィラメントは、
凝固浴中に導かれ十分凝固した繊維として巻取器に巻取
られる。凝固浴としてはメタノール、エタノール又はこ
れらの混合物及びこれらアルコールと水の混谷物などの
フェノール系溶媒と相溶性を有しかっコポリイミド不溶
の溶媒を用いること75Eできる凝固浴の温度は特に限
定Fiないか蒸気圧の関係から60℃赴1下とする場合
が多い。
Next, the dope liquid is discharged into the air through a nozzle using a known wet spinning device and formed into a filament. 0.5
The filament passing through the air layer of CrII to 53 is
The fibers are introduced into a coagulation bath and wound up on a winder as fully coagulated fibers. As the coagulation bath, use a solvent that is compatible with phenolic solvents, such as methanol, ethanol, or a mixture of these alcohols and water, and that is insoluble in copolyimide. Due to vapor pressure, the temperature is often set at 60°C or lower.

一般には、室温又はそれ以下が好適である。凝固浴の長
さKは特に限定はないが一般には、数十α乃至数mのも
のが使用される紡糸、乾燥された繊m a 、電気炉、
又はホヅトピンなどを用りて熱延伸される。この熱延伸
操作は、公知枝術によって行うことができる。熱延伸の
条件は、温度250℃〜420℃で15秒υ下加熱し延
伸倍率2.0倍以上とし゛て延伸操作を行うことが望ま
しい。本発明のポリイミド繊維においては特に熱処理温
度が重要で熱処理操作可能な限シ高温で処理するととが
望せしい。稙維物性の測定は、モノフィラメントの引張
り試験をJIS−Lj069 K準じた方法で行なった
。使用した引張シ試験機は新興通信工業製のもので、引
張り速度は1o鰭/ minを用いた。
Generally, room temperature or lower is preferred. The length K of the coagulation bath is not particularly limited, but in general, a length of several tens of meters to several meters is used for spinning, dried fibers, electric furnaces,
Alternatively, it is hot-stretched using a hot pin or the like. This hot stretching operation can be performed by a known technique. As for the hot stretching conditions, it is desirable to perform the stretching operation at a temperature of 250 DEG C. to 420 DEG C. for 15 seconds and a stretching ratio of 2.0 times or more. The heat treatment temperature is particularly important for the polyimide fibers of the present invention, and it is desirable to perform the treatment at as high a temperature as possible. The fiber properties were measured by a monofilament tensile test according to JIS-Lj069K. The tensile tester used was manufactured by Shinko Tsushin Kogyo, and the tensile speed was 1° fin/min.

次に本発FIJJを実施例によりて更に詳しく′ト明す
る。
Next, the FIJJ of the present invention will be explained in more detail with reference to Examples.

実施例1 ポリイミドを構成するアミン成分として3.4’−ジア
ミンジフェニルエーテル(DADE ) トルーフェニ
レンジアミン(PPD )がら成シ、酸成分として31
”lc4’−ビフェニルテトラカルビン絃ジ無水物(B
PDA )から成シこれら構成要素の比がDADE:P
PD : BPDA y 7 : a : 10 ノコ
ポリ−イミドを製造した。
Example 1 Polyimide was composed of 3,4'-diamin diphenyl ether (DADE) and tri-phenylene diamine (PPD) as the amine component, and 31 as the acid component.
"lc4'-biphenyltetracarbyl anhydride (B
The ratio of these components is DADE:P
PD:BPDAy7:a:10 Nocopoly-imide was prepared.

ステンレス製捕拌棒、窒素ガス導入口、窒素がス排出口
および試料投入口を取付けた4ツロ3o。
4 tube 3o equipped with stainless steel stirring rod, nitrogen gas inlet, nitrogen gas outlet and sample input port.

tagセノ4’うfルyラスコニBPDA 7.355
5 P(0,025モル)とフェノール174.2Pを
加え、窒素気流下、オイルパスで60℃に加温しながら
30分M拌り、り。次イテコノ中にJJADE’ 3.
502 s y(0,0175モル)とPPD O,8
111?(0,0075モル)を加えてこの温度で1.
5′時間攪拌した。そしてこの反応系に重合助剤である
p−ヒドロキシ安息香酸(PHBA )を8.625y
(0,0625モル)を加えた。ついで約1時間かけて
オイルバスの温度を175℃に昇温させてポリイミド化
反応を開始させた浴温か上るにしたがって反応液の濁シ
は消えて茶色の透明な液とな力、時間が経過するにつれ
て粘稠となった。
tag Seno 4' Ufruy Lasconi BPDA 7.355
Add 5P (0,025 mol) and 174.2P of phenol, and stir for 30 minutes while heating to 60°C in an oil path under a nitrogen stream. JJADE' during the next event 3.
502 s y (0,0175 mol) and PPD O,8
111? (0,0075 mol) was added and at this temperature 1.
Stirred for 5' hours. Then, 8.625y of p-hydroxybenzoic acid (PHBA), a polymerization aid, was added to this reaction system.
(0,0625 mol) was added. Next, the temperature of the oil bath was raised to 175°C over about 1 hour to start the polyimidation reaction. As the bath temperature rose, the turbidity of the reaction solution disappeared and became a brown transparent liquid as time passed. As time went on, it became viscous.

浴温175℃前後で攪拌を続けながら32時間重合を行
なった。この重合液をメタノール中に投入し、ミキサー
で粉砕し、さらに大過剰のメタノールで3回洗浄した後
、ポリマーを口取し、真空下に100℃で乾燥させた。
Polymerization was carried out for 32 hours while stirring at a bath temperature of around 175°C. This polymerization solution was poured into methanol, pulverized with a mixer, and washed three times with a large excess of methanol, and then the polymer was taken out and dried at 100° C. under vacuum.

