JPS60212293A - Anaerobic treatment equipment - Google Patents
Anaerobic treatment equipmentInfo
- Publication number
- JPS60212293A JPS60212293A JP59068540A JP6854084A JPS60212293A JP S60212293 A JPS60212293 A JP S60212293A JP 59068540 A JP59068540 A JP 59068540A JP 6854084 A JP6854084 A JP 6854084A JP S60212293 A JPS60212293 A JP S60212293A
- Authority
- JP
- Japan
- Prior art keywords
- anaerobic
- stock solution
- tank
- anaerobic tank
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011550 stock solution Substances 0.000 claims description 48
- 238000006243 chemical reaction Methods 0.000 claims description 26
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 18
- 239000007788 liquid Substances 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 239000005416 organic matter Substances 0.000 claims description 6
- 239000000243 solution Substances 0.000 claims description 6
- 239000001569 carbon dioxide Substances 0.000 claims description 5
- 230000003472 neutralizing effect Effects 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims description 4
- 150000007524 organic acids Chemical class 0.000 claims description 4
- 230000033116 oxidation-reduction process Effects 0.000 claims description 3
- 238000012937 correction Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 239000010802 sludge Substances 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000013461 design Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000010800 human waste Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Treatment Of Sludge (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は有機性廃莱物等の嫌気性処理装置、特に高度
処理における反応を適正に維持するようにした嫌気性処
理装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an anaerobic treatment apparatus for organic waste, etc., and particularly to an anaerobic treatment apparatus designed to appropriately maintain reactions in advanced treatment.
従来、嫌気性処理は30日程度の滞留時間で消化を行う
ものがあり、運転状況の設定、管理等はラフでよく、人
手により行われていた。このような処理では、滞留時間
が長いため、装置が大形化する欠点があり、これを解決
するだめに滞留時間が短く(例えば2〜10時間から数
日間)高度処理を行う嫌気性処理が提案されている。Conventionally, anaerobic processing has been carried out with a residence time of about 30 days, and the setting and management of operating conditions have been rough and have been carried out manually. This type of treatment has the disadvantage that the equipment becomes large due to the long residence time.To solve this problem, anaerobic treatment, which performs advanced treatment with a short residence time (for example, from 2 to 10 hours to several days), is required. Proposed.
7帯留時間の短い嫌気性処理は、例えば嫌気反応を酸性
滅相とメタン生成相の段階に分けたり、あるいはスラッ
ジブランケットや流動層等を利用して処理を高効率にす
ることにより、滞留時間を短くするとともに高度処理を
行うものである。このような高効率の高度処理では、嫌
気槽における条件を所定値に維持する必要があ虱その管
理が不十分であると、処理水が悪化し、場合によっては
処理が不可能になるという問題点があった。7. Anaerobic treatment with a short residence time can be achieved by, for example, dividing the anaerobic reaction into the acid phase and methane production phase, or by making the treatment highly efficient by using a sludge blanket, fluidized bed, etc. It also performs advanced processing. In such highly efficient advanced treatment, it is necessary to maintain the conditions in the anaerobic tank at a predetermined value, but if this is not properly managed, the treated water will deteriorate, and in some cases, treatment will become impossible. There was a point.
このような高度処理を行う従来の嫌気性処理装置では、
フィードバック方式による制御が行われているが、原液
の組成や量が変化したり、周囲の条件が変化する場合に
は、このような制御では嫌気槽の反応を一定に維持する
ことは困難であシ、安定した処理が行えないという問題
点があった。In conventional anaerobic treatment equipment that performs such advanced treatment,
Control is performed using a feedback method, but if the composition or amount of the stock solution changes or the surrounding conditions change, it is difficult to maintain a constant reaction in the anaerobic tank with this type of control. However, there was a problem that stable processing could not be performed.
この発明は上記問題点を解決するだめのもので、嫌気槽
内の反応状態を検出して原液供給量を調整することによ
シ、反応状態に合ったl帯留時間に調整して嫌気反応を
一定に維持し、高効率で高度の処理を安定して行うこと
ができる嫌気性処理装置を提供することを目的としてい
る。This invention is intended to solve the above-mentioned problems, and by detecting the reaction state in the anaerobic tank and adjusting the amount of stock solution supplied, the anaerobic reaction can be carried out by adjusting the residence time to suit the reaction state. The object of the present invention is to provide an anaerobic treatment device that can maintain a constant temperature and stably perform high-level treatment with high efficiency.
