JPS60215547A - Ultraviolet transmitting glass - Google Patents
Ultraviolet transmitting glassInfo
- Publication number
- JPS60215547A JPS60215547A JP7118884A JP7118884A JPS60215547A JP S60215547 A JPS60215547 A JP S60215547A JP 7118884 A JP7118884 A JP 7118884A JP 7118884 A JP7118884 A JP 7118884A JP S60215547 A JPS60215547 A JP S60215547A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- ultraviolet
- less
- fe2o3
- alkali
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011521 glass Substances 0.000 title claims abstract description 52
- 238000002834 transmittance Methods 0.000 claims abstract description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000004065 semiconductor Substances 0.000 claims abstract description 8
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 229910052681 coesite Inorganic materials 0.000 claims abstract description 4
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 4
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 4
- 229910052682 stishovite Inorganic materials 0.000 claims abstract description 4
- 229910052905 tridymite Inorganic materials 0.000 claims abstract description 4
- 229920005989 resin Polymers 0.000 claims description 14
- 239000011347 resin Substances 0.000 claims description 14
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 17
- 239000003513 alkali Substances 0.000 abstract description 7
- 239000003822 epoxy resin Substances 0.000 abstract description 7
- 229920000647 polyepoxide Polymers 0.000 abstract description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 abstract description 4
- 229910052708 sodium Inorganic materials 0.000 abstract description 4
- 239000011734 sodium Substances 0.000 abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052593 corundum Inorganic materials 0.000 abstract description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract description 3
- 239000005358 alkali aluminosilicate glass Substances 0.000 abstract description 2
- 239000000356 contaminant Substances 0.000 abstract 1
- 238000007789 sealing Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- GOLCXWYRSKYTSP-UHFFFAOYSA-N Arsenious Acid Chemical compound O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 description 4
- -1 EP-ROM Substances 0.000 description 3
- 239000005354 aluminosilicate glass Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000004031 devitrification Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 239000011820 acidic refractory Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000005816 glass manufacturing process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920003217 poly(methylsilsesquioxane) Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は紫外線透過率の高いガラス組成に関し、特に樹
脂封着が行われるEP−ROM半導体パッケージの紫外
線透過用の窓として用いられるガラス組成物に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a glass composition with high ultraviolet transmittance, and particularly to a glass composition used as a window for transmitting ultraviolet rays in an EP-ROM semiconductor package sealed with a resin.
EP−ROMとは、紫外線照射によりプログラムのメモ
リー消去が可能である読み出し専用記憶半導体のことで
あり、従来、これらの支持体としてはアルミナセラミッ
クパッケージが使用され、これには紫外線照射用のガラ
ス窓が取り付けられている。EP-ROM is a read-only memory semiconductor whose memory program can be erased by ultraviolet irradiation. Conventionally, an alumina ceramic package has been used as a support for these devices, and this includes a glass window for ultraviolet irradiation. is installed.
ガラス窓としては波長253.7nmの紫外線を良く透
過する必要があるため、硼珪酸系の紫外線透過ガラス(
例えば、コーニング社製No.9741ガラス)あるい
は石英ガラス、透光性アルミナ等が用いられている。ま
た、ガラス窓とアルミナセラミックを気密に封着する方
法としては、ガラスを溶融することによって、アルミナ
と溶着させるダイレクトシール法及びメタライズド技術
を駆使した半田封着法等がある。いずれの方法にせよ、
支持体としてアルミナセラミックを用いていることは、
その材料コストを著しくに上昇させ、かつ、半導体をマ
ウントしてアルミナパッケージ自体を封着する際の高い
封着温度のために、数々の材料上の制約を受け、その工
程も甚しく複雑なものになっているのが実状である。Glass windows must transmit UV rays with a wavelength of 253.7 nm well, so borosilicate-based UV-transmissive glass (
For example, Corning No. 9741 glass), quartz glass, translucent alumina, etc. are used. Further, methods for airtightly sealing a glass window and alumina ceramic include a direct sealing method in which glass is melted and then welded to alumina, and a soldering method that makes full use of metallized technology. Either way,
The use of alumina ceramic as a support means that
This significantly increases the material cost, and due to the high sealing temperature when mounting the semiconductor and sealing the alumina package itself, there are many material restrictions and the process is extremely complicated. The reality is that.