黄色粉状ポリマーが収率ioo#Iで得られた。A yellow powdery polymer was obtained with a yield of ioo#I.

このポリマーをQ、5ff/diの濃度で100壬H2
SO4に溶解させキャノンフェンスケ型粘度計を用いて
30℃でその対数粘度(、I、V値)全測定したところ
2. s 1 dt / yであった。
This polymer was added to Q, 100 mm H2 at a concentration of 5 ff/di.
It was dissolved in SO4 and its logarithmic viscosity (I, V values) were completely measured at 30°C using a Cannon Fenske viscometer.2. It was s 1 dt/y.

第1図にフィルム法で測定したこのポリマーの赤外線吸
収スペクトルを示した。
FIG. 1 shows the infrared absorption spectrum of this polymer measured by the film method.

表−1にこのポリマーの元素分相結果を示した。Table 1 shows the elemental phase separation results of this polymer.

表−11)ADFJ/PPD(7/3)−BPDAコポ
リイミドの元累分析結果 また、この、f IJママ−熱天秤測定結果を表2に示
す。デーボン社の951型熱天秤装置を用い、空気中、
5℃/分の昇温速度で測定した。
Table 11) Results of cumulative analysis of ADFJ/PPD(7/3)-BPDA copolyimide Table 2 also shows the results of this f IJ mom thermobalance measurement. In air using a Devon 951 thermobalance device,
Measurement was performed at a heating rate of 5° C./min.

表−2熱天秤測定結果 実施例2 実施例1で製造したポリイミド粉末8部とp−クロルフ
ェノール92部とをテフロン製攪拌翼のついた七ノ母ラ
ブルフラスコにとり、90℃に加熱しつつ2時間攪拌を
行ない、均一粘稠な溶液を調製した。この溶液を110
℃、8ONIHgで2時間減圧脱泡した後、100メ、
ンシー金網、ステンレス不織布(20μabsolut
e )を組み合わせたフィルターを用い加圧口過して紡
糸原液(ドープ)を調製した。このドープを図1の湿式
紡糸装置のノズルホルダーに仕込み、吐出温度120℃
、3Iy/cm″Gの9累圧力でノズル(孔径0.15
m、1穴)よシ押し出し、約2副の空気層を通った後、
エタノール凝固浴(有効塔長5m)を通論させ、18、
9 m/1nInの速度で巻き取った。浸漬ローラーの
速度は17. I Vminにした。この繊維は、ゼビ
ンのまま一夜、メタノールに浸漬して洗浄後、風東した
。この未延伸糸を第2図の熱延伸装島を用いて熱延伸し
、表−3に示すような高強度、高弾性繊維を得た。延伸
倍率は次式で計算した。
Table 2 Thermobalance measurement results Example 2 8 parts of the polyimide powder produced in Example 1 and 92 parts of p-chlorophenol were placed in a rubble flask equipped with a Teflon stirring blade, and heated to 90°C. Stirring was carried out for a period of time to prepare a homogeneous viscous solution. Add this solution to 110
After degassing under reduced pressure for 2 hours at 8ONIHg at ℃,
wire mesh, stainless steel non-woven fabric (20 μ absolut
A spinning stock solution (dope) was prepared by passing through a pressurized filter using a filter combined with e). This dope was charged into the nozzle holder of the wet spinning device shown in Figure 1, and the discharge temperature was 120°C.
, a nozzle (pore diameter 0.15
m, 1 hole) and after passing through about 2 sub-air layers,
Construct an ethanol coagulation bath (effective column length 5 m), 18.
It was wound up at a speed of 9 m/1 nIn. The speed of the dipping roller is 17. I set it to Vmin. This fiber was soaked overnight in methanol as Zevin, washed, and then washed. This undrawn yarn was hot-stretched using the hot-stretching device shown in FIG. 2 to obtain high-strength, high-elasticity fibers as shown in Table 3. The stretching ratio was calculated using the following formula.

(延伸倍率)=(未延伸糸の繊度)/(熱延伸糸の繊度
)表−3DADF/PPD (7/3)−BPDAコポ
リイミド繊維の実施例3 3.4′−ジアミノジフェニルエーテル(DADE)ト
3 、3’、 4 、4’−ジフェニルテトラカルボン
酸無水物(BPDA )とピロメリット酸ジ無水物(P
MDA )の仕込割合が10ニア:3であるコポリイミ
ド繊維を製造した。
(Stretching ratio) = (Fineness of undrawn yarn) / (Fineness of hot drawn yarn) Table - 3DADF/PPD (7/3) - Example 3 of BPDA copolyimide fiber 3.4'-Diaminodiphenyl ether (DADE) 3,3',4,4'-diphenyltetracarboxylic anhydride (BPDA) and pyromellitic dianhydride (P
Copolyimide fibers with a loading ratio of MDA) of 10Nia:3 were produced.

実施例1の装置にBPDA 5.1489 P (0,
0175モル)とPMDA 1.6359 F (0,
OO75モル)とフェノール176.151’を仕込み
窒素雰囲気下で60℃に加温しながら30分間攪拌を行
なった。次にこの溶液中にDADE 5.006 I 
P (0,OO25モル)を加え1.5時間攪拌をつづ
けた後重合助剤のPHBA8.6255’(0,062
5モル)を加え油浴温度を上げ175℃に至らしめる。
BPDA 5.1489 P (0,
0175 mol) and PMDA 1.6359 F (0,
OO (75 moles) and phenol 176.151' were charged and stirred for 30 minutes while heating to 60° C. under a nitrogen atmosphere. Next, add DADE 5.006 I to this solution.
After adding P (0,0025 mol) and continuing stirring for 1.5 hours, PHBA8.6255' (0,062
5 mol) and raise the oil bath temperature to 175°C.