この発明は、嫌気性処理によシ有機物を分解する嫌気槽
、この嫌気槽に原液を供給する原液供給手段、嫌気槽か
ら処理液を取出す処理液取出手段、嫌気槽から生成ガス
を取出すガス取出手段、嫌気槽内を所定温度に維持する
ように原液に蒸気を供給する蒸気供給手段、嫌気槽内を
所定pHに維持するように原液に中和剤を供給する中オ
ロ剤供給手段、および嫌気槽内の反応状態を検出し滞留
時間を調整するため原液供給量を調整する制御手段を備
えたことを特徴とする嫌気性処理装置である。This invention provides an anaerobic tank for decomposing organic matter by anaerobic treatment, a stock solution supply means for supplying stock solution to the anaerobic tank, a processing liquid extraction means for taking out the treated solution from the anaerobic tank, and a gas extraction system for taking out produced gas from the anaerobic tank. means, a steam supply means for supplying steam to the stock solution so as to maintain the inside of the anaerobic tank at a predetermined temperature, a neutralizing agent supply means for supplying a neutralizing agent to the stock solution so as to maintain the inside of the anaerobic tank at a predetermined pH, and an anaerobic tank. The anaerobic treatment apparatus is characterized in that it is equipped with a control means for detecting the reaction state in the tank and adjusting the supply amount of the stock solution in order to adjust the residence time.
以下、本発明を図面の実施例により説明する。 Hereinafter, the present invention will be explained with reference to embodiments of the drawings.
図面は実施例の系統図である。図面において、1は嫌気
槽であって、嫌気処理により有機物を分解するように嫌
気状態に維持されている。嫌気槽1の下部には原液供給
管2および排泥管6が連絡し、上部には処理液排出管4
およびガス排出管5が連絡している。原液供給管2には
原液供給ポンプP1および混合器6が設けられており、
コントロール弁V、を有する蒸気管7が混合器6に連絡
し、コントロール弁v2を有する薬注管8が原液供給管
2に連絡している。嫌気槽1から循還ポンプP2を有す
る循環液管9が原液供給管2に連絡している。The drawing is a system diagram of the embodiment. In the drawings, reference numeral 1 denotes an anaerobic tank, which is maintained in an anaerobic state to decompose organic matter through anaerobic treatment. A raw solution supply pipe 2 and a sludge drainage pipe 6 are connected to the lower part of the anaerobic tank 1, and a treated liquid discharge pipe 4 is connected to the upper part.
and a gas discharge pipe 5 are in communication. The stock solution supply pipe 2 is provided with a stock solution supply pump P1 and a mixer 6.
A steam pipe 7 with a control valve V communicates with the mixer 6, and a dosing pipe 8 with a control valve V2 communicates with the stock solution supply pipe 2. A circulating fluid pipe 9 having a circulating pump P2 is connected from the anaerobic tank 1 to the stock solution supply pipe 2.
10は全体の制御を行う演算制御器、11は原液供給ポ
ンプP1の流量を調節するポンプ制御器、pi−1,は
原液のpi(を測定するp)I計であシ、その信号は演
算制御器1Dに与えられ、コントロール弁V2の開度を
制御するようになっている。l” It Sは原液の流
量を測定する流量計、COD+は原液のCODを測定す
るCOD計で、それぞれ信号は演算制御器10に与えら
れ、演算結果によりポンプ制御器11を介して原液供給
ポンプp、の流量を制御するようになっている。TIは
混合器6の温度を測定する温度計で、信号は演算制御器
10に与えられ、コントロール弁v1の開度を制御する
ようになっている。10 is an arithmetic controller that performs overall control, 11 is a pump controller that adjusts the flow rate of the stock solution supply pump P1, pi-1 is a pI meter that measures pi of the stock solution, and its signal is calculated. It is given to the controller 1D to control the opening degree of the control valve V2. l"It S is a flow meter that measures the flow rate of the stock solution, and COD+ is a COD meter that measures the COD of the stock solution. Their respective signals are given to the calculation controller 10, and the calculation results are sent to the stock solution supply pump via the pump controller 11. TI is a thermometer that measures the temperature of the mixer 6, and a signal is given to the arithmetic controller 10, which controls the opening degree of the control valve v1. There is.