通常、EP−ROM以の半導体に関しては、このような
アルミパッケージの欠点のために、とりわけ高度の信頼
性が要求される分野を除いて、非常に低価格で工程も簡
略化できるエポキシ系の樹脂でパッケージされる樹脂パ
ッケージが主流となっている。Generally, for semiconductors such as EP-ROM, epoxy resin is used, which is extremely low cost and can simplify the process, except in fields where a particularly high degree of reliability is required due to the drawbacks of aluminum packages. Resin packaging is now mainstream.
ところが、EP−ROMの場合、上記ガラス窓を取り付
けなければならないという構造上の制約から樹脂パッケ
ージの製品の実用化が遅れており、未だにアルミナパッ
ケージの製品が供されている。However, in the case of EP-ROMs, the practical use of resin packaged products has been delayed due to the structural restriction that the glass window must be attached, and alumina packaged products are still available.
EP−ROMの樹脂パッケージ化の技術的な問題として
、(1)ガラスとエポキシ系樹脂の熱膨張係数の差が大
きいこと、及び、(2)ガラスからアルカリ成分、特に
ナトリウムが溶出するとエポキシ系樹脂とのなじみが悪
くなり、封着界面の耐水性が低下すること、等が挙げら
れる。前記(1)項の問題は樹脂に加えるフィラーの変
更等で改善されつつあるが、なお、熱膨脹係数の差が問
題となる場合は、支持体として、ガラスと熱膨脹係数の
近いアルミナセラミックを用いてアルミナ支持体とガラ
ス窓をエポキシ系樹脂でシールするアルミナパッケージ
樹脂シールを考慮すれば解決できる。しかし、たとえこ
のような方法を採用したとしても、エポキシ系樹脂が、
ガラスと直接、接触することには変わりはなく、前記(
2)項の問題を回避することはできない。この理由によ
り、現在、試作的に製造されている樹脂パッケージ又は
アルミナパッケージ樹脂シールのEP−ROMは、全て
ナトリウム成分を全く含有しない石英ガラスあるいは透
光性アルミナが利用されている。すなわちアルミナパッ
ケージ用窓ガラスとして普及している低価格の硼珪酸系
の紫外線透過ガラスは、2重量%以上にのNa2O成分
を含有しているため、樹脂パッケージ又は樹脂シールに
は適用できない。The technical problems with EP-ROM resin packaging are (1) the large difference in thermal expansion coefficient between glass and epoxy resin, and (2) epoxy resin when alkali components, especially sodium, elute from glass. Examples of such problems include poor compatibility with the sealing surface and a decrease in water resistance of the sealing interface. The problem in item (1) above is being improved by changing the filler added to the resin, but if the difference in thermal expansion coefficient becomes a problem, use alumina ceramic as the support, which has a thermal expansion coefficient similar to that of glass. This problem can be solved by considering an alumina package resin seal that seals the alumina support and the glass window with an epoxy resin. However, even if such a method is adopted, epoxy resin
There is no difference in direct contact with glass, and the above (
The problem in item 2) cannot be avoided. For this reason, all EP-ROMs with resin packages or alumina package resin seals that are currently being manufactured on a trial basis are made of quartz glass or translucent alumina that does not contain any sodium components. That is, low-priced borosilicate-based ultraviolet transmitting glass, which is popular as window glass for alumina packages, cannot be applied to resin packages or resin seals because it contains Na2O components of 2% by weight or more.