この反応系では時間の経過と共に液は粘稠になる。液に
は若干の濁シがみられた。30時間加熱攪拌をつづけた
後実施例1と同様に反応液をメタノール中に注ぎこみミ
キサーで粉砕しポリマーを回収した。収量10.8 f
f。
In this reaction system, the liquid becomes viscous over time. Some turbidity was observed in the liquid. After heating and stirring for 30 hours, the reaction solution was poured into methanol in the same manner as in Example 1 and pulverized with a mixer to recover the polymer. Yield 10.8 f
f.

収出99%。このポリマーのI、V値は1.96 d4
/?であった。
Yield 99%. The I and V values of this polymer are 1.96 d4
/? Met.

第3図にこのポリマーの赤外吸収スペクトル(フィルム
法でとった)を示した。又、このポリマーの元素分析値
を表−4に示した。
FIG. 3 shows the infrared absorption spectrum (taken by the film method) of this polymer. In addition, the elemental analysis values of this polymer are shown in Table 4.

表−4DADE−BPDA7PMDA(7/’3)コポ
リイミドのこのポリマーの熱天秤測定結果を表−5に示
したー測定装置、条件は実施例1に示したものと同一で
ある。
Table 4: The results of thermometric measurements of this polymer of DADE-BPDA7PMDA (7/'3) copolyimide are shown in Table 5 - The measuring equipment and conditions are the same as those shown in Example 1.

表−5熱天秤測定結果 このポリイミド粉末9部とp−クロルフェノール91部
とを加熱混合攪拌溶解して紡糸用ドープを作成した。吐
出温度110℃とした他は実施例2と同様の方法で湿式
紡糸及熱延伸を行った。得られた繊維物性を次表に示す
Table 5 Results of thermobalance measurements 9 parts of this polyimide powder and 91 parts of p-chlorophenol were heated, mixed, stirred and dissolved to prepare a spinning dope. Wet spinning and hot stretching were performed in the same manner as in Example 2 except that the discharge temperature was 110°C. The obtained fiber properties are shown in the table below.

表−6コポリイミド繊維の引張ル試験結果実施例4 実施例1に記載した装置を用い、同様の方法でDADE
とPPDとBPDAとPMDAの比が8:2:8:2か
ら成るコポリイミドを製造した。BPDA 5.884
411(0,020モル)とPNDA 1.0906p
(0,005モル)とフェノールを仕込んだ後DADK
4.0048F(0,020モル)とPPD 0.54
07 ff(0,005モル)を加え、さらにPHBA
 6.900 P C0,05モル〕を加え浴温175
℃前後でポリイミド化を66時間行ない、■、v値2、
02 dt/11 のポリマーを得た。このポリイミド
粉末8部とp−クロルフェノール92部とで紡糸用ドー
プを調製した。吐出温度90℃、窒素圧2.8 ki/
err? aとした他は実施例2と同様の方法で紡糸、
熱延伸した。得られた繊維物性を次表に示す。
Table 6 Tensile test results for copolyimide fibers Example 4
A copolyimide consisting of PPD, BPDA, and PMDA in a ratio of 8:2:8:2 was prepared. BPDA 5.884
411 (0,020 mol) and PNDA 1.0906p
After adding (0,005 mol) and phenol, DADK
4.0048F (0,020 mol) and PPD 0.54
Add 07 ff (0,005 mol) and further add PHBA
6.900 P CO0.05 mol] was added and the bath temperature was 175
Polyimidization was performed at around ℃ for 66 hours, ■, v value 2,
A polymer of 0.02 dt/11 was obtained. A spinning dope was prepared from 8 parts of this polyimide powder and 92 parts of p-chlorophenol. Discharge temperature 90℃, nitrogen pressure 2.8 ki/
Err? Spinning in the same manner as in Example 2 except for a.
Hot stretched. The obtained fiber properties are shown in the table below.

表−7コポリイミド繊維の引張シ試験結果実施例5 実施例1に記載した装置を用い、また同様、の方法でD
ADEとPPDとBPDAから成るコポリイミドをT)
ADEとPPDの比率を変えて製造した。重合溶媒にフ
ェノールを用い、重合助剤にPHBAを用いた。その添
加量はアミン成分に対して2倍モルであった。次表にそ
の結果をまとめて記載した。
Table 7 Tensile strength test results for copolyimide fibers Example 5 D
T) copolyimide consisting of ADE, PPD and BPDA
They were manufactured by changing the ratio of ADE and PPD. Phenol was used as a polymerization solvent, and PHBA was used as a polymerization aid. The amount added was twice the molar amount of the amine component. The results are summarized in the table below.

3.4’ −DADE : PPD : BPDA −
9: 1 : 1 0 のポリイミド粉末8部とp−り
aシフエノール92部とで紡糸用ドープを調製した。吐
出温度90℃、窒素圧2.2 kg/lyr? Gとし
た他は実施例2と同様の方法で紡糸、熱延伸した。得ら
れた繊維物性を表−9に示す。その他の3つのポリイミ
Pについてもその粉末8部とp−クロルフェノール92
部とで紡糸用ドーグを調製し、紡糸、熱延伸した。但し
3.4’ −DADE : PPD : BPDA −
8: 2 : 10の吐出温度は100℃、窒素圧力は
2.8 kf/crr?G を用い6:4:10の場合
が90℃、3 ’f/crr? G 5 : 5:10
の場合で、90℃、2.8 kg/cn? Gの紡糸条
件にした。得られた繊維物性を表−10〜−12に示す
3.4' -DADE : PPD : BPDA -
A spinning dope was prepared with 8 parts of polyimide powder of 9:1:10 and 92 parts of p-ria siphenol. Discharge temperature 90℃, nitrogen pressure 2.2 kg/lyr? The spinning and hot stretching were carried out in the same manner as in Example 2, except that G was used. The obtained fiber properties are shown in Table 9. Regarding the other three polyimide P, 8 parts of their powder and 92 parts of p-chlorophenol were added.
Dawg for spinning was prepared using the above-mentioned parts, and subjected to spinning and hot stretching. However, 3.4' -DADE : PPD : BPDA -
8: 2: 10 discharge temperature is 100℃, nitrogen pressure is 2.8 kf/crr? When using G and 6:4:10, it is 90℃, 3'f/crr? G5: 5:10
In the case of 90℃, 2.8 kg/cn? The spinning conditions were set to G. The obtained fiber physical properties are shown in Tables -10 to -12.