PH2は循環液のpHを測定するpH計で、その信号は
演算制御器10に与えられ、演算結果によりコンは嫌気
槽1の酸化還元電位を測ボする011 P割、COD2
は処理液のCODを測定するCOD計、CO□は生成ガ
スの炭酸ガス濃厚を測定するCo1計で、それぞれ信、
号は演算制御器10に与えられ、演算、結果によシボン
プ制御器11を介して原液供給ポンプP1の流量を補正
するようになっている。T2は嫌気槽1の温度を測定す
る温度計で、信号は演算制御器10に与えられ、コント
ロール弁vlの開度を補正するようになっている。PH2 is a pH meter that measures the pH of the circulating fluid, and its signal is given to the arithmetic controller 10, and based on the arithmetic result, the controller measures the oxidation-reduction potential of the anaerobic tank 1.
is a COD meter that measures the COD of the processing liquid, and CO□ is a Co1 meter that measures the carbon dioxide concentration of the produced gas.
The number is given to the calculation controller 10, and the flow rate of the stock solution supply pump P1 is corrected via the pump controller 11 according to the calculation result. T2 is a thermometer that measures the temperature of the anaerobic tank 1, and a signal is given to the arithmetic controller 10 to correct the opening degree of the control valve vl.
以上の構成において、原液供給管2から原液供給ポンプ
P1により被処理原液が供給され、蒸気管7から加温用
の蒸長が供給されて、混合器6で混合して加温され、薬
注管8から中和剤が供給されて、中和して嫌気槽1に導
入される。嫌気槽1では槽内の汚泥と混合して嫌気性処
理が行われ、嫌気性細菌の作用により、原液中の有機物
が有機酸に分解し、有機ばかさらにメタンおよび炭酸ガ
゛スに分解する。In the above configuration, the stock solution to be treated is supplied from the stock solution supply pipe 2 by the stock solution supply pump P1, the steaming length for heating is supplied from the steam pipe 7, the mixture is mixed and heated in the mixer 6, and the chemical injection is performed. A neutralizing agent is supplied from the pipe 8, neutralized, and introduced into the anaerobic tank 1. In the anaerobic tank 1, the sludge in the tank is mixed with sludge for anaerobic treatment, and by the action of anaerobic bacteria, the organic matter in the stock solution is decomposed into organic acids, and the organic matter is further decomposed into methane and carbon dioxide.
嫌気槽1内の混合液は循環液管9を通って循環し、汚泥
は排泥管6から、処理液は処理液排出管4から、生成カ
スはガス排出管5からそれぞれ排出される。The mixed liquid in the anaerobic tank 1 is circulated through the circulating liquid pipe 9, and the sludge is discharged from the sludge drainage pipe 6, the treated liquid from the treated liquid discharge pipe 4, and the generated scum from the gas discharge pipe 5.
以上の処理において、嫌気槽1内の温歴は反応効率を高
めるために重要な因子である。そこで温度計T1の信号
によりコントロール弁v1の開度を調整し、原液が所定
温度になるように調整される。In the above treatment, the temperature history within the anaerobic tank 1 is an important factor for increasing reaction efficiency. Therefore, the opening degree of the control valve v1 is adjusted based on the signal from the thermometer T1, and the stock solution is adjusted to a predetermined temperature.
ここで所定温度とは、原液が嫌気槽1に投入され嫌気処
理を受けた時に最適温度に維持可能な設定値であシ、原
液の流量、濃度等によシ変化するので、流量計FRB、
COD計CO,D、の信号等を入力して演算制御器10
において演算される。原液を所定温度に調整しても、嫌
気槽1における実際の処理では種々の要因により温度が
変動し、効率が低下するので、温度計T2の信号により
コントロール弁■、の開度が補正される。この段階にお
ける補正も温度計T1、流量計FR8,COD計COD
、、C0D2等の信号を入力して演算を行い嫌気槽1内
の温度が反応の最適温度に維持されるように行われる。Here, the predetermined temperature is a set value that can be maintained at the optimum temperature when the stock solution is put into the anaerobic tank 1 and subjected to anaerobic treatment, and it changes depending on the flow rate, concentration, etc. of the stock solution, so the flow meter FRB,
The signals of the COD meters CO, D, etc. are input to the arithmetic controller 10.