本発明は、このような問題を解決するために、アルカリ
、特にナトリウムの溶出性が少なく、安価な紫外線透過
ガラスを供することにより、上記エポキシ系樹脂との封
着界面で発生する耐水性の劣化を回避でき、EP−RO
Mの樹脂パッケージ又はアルミナパッケージ樹脂シール
化を可能ならしめようとするものである。アルカリの溶
出性を少なくするには、ガラス中のアルカリ含有量が低
い程好ましい。実用的な無アルカリ、あるいは低アルカ
リのガラスとしては、一般的には、アルミノシリケート
ガラスが知られている。しかし、従来のアルミノシリケ
ートガラスは、何ら、紫外線透過ガラスとしての配慮が
なされておらず、EP−ROM用の窓ガラスとしては不
適当である。一般にガラスの紫外線透過率の向上を計る
ためには、紫外域に吸収を与える不純物、とりわけFe
2O3の混入を極力避ける必要がある。従って非常に純
分の高い原料を使用し、かつ、ガラス製造時における工
程から混入する不純物も制限し、ガラス中のFe2O3
含有量を100ppm以下に抑制する必要がある。その
上、わずかに含有するFe2O3についてもFe3+イ
オンが紫外域に吸収を与えるため、紫外域に吸収を与え
ないFe2+イオンに還元してやる必要がある。従って
、ガラスは還元雰囲気で溶融されなければならず、その
ため、原料バッ中には適当な量の還元剤が導入される。In order to solve these problems, the present invention provides an inexpensive ultraviolet transmitting glass that has low elution of alkali, especially sodium, thereby reducing the deterioration of water resistance that occurs at the sealing interface with the epoxy resin. can be avoided and EP-RO
This is intended to make it possible to seal M resin packages or alumina packages with resin. In order to reduce the elution of alkali, it is preferable that the alkali content in the glass be as low as possible. Aluminosilicate glass is generally known as a practical alkali-free or low-alkali glass. However, conventional aluminosilicate glass is not suitable as an ultraviolet transmitting glass, and is therefore unsuitable as a window glass for EP-ROM. Generally, in order to improve the ultraviolet transmittance of glass, it is necessary to add impurities that absorb in the ultraviolet region, especially Fe.
It is necessary to avoid contamination with 2O3 as much as possible. Therefore, by using extremely pure raw materials and by limiting impurities mixed in during the glass manufacturing process, Fe2O3 in the glass is
It is necessary to suppress the content to 100 ppm or less. Moreover, since Fe3+ ions absorb a small amount of Fe2O3 in the ultraviolet region, it is necessary to reduce it to Fe2+ ions that do not absorb in the ultraviolet region. Therefore, the glass must be melted in a reducing atmosphere, and for this purpose an appropriate amount of reducing agent is introduced into the raw batch.
しかし、以上の配慮だけでは、十分な紫外線透過率を得
ることは難しい。However, it is difficult to obtain sufficient ultraviolet transmittance with only the above considerations.
これは、ガラスの基本組成から起因する紫外域の基礎吸
収があるためである。本発明者らは数々の実験から、無
アルカリ又は低アルカリアルミノシリケートガラスの範
囲において、紫外域の吸収が比較的小さな実用的なガラ
ス組成域を見い出した。This is because there is basic absorption in the ultraviolet region resulting from the basic composition of glass. Through numerous experiments, the present inventors have found a practical glass composition range in which the absorption in the ultraviolet region is relatively small in the range of alkali-free or low-alkali aluminosilicate glasses.