表−93,4’−DADE:ppI) : BPDA 
= 9:1 :10&−103,4’−DADE : 
PPD : BpDA=8:2:10表−113,4’
−DADK : PPD : BPDA怠6:4:10
コポリイミド繊維の引張フ試験結果 表−123,4’−DADE : PPD : BPD
A =5:5:10実施例6 実施例1に記載した装置を用い、同様の方法でDADE
とBPDAとPMDA力・ら成シBPDAとPMDAの
割合が8:2のコポリイミドを製造した。重合溶媒にフ
ェノールを用い、仕込みモノマー濃度は5wt1であっ
た。また重合助剤にp−HBAを用い、その添加量はア
ミン成分に対して2.0倍モルであった。このような1
合条件で浴温175℃前後で43時間反応させ、1.v
値2.25d/!/7 の:ffポリイミドを得た。
Table-93,4'-DADE:ppI): BPDA
= 9:1:10&-103,4'-DADE:
PPD: BpDA=8:2:10 table-113,4'
-DADK: PPD: BPDA failure 6:4:10
Tensile test result table of copolyimide fiber-123,4'-DADE: PPD: BPD
A = 5:5:10 Example 6 DADE was prepared in a similar manner using the apparatus described in Example 1.
A copolyimide with a ratio of BPDA and PMDA of 8:2 was produced. Phenol was used as the polymerization solvent, and the monomer concentration charged was 5wt1. Further, p-HBA was used as a polymerization aid, and the amount added was 2.0 times the mole of the amine component. 1 like this
The reaction was carried out for 43 hours at a bath temperature of around 175°C under the conditions of 1. v
Value 2.25d/! /7 :ff polyimide was obtained.

このポリイミド粉末8部とp−クロルフfノール92部
とで紡糸用ドープを調製した。吐出温度100℃、窄素
圧2.4 kg/err? Gとした他は実施例2と同
様の方法で紡糸、熱延伸した。得られた繊維物性を次表
に示す。
A spinning dope was prepared from 8 parts of this polyimide powder and 92 parts of p-chlorof-nol. Discharge temperature 100℃, confinement pressure 2.4 kg/err? The spinning and hot stretching were carried out in the same manner as in Example 2, except that G was used. The obtained fiber properties are shown in the table below.

表−13 実施例7 DADEとPPDとBPDA (DADE/押D −7
/3 )から成るコデリイミVの製造に際し、重合助剤
のp−HBAを添加しないで重合を行なった。溶媒には
フェノールを用い、そのIIl!度は5 wt%である
以外はたとえは重合装置、重合方法、条件などけ実施例
1に記載したものと同じである。その結果連合時間62
時間でt、v値2.27#/pのコポリイミドを得た。
Table-13 Example 7 DADE, PPD and BPDA (DADE/D-7
/3) When producing Codeliimi V, polymerization was carried out without adding p-HBA as a polymerization aid. Phenol is used as the solvent, and the IIl! The polymerization apparatus, polymerization method, conditions, etc. are the same as those described in Example 1, except that the concentration is 5 wt%. As a result, the combined time is 62
A copolyimide with a t and v value of 2.27 #/p was obtained.

実施例8 本実施例けり、ADEとPPDとBPDAとから成シ、
DADEとPPDの仕込み比が8:2であるコポリイミ
ドを製造するに際して、重合溶媒にPCPを・用いて行
ない、さらに得られた重合液を大過剰のメタノール中に
投入して後処理することなく直接紡糸し、さらには熱延
伸してコポリイミド繊維を製造した例である。
Example 8 Continuing with this example, a cylinder consisting of ADE, PPD and BPDA,
When producing a copolyimide with a charging ratio of DADE and PPD of 8:2, PCP was used as the polymerization solvent, and the resulting polymerization solution was poured into a large excess of methanol without post-treatment. This is an example in which a copolyimide fiber was produced by direct spinning and further hot drawing.

実施例1に記載した装置にBPDA 5.8844 f
?(0,02モル)とPCP 126.5 Fをチヅ素
気流下75℃の加温状態で添加し、30分m婦後この中
K DADE 3.2039 t (0,016モル)
とPPDo、4326P(0,004モル)を添加し、
1.5時間攪拌後p−HBA 5.52 F!(0,0
4モル)を加え、浴温を1時間かけて175℃前後に昇
温させて重合を開始させた。モノマー仕込み濃度は7w
t4であった。
BPDA 5.8844 f in the apparatus described in Example 1
? (0.02 mol) and PCP 126.5 F were added under heating at 75°C under a nitrogen gas stream, and after 30 minutes, K DADE 3.2039 t (0,016 mol) was added.
and PPDo, 4326P (0,004 mol) was added,
After stirring for 1.5 hours p-HBA 5.52 F! (0,0
4 mol) was added thereto, and the bath temperature was raised to around 175°C over 1 hour to initiate polymerization. Monomer preparation concentration is 7w
It was t4.