It is calculated in Even if the stock solution is adjusted to a predetermined temperature, the temperature fluctuates due to various factors during actual processing in the anaerobic tank 1, reducing efficiency, so the opening degree of the control valve (■) is corrected based on the signal from the thermometer T2. . Corrections at this stage include thermometer T1, flowmeter FR8, and COD meter COD.
, , C0D2, etc. are input and calculations are performed so that the temperature inside the anaerobic tank 1 is maintained at the optimum temperature for the reaction.
嫌気槽1のpHも反応に重要な因子となるので、pH計
pH1の信号によりコントロール弁V2の開度を調整し
、原液が所定pHとなるように調整される。Since the pH of the anaerobic tank 1 is also an important factor in the reaction, the opening degree of the control valve V2 is adjusted based on the signal from the pH meter pH1 so that the stock solution has a predetermined pH.
ここで所定pHとは、嫌気槽1に導入され嫌気性反応を
受けたときに最適pHとなる設計値であり、原液の流量
等により変化するので、流量計FR8の信号等を入力し
て演算される。原液を所定pHに調′整しても嫌気槽1
では、生成する有機酸により pHが設計値を外れて変
動し、反応効率が低下するので、pHHI3H2の信号
によシコントロール弁■2の開度が補正される。Here, the predetermined pH is a design value that becomes the optimum pH when introduced into the anaerobic tank 1 and undergoes an anaerobic reaction.Since it changes depending on the flow rate of the stock solution, etc., it is calculated by inputting the signal of the flowmeter FR8, etc. be done. Even if the stock solution is adjusted to the specified pH, the anaerobic tank 1
In this case, the generated organic acid causes the pH to deviate from the designed value and the reaction efficiency to decrease, so the opening degree of the control valve (2) is corrected by the signal of pHHI3H2.
嫌気処理において最も重要な因子は負荷となる原液の供
給量であり、原液の有機物によって嫌気槽1における滞
留時間を変化させる必要があるため、COD計COD、
の信号により適正な流量が演算制御器10において演算
され、ポンプ制御器11により原液供給ポンプP1の供
給量が調整され、流量計FR8によってチェックされる
。ここで適正な流量とは、原液が嫌気槽1に導入され、
前記温度およびpHで嫌気処理を受けたとき、放流基準
を満足する処理水質まで処理されるのに必要な滞留時間
となる単位時間当りの流量であり、原液のCODによっ
て変化する。The most important factor in anaerobic treatment is the supply amount of the stock solution that acts as a load, and it is necessary to change the residence time in the anaerobic tank 1 depending on the organic matter in the stock solution.
An appropriate flow rate is calculated by the arithmetic controller 10 based on the signal, the supply amount of the stock solution supply pump P1 is adjusted by the pump controller 11, and checked by the flowmeter FR8. Here, the appropriate flow rate means that the stock solution is introduced into the anaerobic tank 1,
When subjected to anaerobic treatment at the above temperature and pH, this is the flow rate per unit time that is the residence time necessary to treat the treated water to a quality that satisfies the discharge standards, and it changes depending on the COD of the stock solution.
このように原液のCO’Dによって流量を調整して原液
の供給を行っても、種々の要因により嫌気槽1内の反応
状態を一定に維持することは困難であるので、本発明で
は嫌気槽1内の反応状態を検出し、滞留時間を調整する
ため原液供給量が補正される。補正の第1の手段として
、嫌気槽1内の有機酸濃度が濃度計OAによって測定さ
れ、その濃度が高くなったときは原液供給量も少なくし
、濃度が低くなったときは原液供給量を多くするように
補正される。Even if the flow rate is adjusted according to the CO'D of the stock solution and the stock solution is supplied, it is difficult to maintain a constant reaction state in the anaerobic tank 1 due to various factors. 1, and the amount of stock solution supplied is corrected in order to adjust the residence time. As the first means of correction, the organic acid concentration in the anaerobic tank 1 is measured by the concentration meter OA, and when the concentration becomes high, the amount of stock solution supplied is decreased, and when the concentration is low, the amount of stock solution supplied is reduced. Corrected to increase.