すなわち、PbO、ZnO、Sb2Oa、As2O3等
の成分は少量含有していても紫外線透過には好ましくな
く、BaO、P2Osについては、ある程度の含有量ま
では許容できるが、多量に含有すると紫外線透過に好ま
しくないことが判明した。逆にSiO2、Al2O3、
B2O3、CaO、MgOは紫外線透過に悪影響を与え
ることがなく、基本組成成分としてふさわしいものであ
ることを見いだした。ガラス製造の立場から述べれば当
該ガラスの溶融性、泡切れ性、成型性が優れ、失透性が
小さいことが必須条件である。しかるに一般にアルミノ
シリケートガラスは、これらの点で他の系のガラスより
も相当不利な立場にある。加えて、本発明者らが要求す
るガラスは紫外線透過が主目的であるため、それを阻害
するSbiO3、As2O3等の泡切れ剤を導入できな
い。また、高温で溶融すると耐火物のガラスへの溶出が
著しくなるなどガラス生地の不純物による汚染が起りや
すくなる。従って、溶融温度の低いガラス組成である必
要がある。一つの目安として、そのガラスの104.0
ポイズの粘度に相当する温度が1200℃以下であるこ
とが好ましい。また、ガラス成型時の失透を防ぐために
は、液相温度におけるガラスの粘度が104.0ポイズ
、好ましくは104.5ポイズ以上であるガラスが必要
とされる。In other words, components such as PbO, ZnO, Sb2Oa, As2O3, etc. are not favorable for UV transmission even if they are contained in small amounts, and BaO and P2Os are permissible up to a certain amount of content, but they are not favorable for UV transmission when they are contained in large amounts. It turns out there isn't. On the contrary, SiO2, Al2O3,
It has been found that B2O3, CaO, and MgO do not adversely affect the transmission of ultraviolet light and are suitable as basic composition components. From the viewpoint of glass manufacturing, it is essential that the glass has excellent melting properties, bubble breakability, moldability, and low devitrification. However, aluminosilicate glasses are generally at a considerable disadvantage compared to other types of glasses in these respects. In addition, since the main purpose of the glass required by the present inventors is to transmit ultraviolet rays, bubble breakers such as SbiO3 and As2O3, which inhibit this, cannot be introduced. Furthermore, when melted at high temperatures, refractories are significantly leached into the glass, making it easier for the glass fabric to be contaminated by impurities. Therefore, it is necessary to have a glass composition with a low melting temperature. As a guide, the glass's 104.0
It is preferable that the temperature corresponding to the viscosity of poise is 1200°C or less. Further, in order to prevent devitrification during glass molding, a glass whose viscosity at the liquidus temperature is 104.0 poise, preferably 104.5 poise or more is required.
本発明者等は、このような検討の結果から次のような内
容の本発明に到達した。As a result of such studies, the present inventors have arrived at the present invention having the following contents.
本発明は、不純物としてのFe2O3の重量含有率が1
00ppmであり、かつ肉厚1mmで波長253.7n
mの紫外線の透過率が70%以上であることを特徴とし
、下記成分、すなわち重量%でSiO250〜60、A
l2O313〜18、B2O37.5〜14、CaO5
〜12、MgO5.5〜9、BaO3〜7、P2O50
〜4、K2O0〜5からなる紫外線透過ガラスである。In the present invention, the weight content of Fe2O3 as an impurity is 1
00ppm, and the wavelength is 253.7n with a wall thickness of 1mm.
It is characterized by having a transmittance of ultraviolet rays of 70% or more, and contains the following components, i.e., SiO250-60, A
l2O313-18, B2O37.5-14, CaO5
~12, MgO5.5~9, BaO3~7, P2O50
-4, K2O0-5 is an ultraviolet transmitting glass.