このaKして16時間重合を行なった後得られた褐色透
明な重合液をそのまま口過、脱泡後紡糸簡に詰め、実施
例2で示した方法で紡糸、熱延伸した。吐出温度100
℃、窒素圧3 k/j/crr? Gとした。
After carrying out polymerization for 16 hours at this aK, the obtained brown transparent polymerization liquid was passed through the mouth as it was, defoamed, and packed into a spinning strip, and spun and hot-stretched by the method shown in Example 2. Discharge temperature 100
°C, nitrogen pressure 3 k/j/crr? It was set as G.

なおこの重合液を一部サンプリンダし、処理後得られた
コポリイミドI、V値を測定したところ3.36d//
4であった。
A portion of this polymerization solution was sampled and the copolyimide I and V values obtained after treatment were measured and found to be 3.36 d//
It was 4.

表−14 比較例1 実施例1に記載した装置を使用して、同様の方法でDA
DEとBPDA 25−ら成るポリイミドを製造した。
Table 14 Comparative Example 1 Using the apparatus described in Example 1, DA was carried out in the same manner.
A polyimide consisting of DE and BPDA 25- was produced.

仕込みモノマー濃度6wt優になるように両モノマー成
分を仕込み、p−HBA存在存在下フェノール製9.5
時間重合させ、I、V値2.64dt/f(1’)ポリ
イミドを得た。
Both monomer components were prepared so that the monomer concentration was 6wt, and 9.5% of phenol was added in the presence of p-HBA.
Polymerization was carried out for a period of time to obtain a polyimide with I and V values of 2.64 dt/f(1').

このポリイミド粉末8部とp−クロルフェノール92部
とで紡糸用ドープを調製した。吐出温度120℃、窒素
圧2.2 kP/crr?Gとした仙は実障例2と同様
の方法で紡糸、熱延伸した。得られた繊維物性を次表に
示す。
A spinning dope was prepared from 8 parts of this polyimide powder and 92 parts of p-chlorophenol. Discharge temperature 120℃, nitrogen pressure 2.2 kP/crr? The fiber labeled G was spun and hot-stretched in the same manner as Example 2. The obtained fiber properties are shown in the table below.

表−15 比較例2 実施例1に記載した装置を用い、同様の方法でDADE
とBPDAとPMDAから成、り、BPDAとPMDA
の比が9=1であるコポリイミドを仕込みモノマー濃度
5wt4でp−HBA存在存在下フェノール製造し、6
9時間の重合で■、v値2.13のコポリイミドを律た
Table 15 Comparative Example 2 Using the apparatus described in Example 1, DADE was
Consists of BPDA and PMDA, BPDA and PMDA
A copolyimide with a ratio of 9=1 was prepared and phenol was produced in the presence of p-HBA at a monomer concentration of 5wt4.
After 9 hours of polymerization, a copolyimide with a v value of 2.13 was obtained.

このポリイミド粉末8部とp−クロルフェノール92部
とで紡糸用ドープを調製した。吐出温度90℃、窒素圧
3.2 kg/1w? Gとした他は実施例2と同様の
方法で紡糸、熱延伸した。得られた繊維物性を次表に示
す。
A spinning dope was prepared from 8 parts of this polyimide powder and 92 parts of p-chlorophenol. Discharge temperature 90℃, nitrogen pressure 3.2 kg/1w? The spinning and hot stretching were carried out in the same manner as in Example 2, except that G was used. The obtained fiber properties are shown in the table below.

表−16 比較例3 実施例IK記載した装置を用い、同様の方法でDADE
とPPDとBPDAから成シ、DADEとppm比が4
=6のコポリイミドをp−HBAの存在下製造した。
Table 16 Comparative Example 3 DADE was carried out in the same manner using the apparatus described in Example IK.
It is composed of PPD and BPDA, and the ppm ratio of DADE is 4.
A copolyimide of =6 was prepared in the presence of p-HBA.

仕込みモノマー濃度はS wt係であった。重合は不均
一で進行し、重合時間120時間で、■、v、値2、2
6 dl/ fのコポリイミドを得た。このポリマーを
繊維化するため実施例2で記載した方法でポリマー8部
とPCP 92部に溶解させてドーグを製造しようと試
みたがポリマーがPCPに溶解せず、不均一ドープとな
シ、紡糸不可能であった。
The monomer concentration charged was in relation to S wt. Polymerization progressed heterogeneously, and after 120 hours of polymerization, ■, v, value 2, 2
A copolyimide of 6 dl/f was obtained. In order to make fibers from this polymer, an attempt was made to manufacture Dogue by dissolving it in 8 parts of polymer and 92 parts of PCP using the method described in Example 2, but the polymer did not dissolve in PCP, resulting in uneven doping and spinning. It was impossible.

比較例4 実施例1に記載した装置を用い、同様の方法でDADE
とBPDAとPMDAとから成シBPDAとPMDAの
比が6:4である:lffポリイミドを、p−HBAの
存在下モノマー濃度5wt%の栄件で製造した。重合反
応は不均一で進行し、待られたコポリイミドのI 、V
、値は0.73dt/FIと小さく、紡糸不可能であっ
た0 実施例9 本発明は本願発明の/ リイミド繊維が耐光性に優れて
いる事を示す。本実施例に用いたポリイミド繊維はDA
DE−PPD−BPDA (7: 3 : 10 )の
組成力)ら成る熱処理系である。比較のために芳香族ポ
リアミド繊維ケブラー49を同時にテストした。
Comparative Example 4 DADE was produced in the same manner using the apparatus described in Example 1.
A:lff polyimide composed of BPDA and PMDA with a ratio of BPDA to PMDA of 6:4 was prepared in the presence of p-HBA at a monomer concentration of 5 wt%. The polymerization reaction proceeds heterogeneously, and the awaited copolyimide I and V
, the value was as small as 0.73 dt/FI, and spinning was impossible.Example 9 The present invention shows that the /limide fiber of the present invention has excellent light resistance. The polyimide fiber used in this example is DA
This is a heat treatment system consisting of DE-PPD-BPDA (composition strength: 7:3:10). For comparison, aromatic polyamide fiber Kevlar 49 was tested at the same time.