補正の第2の手段として嫌気槽1内の酸化還元電位がO
RP計ORPによって測定され、所定値より高いときは
供給量を少なくし、低いときは多くするように補正され
る。補正の第6の手段として処理液のCODがCOD計
C0D2により測定され、所定値よシ高い場合は供給量
を少なくし、低いときは多くするように補正され、放流
基準を越えるときは供給が停止される。補正の第4の手
段として生成ガス中の炭酸ガス濃度がCO2計CO2に
より測定され、所定値より高い場合は供給量を多くし、
逆の場合は少なくするように補正される。As a second means of correction, the oxidation-reduction potential in the anaerobic tank 1 is
It is measured by an RP meter ORP, and when it is higher than a predetermined value, the supply amount is decreased, and when it is lower than a predetermined value, it is corrected to be increased. As the sixth means of correction, the COD of the processing liquid is measured by a COD meter C0D2, and if it is higher than a predetermined value, the supply amount is reduced, if it is lower than the predetermined value, it is corrected to be increased, and if it exceeds the discharge standard, the supply amount is reduced. will be stopped. As a fourth means of correction, the carbon dioxide concentration in the produced gas is measured by a CO2 meter, and if it is higher than a predetermined value, the supply amount is increased,
In the opposite case, the amount is corrected to decrease.
原液供給量の補正は、上記第1ないし、第4の手段が並
列的に行われ、どれか1つの要因に異常が発生した場合
、直ちに原液供給量を補正して反応・を正常な状態に戻
すようにされている。この場合、各測定手段の信号によ
多設定値との差をめ、流量計PR,SおよびCOD計C
OD+の信号から、適正な補正量が演算制御器10にお
いて演算され、ポンプ制御器11によシ補正が行われる
。The correction of the stock solution supply amount is carried out in parallel by the above-mentioned first to fourth means, and if an abnormality occurs in any one of the factors, the stock solution supply amount is immediately corrected to bring the reaction to a normal state. It is supposed to be returned. In this case, the difference between the signal of each measuring means and the multi-setting value is determined, and the flowmeter PR, S and COD meter C are measured.
An appropriate correction amount is calculated by the arithmetic controller 10 from the OD+ signal, and the pump controller 11 performs the correction.
以上の制御では温度計T、、pH計pi−1,、C,O
D計 □COI)、に原液の温度、p)lSCODが測
定され、これにより設計値に従った調整量が演算され、
設計値に従ったフィードフォワード制御が行われる。In the above control, thermometer T, pH meter pi-1, C, O
D meter □COI), the temperature of the stock solution, p)lSCOD are measured, and from this the adjustment amount according to the design value is calculated,
Feedforward control is performed according to design values.
そしてこのようなフィードフォワード制御を行っても実
際の反応状態は変動するので、温度計T2、pH計pH
2、濃度計OA、or+pi+oap、COD計C0D
2、CO2計CO2等により嫌気槽1の温度、pl″I
、有機W 17i4度、酸化還元電位、処理水のCOD
、生成ガスの炭酸ガス濃度等の反応状態を検出し、フィ
−ドバック制御を行う。ここでフィードバック制御はフ
ィ−ドフォワード制御の調整量を補正するように行われ
るので、これらの一方による制御に比べて安定した嫌気
反応を行うことができる。Even if such feedforward control is performed, the actual reaction state will fluctuate, so thermometer T2 and pH meter pH
2. Densitometer OA, or+pi+oap, COD meter C0D
2. Temperature of anaerobic tank 1, pl″I by CO2 meter CO2 etc.
, organic W 17i4 degrees, redox potential, COD of treated water
, detects the reaction state such as the carbon dioxide concentration of the produced gas, and performs feedback control. Here, since the feedback control is performed to correct the adjustment amount of the feedforward control, it is possible to perform a more stable anaerobic reaction than with control using only one of these controls.