次に、本発明のガラスの組成限定理由について説明する
。SiO2が50%より少ないときは、ガラスの化学的
耐久性か劣り、60%より多いときは、液相温度及び粘
度が上がる。Al2O3が13%より少ないとき、及び
18%より多いときは、液相温度が上がる。B2O3は
、液相温度の降下に有効な成分で、75%より少ないと
きは、液相温度及び粘度が上がり、14%より多いとき
は、液相温度降下の効果が期待できない上、液相温度に
おける粘度が下がる。CaOが4%、MgOが5.5%
より少ないときは液相温度及び粘度が上がり、CaOが
12%、MgOが9%より多いときは、液相温度が上が
る。BaOが3%より少ないときは、液相温度及び粘度
が上かり、7%より多いときは、紫外線透過率が下がる
。Next, the reasons for limiting the composition of the glass of the present invention will be explained. When SiO2 is less than 50%, the chemical durability of the glass is poor, and when it is more than 60%, the liquidus temperature and viscosity increase. When Al2O3 is less than 13% and when it is more than 18%, the liquidus temperature increases. B2O3 is an effective component for lowering the liquidus temperature; when it is less than 75%, the liquidus temperature and viscosity increase, and when it is more than 14%, the effect of lowering the liquidus temperature cannot be expected, and the liquidus temperature viscosity decreases. 4% CaO, 5.5% MgO
When the amount is less, the liquidus temperature and viscosity increase, and when the amount of CaO is more than 12% and the amount of MgO is more than 9%, the liquidus temperature increases. When BaO is less than 3%, the liquidus temperature and viscosity increase, and when it is more than 7%, the ultraviolet transmittance decreases.
P2O5は、酸性耐火物のガラスによる侵食を防止する
ために有効であり、4%より多いときは紫外線透過率を
下げ、ガラスを乳白化させる。K2Oは優れた溶融性及
び直接通電溶融の可能性が得られ、5%より多いときは
、樹脂封着の封着界面が劣化する。なお、上記ガラス組
成の範囲内において、本発明の特徴となるガラス特性が
若しくは損なわれない限り、Na2O、Li2O、Sr
O、F2、Cl2等の成分を添加することは差し支えな
い。P2O5 is effective in preventing acidic refractories from being eroded by glass, and when it exceeds 4%, it lowers the ultraviolet transmittance and makes the glass opalescent. K2O provides excellent melting properties and the possibility of direct current melting, and when it exceeds 5%, the sealing interface of resin sealing deteriorates. Note that within the range of the above glass composition, Na2O, Li2O, Sr
It is possible to add components such as O, F2, Cl2, etc.
下表に、本発明のガラスの実施例を示す。The table below shows examples of glasses of the invention.
上記実施例のガラス試料は、次のように調製した。The glass samples of the above examples were prepared as follows.
実施例のガラス組成になるように調合したバッチを白金
ルツボに入れ、1550℃で6時間電気炉内で溶融した
。溶融の際、還元剤として金属アルミニウムを0.3重
量%添加した。溶融後カーボン板上に流し出して板状試
料を得た。この板状試料を小片に切り出し、研磨により
肉厚1mmの紫外線透過率測定用とした。104.0ポ
イズの粘度に相当する温度は、白金球引上げ法によって
めた。また、液相温度は、試料ガラスを粉砕し、295
〜495μのガラス粒子を白金ボートに入れ温度勾配炉
にて16時間保持した後に結晶が生じた上限の温度を読
み取ることによってめた。A batch prepared to have the glass composition of the example was placed in a platinum crucible and melted in an electric furnace at 1550°C for 6 hours. During melting, 0.3% by weight of metallic aluminum was added as a reducing agent. After melting, it was poured onto a carbon plate to obtain a plate-shaped sample. This plate-shaped sample was cut into small pieces and polished to a thickness of 1 mm for ultraviolet transmittance measurement. The temperature corresponding to a viscosity of 104.0 poise was determined by the platinum ball pulling method. In addition, the liquidus temperature is determined by crushing the sample glass and measuring 295
It was determined by placing glass particles of ~495μ in a platinum boat and holding them in a temperature gradient furnace for 16 hours, and then reading the upper limit temperature at which crystals formed.