使用した試験装@け東洋精機(株)の製品であるウェザ
オーメーターMIQ−1型であり、これを一部改造し、
試料と光源の距離を短縮し試料に当る光の強さを強化し
たものである。即ち、上記の装置の中心にある6 00
0Wキセノンアーク灯の周囲にアルミニウム製円筒(直
径約20Crn高さ33Crn)を置きこの円筒の内壁
に長さ約15(7)のポリイミド繊維及び比較用のポリ
アミド繊維をそれぞれ7〜10本づつ所定時間分にサン
プルをとシはづし単繊維の引張シ試験を行った。尚アル
ミニウム製円筒の表面温度は約100℃に達していた。
The test equipment used was a Weather-Ometer MIQ-1 model manufactured by Toyo Seiki Co., Ltd., which was partially modified.
This shortens the distance between the sample and the light source and increases the intensity of the light hitting the sample. That is, 600 at the center of the above device.
An aluminum cylinder (about 20 Crn in diameter and 33 Crn in height) is placed around a 0W xenon arc lamp, and 7 to 10 polyimide fibers each having a length of about 15 (7) and a polyamide fiber for comparison are placed on the inner wall of this cylinder for a predetermined period of time. Tensile tests were carried out on single fibers by cutting samples for several minutes. Note that the surface temperature of the aluminum cylinder reached approximately 100°C.

試料に対する水の噴射は行わなかった。繊維の劣化はも
っばら光の作用によるものである。比較試験に用いた芳
香族ポリアミド繊維は測定前にメタノール、水及びn−
へキサンで洗浄してから用いた。
No water injection was performed on the sample. The deterioration of fibers is primarily due to the action of light. The aromatic polyamide fiber used in the comparative test was soaked with methanol, water and n-
It was used after washing with hexane.

試験結果は表17及び表18に示した。The test results are shown in Tables 17 and 18.

これらの表から、ケブラー49は24時間の照射で強度
5.2!i’/dに低下し強度保持車20%にすぎない
が、本願発明のポリイミド繊維は24時間後も17.4
51/dの強度を有し強度保持率は84係である。
From these tables, Kevlar 49 has an intensity of 5.2 after 24 hours of irradiation! The polyimide fiber of the present invention has a strength retention ratio of 17.4 even after 24 hours, although the strength retention ratio is only 20%.
It has a strength of 51/d and a strength retention rate of 84.

尚特願昭173394号明細書にはトリジンを用いるポ
リイミド繊維がケブラー49よシ耐光性に優れていると
記載されているが、本発明は特願昭173394号明#
I魯に記載されたポリイミド繊維よフ更に一層耐光性が
改善されている。
Although the specification of Japanese Patent Application No. 173394 states that polyimide fibers using tolidine have better light resistance than Kevlar 49, the present invention is based on the specification of Japanese Patent Application No. 173394.
The light resistance of the polyimide fiber described in I. Lu is further improved.

表−17ポリイミド繊維の耐光線性試験結果表−18ポ
リアミド繊維(Kevlar49)の耐光性試験結果実
施例1O この実施例には、繊維の乾熱劣化実験の結果を示した。
Table 17 Results of light resistance test of polyimide fiber Table 18 Results of light resistance test of polyamide fiber (Kevlar 49) Example 1O This example shows the results of a dry heat degradation experiment of fiber.

3.4’−DADB : PPD : BPDA=7 
: 3 : 10の熱延伸糸を一定張力下(0,341
1/d )で枠に巻きつけ。
3.4'-DADB: PPD: BPDA=7
: 3 : 10 hot drawn yarn under constant tension (0,341
1/d) and wrap it around the frame.

その状態のまま300℃のオープンに入れた。所定時間
経過後、オープンから取シ出し、放冷後。
In that state, it was placed in the open at 300°C. After the specified time has passed, remove it from the open and let it cool.

強伸度の測定を行なった。比較のため、市販のポ17−
p−7エニレンテレフタルアミド繊維(DuPout社
、ケプラー49)についても同様の実験を行なった。結
果を次表に示す。
Strength and elongation were measured. For comparison, commercially available Po17-
Similar experiments were conducted with p-7 enylene terephthalamide fiber (DuPout, Kepler 49). The results are shown in the table below.

表−19 実施例11 この実施例には、繊維の湿熱劣化実験の結果を示した+
、 3.4’−DADE : PPD : BPDA=
7 : 3 : 10の熱延伸糸を一定張力下(0,3
4#/d )で枠に巻きつけ、その状態のままオートク
レーブに入れ200℃でスチーム処理した。所定時間経
過後、オートクレーブから取シ出し、放冷乾燥後、強伸
度の測定を行なった。比較のため、ケプラー49につい
ても同様の実験を行なった。結果を次表に示す。
Table 19 Example 11 This example shows the results of a wet heat deterioration experiment on fibers.
, 3.4'-DADE : PPD : BPDA=
7:3:10 hot drawn yarn under constant tension (0,3
4#/d) around a frame, and in that state was placed in an autoclave and subjected to steam treatment at 200°C. After a predetermined period of time had elapsed, it was taken out of the autoclave, allowed to cool and dry, and then its strength and elongation were measured. For comparison, a similar experiment was conducted on Kepler-49. The results are shown in the table below.