なお、以上の説明において、嫌気槽1における反応方法
は従来から行われている方法が採用でき、例えば酸生成
相とメタン生成相に分離する方法、これラヲ別の槽で行
う方法、スラッジブランケットを使用する方法、流動層
を使用する方法などが採用できる。また上記実施例にお
いては、原液および処理水のCODを測定するようにし
たが、TOCその他の水質を表わす値を測定して制御を
行ってもよい。嫌気槽1の反応状態の検出のために前記
各項目を並列的に測定して制御するようにしたが、これ
らの一部の項目のみによって制御してもよく、さらに前
記以外の反応状態を示す項目によって制御してもよく、
これらの項目の測定は人手によシ測定してもよい。In the above explanation, the reaction method in the anaerobic tank 1 can be a conventional method, such as a method of separating the acid production phase and a methane production phase, a method of performing this in a separate tank, a method of using a sludge blanket, etc. A method using a fluidized bed, a method using a fluidized bed, etc. can be adopted. Further, in the above embodiment, the COD of the stock solution and the treated water is measured, but control may be performed by measuring TOC or other values representing water quality. Although the above-mentioned items are measured and controlled in parallel to detect the reaction state of the anaerobic tank 1, the control may be performed using only some of these items, and the reaction state other than the above may also be indicated. May be controlled by item,
These items may be measured manually.
本発明はし尿、食品工業廃水などの高濃度または低濃度
の有機性廃水の処理に広く適用可能である。The present invention is widely applicable to the treatment of high-concentration or low-concentration organic wastewater such as human waste and food industry wastewater.
本発明によれば、嫌気槽内の反応状態を検出して原液供
給量を調整するようにしたので、反応状態に合った滞留
時間に調整して嫌気反応を一定に・維持し、高効率で高
度の処理を安定して行うことができる。According to the present invention, since the reaction state in the anaerobic tank is detected and the supply amount of the stock solution is adjusted, the residence time is adjusted to match the reaction state to maintain a constant anaerobic reaction, resulting in high efficiency. High-level processing can be performed stably.
図面は実施例の系統図であり、1は嫌気槽、1゜け演算
制御器、11/′iボ/ブ制御器、Pl、P2 けボ/
プ、FR8i”jfi量計、COD、 %C0D2HC
OD計、T+ 、T2 n温度計、1)Fl+ 、1)
H21’j: pH計、ORP f−1ORP計、CO
2はCO2計である。
代理人 弁理士 柳 原 成The drawing is a system diagram of the embodiment, in which 1 is an anaerobic tank, 1° calculation controller, 11/'ibo/bu controller, Pl, P2 kebo/
FP, FR8i”jfi quantity meter, COD, %C0D2HC
OD meter, T+, T2n thermometer, 1) Fl+, 1)
H21'j: pH meter, ORP f-1 ORP meter, CO
2 is a CO2 meter. Agent Patent Attorney Sei Yanagihara
Claims (3)
嫌気槽に原液を供給する原液供給手段、嫌気槽から処理
液を取出す処理液取出手段、嫌気槽から生成ガスを取出
すガス取出手段、嫌気槽内を所定温度に維持するように
原液に蒸気を供給する蒸含゛供給手段、嫌気槽内を所定
pliに維持するように原液に中和剤を供給する中和剤
供給手段、および嫌気槽内の反応状態を検出し滞留時間
を調整するだめ原液供給量を調整する制御手段を備えた
ことを特徴とする嫌気性処理装置。(1) An anaerobic tank for decomposing organic matter through anaerobic treatment, a stock solution supply means for supplying stock solution to the anaerobic tank, a processing liquid extraction means for taking out the processing liquid from the anaerobic tank, a gas extraction means for taking out the produced gas from the anaerobic tank, anaerobic A steam supply means for supplying steam to the stock solution so as to maintain the inside of the tank at a predetermined temperature, a neutralizing agent supply means for supplying a neutralizing agent to the stock solution so as to maintain the inside of the anaerobic tank at a predetermined pli, and an anaerobic tank. What is claimed is: 1. An anaerobic treatment device comprising: a control means for detecting a reaction state in the tank, adjusting residence time, and adjusting the supply amount of stock solution.
、嫌気槽の反応状態の検出により原液供給量を補正する
ものである特許請求の範囲第1項記載の嫌気性処理装置
。(2) The anaerobic treatment apparatus according to claim 1, wherein the control means adjusts the amount of the undiluted solution supplied depending on the water quality of the undiluted solution, and corrects the amount of the undiluted solution supplied by detecting the reaction state of the anaerobic tank.