以上、説明した本発明のガラスは、紫外線透過率が高く
、低アルカリ或いは、無アルカリであるために優れた耐
水性及び高い信頼性を保持する封着界面を有した樹脂封
着が可能なEP.ROM半導体における紫外線通過用窓
として特に適している。The glass of the present invention described above has a high ultraviolet transmittance, is low in alkali or is alkali-free, and is therefore an EP that can be resin-sealed with a sealing interface that maintains excellent water resistance and high reliability. .. It is particularly suitable as a window for passing ultraviolet rays in ROM semiconductors.
特許出願人 日本電気硝子株式会社 代表者 長崎準一Patent applicant: Nippon Electric Glass Co., Ltd. Representative: Junichi Nagasaki
Claims (2)
0ppm以下であり、かつ肉厚1mmで波長253.7
nmの紫外線の透過率が70%以上であることを特徴と
し、下記成分、すなわち重量%でSiO2、50〜60
、Al2O313〜18、B2O37.5〜14、Ca
05〜12、MgO5.5〜9、BaO3〜7、P2O
50〜4、K2O0〜5からなる紫外線透過ガラス。(1) The weight content of Fe2O3 as an impurity is 100
0 ppm or less, and the wavelength is 253.7 with a wall thickness of 1 mm.
It is characterized by having a transmittance of ultraviolet rays of 70% or more, and contains the following components, i.e., SiO2, 50 to 60% by weight.
, Al2O313-18, B2O37.5-14, Ca
05-12, MgO5.5-9, BaO3-7, P2O
Ultraviolet transmitting glass consisting of 50-4 and K2O0-5.
ージにおいて、紫外線透過用の窓として用いられる特許
請求の範囲第1項記載の紫外線透過ガラス。(2) The ultraviolet-transmitting glass according to claim 1, which is used as a window for transmitting ultraviolet rays in an EP-ROM semiconductor package that is sealed with a resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7118884A JPS60215547A (en) | 1984-04-09 | 1984-04-09 | Ultraviolet transmitting glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7118884A JPS60215547A (en) | 1984-04-09 | 1984-04-09 | Ultraviolet transmitting glass |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60215547A true JPS60215547A (en) | 1985-10-28 |
JPH0422862B2 JPH0422862B2 (en) | 1992-04-20 |
Family
ID=13453430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7118884A Granted JPS60215547A (en) | 1984-04-09 | 1984-04-09 | Ultraviolet transmitting glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60215547A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01201041A (en) * | 1987-10-01 | 1989-08-14 | Asahi Glass Co Ltd | Alkali-free glass for display substrates |
US4994415A (en) * | 1986-09-17 | 1991-02-19 | Nippon Electric Glass Company, Limited | SiO2 -Al2 O3 -BaO glass substrates with improved chemical resistance for use in display panels and others having thin films |
EP0559389A3 (en) * | 1992-03-03 | 1994-01-19 | Pilkington Plc | |
US5610108A (en) * | 1993-10-15 | 1997-03-11 | Schott Glaswerke | Reducing melt borosilicate glass having improved UV transmission properties and water resistance and methods of use |
US6060168A (en) * | 1996-12-17 | 2000-05-09 | Corning Incorporated | Glasses for display panels and photovoltaic devices |
JP2002116181A (en) * | 2000-10-05 | 2002-04-19 | Sumitomo Metal Ind Ltd | Glass, optical member, member for electrophoretic device, and manufacturing method thereof |
JP2008001588A (en) * | 2006-05-25 | 2008-01-10 | Nippon Electric Glass Co Ltd | Alkali-free glass and alkali-free glass substrate |
WO2016115685A1 (en) * | 2015-01-20 | 2016-07-28 | Schott Glass Technologies (Suzhou) Co. Ltd. | Low cte glass with high uv-transmittance and solarization resistance |
JP2021522152A (en) * | 2018-04-25 | 2021-08-30 | 成都光明光▲電▼股▲分▼有限公司 | Glass composition |
-
1984
- 1984-04-09 JP JP7118884A patent/JPS60215547A/en active Granted
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4994415A (en) * | 1986-09-17 | 1991-02-19 | Nippon Electric Glass Company, Limited | SiO2 -Al2 O3 -BaO glass substrates with improved chemical resistance for use in display panels and others having thin films |
JPH01201041A (en) * | 1987-10-01 | 1989-08-14 | Asahi Glass Co Ltd | Alkali-free glass for display substrates |
EP0559389A3 (en) * | 1992-03-03 | 1994-01-19 | Pilkington Plc | |
AU659272B2 (en) * | 1992-03-03 | 1995-05-11 | Pilkington Plc | Alkali-free glass compositions |
US5610108A (en) * | 1993-10-15 | 1997-03-11 | Schott Glaswerke | Reducing melt borosilicate glass having improved UV transmission properties and water resistance and methods of use |
US6060168A (en) * | 1996-12-17 | 2000-05-09 | Corning Incorporated | Glasses for display panels and photovoltaic devices |
USRE38959E1 (en) * | 1996-12-17 | 2006-01-31 | Corning Incorporated | Glasses for display panels and photovoltaic devices |
USRE41127E1 (en) * | 1996-12-17 | 2010-02-16 | Corning Incorporated | Glasses for display panels and photovoltaic devices |
JP2002116181A (en) * | 2000-10-05 | 2002-04-19 | Sumitomo Metal Ind Ltd | Glass, optical member, member for electrophoretic device, and manufacturing method thereof |
JP2008001588A (en) * | 2006-05-25 | 2008-01-10 | Nippon Electric Glass Co Ltd | Alkali-free glass and alkali-free glass substrate |
WO2016115685A1 (en) * | 2015-01-20 | 2016-07-28 | Schott Glass Technologies (Suzhou) Co. Ltd. | Low cte glass with high uv-transmittance and solarization resistance |
JP2021522152A (en) * | 2018-04-25 | 2021-08-30 | 成都光明光▲電▼股▲分▼有限公司 | Glass composition |
Also Published As
Publication number | Publication date |
---|---|
JPH0422862B2 (en) | 1992-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920003223B1 (en) | UV clear glass | |
EP1156020B1 (en) | Glass and glass tube for encapsulating semiconductors | |
US4792535A (en) | UV-transmitting glasses | |
JPH0867529A (en) | Borosilicate glass containing low boric acid and its application | |
JPH02267136A (en) | Uv rays transmitting glass for eprom window | |
JPH03275531A (en) | Sealing glass composition | |
RU2129100C1 (en) | Lead-free glass, and glassware and decorative products therefrom | |
JPH0114185B2 (en) | ||
EP0048120B1 (en) | Glass envelopes for tungsten-halogen lamps and production thereof | |
JP2021075407A (en) | Ultraviolet transmission glass | |
JPS60215547A (en) | Ultraviolet transmitting glass | |
CA1255335A (en) | Molybdenum sealing glasses | |
GB2134100A (en) | Glass for a photomask | |
US3649311A (en) | Colorless heat-absorbing glass | |
BRPI0718481A2 (en) | SODA GLASS - CALCIUM OXIDE - UV TRANSMITTIVE SILICA | |
JPS6225618B2 (en) | ||
JP2619345B2 (en) | Germicidal lamp glass | |
JPS6077144A (en) | Ultraviolet light transmitting glass | |
JPH0444612B2 (en) | ||
US3598620A (en) | Alkali-free molybdenum sealing hard glass | |
JPH01286936A (en) | Amber-colored borosilicate glass | |
JPH1036134A (en) | Ultraviolet light-transmitting glass for sealing aulimina | |
JPH06157067A (en) | Ultraviolet transmitting glass | |
JPS62153142A (en) | Ultraviolet ray transmitting glass | |
TW201429912A (en) | Glass for encapsulating semiconductor and sheath tube for encapsulating semiconductor |