表−20 実施例12 この実施例には、繊維の耐酸性についての結果を示した
。3.4’−DADE : PPD : BPDA=7
 : 3 : 10の熱延伸糸を40チ硫酸水溶液と4
0%酢酸水溶液とに浸漬し85℃で所定時間処理した。
Table 20 Example 12 This example shows the results regarding the acid resistance of the fibers. 3.4'-DADE: PPD: BPDA=7
: 3 : 10 hot-drawn yarns are mixed with 40 sulfuric acid aqueous solution and 4
The sample was immersed in a 0% aqueous acetic acid solution and treated at 85°C for a predetermined time.

その後。after that.

水洗、メタノール洗をくシ返し、乾燥後強伸度の測定を
行なった。比較のためケプラー49についても同様の実
験を行なった。結果を表−21゜−22に示す。
After repeated washing with water and methanol, strength and elongation were measured after drying. For comparison, a similar experiment was conducted on Kepler-49. The results are shown in Table 21-22.

表−2140チ硫酸水溶液 表−2240%酢酸水溶液 〔発明の効果〕 本発明のポリイミド繊維は、従来のポリイミドドーグか
ら製造される。t?ポリイミド繊維比べて、強度及び弾
性が著しく向上しており、しかも耐光性の点でも優れた
特性を発揮する。また、実施例においても実証されてい
るとおり、耐薬品性(耐酸性)や耐スチーム性、耐熱性
においても浸れた特性を発揮することができる。また、
この様VC優れた特性を発揮するポリイミド繊維は、と
くに本発明の4リイミド繊維の製造法によって、安定的
にかつ再現性よく製造することができる。
Table 2140 Thisulfuric Acid Aqueous Solution Table 2240% Acetic Acid Aqueous Solution [Effects of the Invention] The polyimide fiber of the present invention is manufactured from conventional polyimide dough. T? Compared to polyimide fibers, it has significantly improved strength and elasticity, and also exhibits excellent light resistance. Furthermore, as demonstrated in the Examples, excellent properties can also be exhibited in terms of chemical resistance (acid resistance), steam resistance, and heat resistance. Also,
Polyimide fibers exhibiting such excellent VC properties can be produced stably and with good reproducibility, particularly by the method for producing 4-limide fibers of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第3図は、「実施例」で作製された本発明に
係るポリアミドの赤外線吸収スペクトル曲線を示した図
である。第2図は1本発明で使用する紡糸装置の1例を
示した模式図である。 1・・・窒素ボンベ、2・・・窒素中間溜、3・・・圧
力計。 4・・・ノズルホルダ〜、5・・・ノズル、6・・・凝
固浴。 7・・・ガイド、8・・・浸漬ローラ、9・・・巻取り
ボビン、10・・・温度制御器。
FIGS. 1 and 3 are diagrams showing infrared absorption spectrum curves of the polyamide according to the present invention produced in "Example". FIG. 2 is a schematic diagram showing an example of a spinning device used in the present invention. 1... Nitrogen cylinder, 2... Nitrogen intermediate distiller, 3... Pressure gauge. 4... Nozzle holder ~, 5... Nozzle, 6... Coagulation bath. 7... Guide, 8... Dipping roller, 9... Winding bobbin, 10... Temperature controller.

Claims (6)

【特許請求の範囲】[Claims] (1) 芳香族ジアミン成分と芳香族テトラカルボン酸
成分とから誘導される一反復単位を有するポリイミド繊
維であって、前記芳香族ジアミン成分は、下記式(A)
の成分aモル及び必要に応じて式(B)の成分bモルか
ら成フ、前記芳香族テトラカルボン酸成分は、下記式(
C)の成分Cモル及び必要に応じて弐〇)の成分dモル
から成j1かつa+bwe+dが成り立ち% b/aが
O〜1の範囲、d/cがθ〜3/7の範囲にある(但し
、bとdとが同時にOとなることはない。)ことを特徴
とするポリイミド繊維。 /\ C〇一 式(D):
(1) A polyimide fiber having one repeating unit derived from an aromatic diamine component and an aromatic tetracarboxylic acid component, the aromatic diamine component having the following formula (A)
The aromatic tetracarboxylic acid component is composed of a mole of component of formula (B) as required and b mole of component of formula (B) as required.
Consisting of C mol of component C) and d mol of component 2) if necessary, and a+bwe+d, % b/a is in the range of O to 1, and d/c is in the range of θ to 3/7 ( However, b and d do not become O at the same time.) A polyimide fiber characterized by: /\ C〇 complete set (D):
(2)d=OであJ) b/aは1/9〜1の範囲にあ
る特許請求の範囲第(1)項記載のポリイミド繊維。
(2) The polyimide fiber according to claim 1, wherein d=O and J) b/a is in the range of 1/9 to 1.
(3)b−0であシ、d/eけ1/4〜3/17の範囲
にある特許請求の範囲第(1ン項記載のポリイミド繊維
(3) The polyimide fiber according to claim 1, which has a b-0 thickness and a d/e thickness of 1/4 to 3/17.
(4) b/mは1/9〜3/7の範囲、d/eは1/
4〜3/7の範囲にある特許請求の範囲第(0項記載の
ポリイミ ド繊維。
(4) b/m is in the range of 1/9 to 3/7, d/e is in the range of 1/9
Claim No. 4 to 3/7 (the polyimide fiber according to claim 0).
(5) 初期弾性率400 ffA以上、引°張シ強さ
13 Vd以上である特許請求の範囲第(1)項乃至第
(4)項の1に記載のポリイミド繊維。
(5) The polyimide fiber according to any one of claims (1) to (4), which has an initial elastic modulus of 400 ffA or more and a tensile strength of 13 Vd or more.
(6) 芳香族ジアミン成分と芳香族テトラカルデン酸
成分とから誘導される反復単位を有するコポリイミドで
あって、前記芳香族ジアミン成分は、下記式(A)の成
分aモル及び必要に応じて式(B)の成分bモルから成
夛、前記芳香族テトラカルデン酸成分は、下記式(C)
の成分Cモル及び必要に応じて式の)の成分dモルから
成り、かつa+b=e+dが成シ立ち、b/aがO〜1
の範囲、d/cがO〜3/7の範囲にあり〔但し、bと
dが同時にOとなることはない。〕、シかも対数粘度1
.5以上のコポリイミドをフェノール系溶媒に溶解して
ドープを調製し、このドープをノズルよル空気中に吐出
させフィラメント状に成形した後、このフィラメントを
前記フェノール系溶媒と相溶性を有しかつコポリイミド
不溶の凝固浴中に導入して繊維を凝固させた後、巻取り
、洗浄及び乾燥を行なった後、250〜420℃で2倍
以上の熱延伸を行なうことを%徴とするポリイミド繊維
の製造法う7人
(6) A copolyimide having a repeating unit derived from an aromatic diamine component and an aromatic tetracardic acid component, wherein the aromatic diamine component is a mole of the component of the following formula (A) and, if necessary, the formula Composed of b moles of component (B), the aromatic tetracardic acid component is represented by the following formula (C):
consisting of component C moles of and optionally d moles of component
and d/c is in the range of O to 3/7 [However, b and d are never O at the same time. ], the logarithmic viscosity is 1
.. A dope is prepared by dissolving a copolyimide of 5 or more in a phenolic solvent, and this dope is discharged into the air through a nozzle to form a filament. Polyimide fibers characterized by introducing the fibers into a copolyimide-insoluble coagulation bath to coagulate the fibers, then winding them up, washing and drying them, and then hot-stretching them at 250 to 420°C to double or more. Manufacturing method for 7 people
JP6907984A 1984-04-09 1984-04-09 Polyimide fiber and its manufacturing method Granted JPS60215812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6907984A JPS60215812A (en) 1984-04-09 1984-04-09 Polyimide fiber and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6907984A JPS60215812A (en) 1984-04-09 1984-04-09 Polyimide fiber and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS60215812A true JPS60215812A (en) 1985-10-29
JPS6329008B2 JPS6329008B2 (en) 1988-06-10

Family

ID=13392215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6907984A Granted JPS60215812A (en) 1984-04-09 1984-04-09 Polyimide fiber and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS60215812A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120796A (en) * 2007-10-22 2009-06-04 Hitachi Chem Co Ltd Heat-resistant polyimide resin, and seamless tubular body, coated film, coated plate and heat-resistant coating material, using the same
JP2011132651A (en) * 2009-11-25 2011-07-07 Ube Industries Ltd Method for producing highly heat-resistant polyimide fine fiber, highly heat-resistant polyimide fine fiber and nonwoven fabric comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621602A (en) * 1979-07-26 1981-02-28 Ube Ind Ltd Manufacture of polyimide semipermeable membrane
JPS56159314A (en) * 1980-05-09 1981-12-08 Ube Ind Ltd Preparation of polyimide fiber
JPS57167414A (en) * 1981-04-03 1982-10-15 Ube Ind Ltd Production of polyimide hollow fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621602A (en) * 1979-07-26 1981-02-28 Ube Ind Ltd Manufacture of polyimide semipermeable membrane
JPS56159314A (en) * 1980-05-09 1981-12-08 Ube Ind Ltd Preparation of polyimide fiber
JPS57167414A (en) * 1981-04-03 1982-10-15 Ube Ind Ltd Production of polyimide hollow fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120796A (en) * 2007-10-22 2009-06-04 Hitachi Chem Co Ltd Heat-resistant polyimide resin, and seamless tubular body, coated film, coated plate and heat-resistant coating material, using the same
JP2011132651A (en) * 2009-11-25 2011-07-07 Ube Industries Ltd Method for producing highly heat-resistant polyimide fine fiber, highly heat-resistant polyimide fine fiber and nonwoven fabric comprising the same

Also Published As

Publication number Publication date
JPS6329008B2 (en) 1988-06-10

Similar Documents

Publication Publication Date Title
US3600350A (en) Poly(p-benzamide) composition,process and product
JP2588806B2 (en) Gas separation hollow fiber membrane and method for producing the same
JPS6242045B2 (en)
JPH07300534A (en) Production of fiber or film from specific molding solution, and fiber or film obtainable thereby
JPS5914567B2 (en) Polyamide fiber and film
JP5340247B2 (en) Fully aromatic polyamide filament
JP5340331B2 (en) Fully aromatic polyamide filament
JPS5911609B2 (en) Method for producing copolyamide and molded products made from copolyamide
JPS61133106A (en) Separation membrane manufacturing method
AU2015267804B2 (en) Polyphenylene sulfide fibers, and manufacturing method therefor
JPS6261327B2 (en)
JPH0532490B2 (en)
JPH07150413A (en) High strength and high linear density aramide fiber, preparation thereof and use of it
JPS6328424A (en) Polyimide gas separation membrane
JPS60215812A (en) Polyimide fiber and its manufacturing method
KR0127875B1 (en) Fiber with improved hydrolysis stability
US4205038A (en) Process for producing shaped articles of polyoxadiazoles
US4011203A (en) Aromatic polyamide from piperazine, p-phenylene diamine and terephthaloyl halide
US4072664A (en) Aromatic polyamides from N,N'-bis(p-aminobenzoyl)ethylene diamine
JPH03193911A (en) Manufacture of high-strength nylon yarn
Su et al. Preparation and characterization of ternary copolyimide fibers via partly imidized method
JPH0135090B2 (en)
JPH11502241A (en) Hydrolysis resistant aramids
JPH0362805B2 (en)
KR101725811B1 (en) Process for preparing polyketon fiber