度もしくは酸化還元電位、処理水のCOD、または生成
ガスの炭酸ガス濃度の測定によるものである特許請求の
範囲第1項または第2項記載の嫌気性処理装置。(3) The reaction state in the anaerobic tank is detected by measuring the organic acid concentration or oxidation-reduction potential of the solution in the tank, the COD of the treated water, or the carbon dioxide concentration of the produced gas, as claimed in claim 1. Or the anaerobic treatment device according to item 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59068540A JPS60212293A (en) | 1984-04-06 | 1984-04-06 | Anaerobic treatment equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59068540A JPS60212293A (en) | 1984-04-06 | 1984-04-06 | Anaerobic treatment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60212293A true JPS60212293A (en) | 1985-10-24 |
JPH0443718B2 JPH0443718B2 (en) | 1992-07-17 |
Family
ID=13376675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59068540A Granted JPS60212293A (en) | 1984-04-06 | 1984-04-06 | Anaerobic treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60212293A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5099945A (en) * | 1987-12-01 | 1992-03-31 | Yamaha Hatsudoki Kabushiki Kaisha | Engine unit for vehicle |
JPH10230289A (en) * | 1997-02-20 | 1998-09-02 | Kurita Water Ind Ltd | Anaerobic treatment method |
JP2011200792A (en) * | 2010-03-25 | 2011-10-13 | Kobelco Eco-Solutions Co Ltd | Apparatus and method for anaerobic treatment |
KR20230071900A (en) * | 2021-11-16 | 2023-05-24 | (주)포스코이앤씨 | Apparatus and method for controling anaerobic digestion with real time monitoring |
-
1984
- 1984-04-06 JP JP59068540A patent/JPS60212293A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5099945A (en) * | 1987-12-01 | 1992-03-31 | Yamaha Hatsudoki Kabushiki Kaisha | Engine unit for vehicle |
JPH10230289A (en) * | 1997-02-20 | 1998-09-02 | Kurita Water Ind Ltd | Anaerobic treatment method |
JP2011200792A (en) * | 2010-03-25 | 2011-10-13 | Kobelco Eco-Solutions Co Ltd | Apparatus and method for anaerobic treatment |
KR20230071900A (en) * | 2021-11-16 | 2023-05-24 | (주)포스코이앤씨 | Apparatus and method for controling anaerobic digestion with real time monitoring |
Also Published As
Publication number | Publication date |
---|---|
JPH0443718B2 (en) | 1992-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7862722B2 (en) | Sewage treatment control device, method, and sewage treatment system | |
KR100589874B1 (en) | How to regulate aeration during biological treatment of wastewater | |
KR20120101464A (en) | Method for treating water within a sequential biological reactor including an in-line measurement of the nitrite concentration inside said reactor | |
JP2009502494A (en) | Method and apparatus for nitrogen enrichment (high nitrogen concentration) wastewater treatment in a continuous fractionation cycle biological reactor | |
CA2077206A1 (en) | Corrosion control for wet oxidation systems | |
CN107207301B (en) | Method for controlling aeration amount in activated sludge | |
KR20120000858A (en) | Rule-based real-time control method and system of sewage treatment process | |
KR100627874B1 (en) | Advanced sewage treatment control system and treatment method | |
JPS60212293A (en) | Anaerobic treatment equipment | |
JP5956372B2 (en) | Water treatment apparatus and water treatment method | |
KR102203751B1 (en) | Sludge reduction and its sewage treatment system | |
WO2022009481A1 (en) | Apparatus and method for controlling injection of coagulant in water treatment plant | |
JP4576845B2 (en) | Nitrogen-containing waste liquid treatment method | |
KR102169383B1 (en) | Sludge reduction and its sewage treatment method | |
JPH0411279B2 (en) | ||
JPS61287497A (en) | Anaerobic digester | |
JP3376620B2 (en) | Biological denitrification treatment apparatus and biological denitrification treatment method | |
KR20010086936A (en) | High disposal process for purifying the waste water having highly concentrated nutrition salt and its processing apparatus | |
AU2016214046B2 (en) | Optimisation of a pulp treatment method | |
JP5138472B2 (en) | Improved batch sewage treatment method | |
CN111943354B (en) | Carbon source adding method and system for denitrification filter tank system | |
JPH0475079B2 (en) | ||
JPS5888091A (en) | Method for controlling injection of chlorine in water purification plant | |
JPH04300698A (en) | Anaerobic water treating apparatus | |
JP2000288585A (en) | Injection control method of sodium carbonate and calcium ion-containing water treatment equipment using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |