[go: up one dir, main page]

JPS60210753A - Method and device for measuring channel average void fraction of gas-liquid two-phase flow - Google Patents

Method and device for measuring channel average void fraction of gas-liquid two-phase flow

Info

Publication number
JPS60210753A
JPS60210753A JP6729384A JP6729384A JPS60210753A JP S60210753 A JPS60210753 A JP S60210753A JP 6729384 A JP6729384 A JP 6729384A JP 6729384 A JP6729384 A JP 6729384A JP S60210753 A JPS60210753 A JP S60210753A
Authority
JP
Japan
Prior art keywords
electrode
gas
liquid
change
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6729384A
Other languages
Japanese (ja)
Inventor
Nobuo Yamamoto
山本 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP6729384A priority Critical patent/JPS60210753A/en
Publication of JPS60210753A publication Critical patent/JPS60210753A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To measure the average void ratio of a flowline with good accuracy by correcting the change in electrostatic capacity by the change in temp., by attaching an electrode having a constant width to the outer surface of a cylindrical insulator connected to a pipeline, through which a gas-liquid two-phase stream is flowed, on the same axis along with a thermocouple and applying high frequency voltage to said electrode to measure the change in electrostatic capacity. CONSTITUTION:A void detector consists of a cylindrical insulator 1, a void detecting electrode 3, a lead wire 4 and a thermocouple 5. The cylindrical insulator 1 having the same dimension as a pipeline 2 through which a gas-liquid two-phase stream is flowed is connected to the pipeline 2 on the same axis and an electrode 3 having a constant width is attached to said insulator 1 so as to extend over the entire outer peripheral surface thereof and sine wave high frequency voltage is applied to the electrode 3 while a resonance circuit is formed of the electrode 3 and an electrostatic capacity detection circuit 6 and the change in the electrostatic capacity of the electrode 3 due to the flow of the gas-liquid two-phase stream is detected as the change in the detected voltage from the lead wire 4 to measure the average void ratio of the flowline. The output of the thermocouple 5 is inputted to a temp. correction signal generation circuit and a temp. correction signal is inputted to a correction operation circuit 8 and an average void ratio, wherein the change in the electrostatic capacity by temp., is outputted.

Description

【発明の詳細な説明】 本発明は管路を流れる気液二相流の流路平均ボイド率を
管路の静電容量の変化から測定する方法及び装置に関し
、特に測定流体の温度変化に伴う静電容量の変化を測定
流体の温度を基準にして出力した信号を用いて補正した
気液二相流の流路平均ボイド率測定方法及び装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for measuring the flow path average void fraction of a gas-liquid two-phase flow flowing through a pipe from changes in the capacitance of the pipe, and particularly relates to a method and an apparatus for measuring the flow path average void fraction of a gas-liquid two-phase flow flowing through a pipe from changes in capacitance of the pipe. The present invention relates to a method and apparatus for measuring a flow path average void fraction of a gas-liquid two-phase flow in which a change in capacitance is corrected using a signal output based on the temperature of a measured fluid.

従来の管路の静電容量の変化からボイド率を測定する装
置には、探針型ボイド計、禅状型ボイド計等流体の流れ
の中に検出器をおく形式のボイド計がある。しかし、こ
の形式のボイド計では流路の局部のボイド率しか測定で
きず従って流路の平均ボイド率は測定できない欠点があ
り、また検出器を流れの中におくため流体の流れを乱す
欠点があった。更に、この形式のボイド計では測定流体
の温度が変化した場合には管路の静電容量が変動してし
まい、正確な平均ボイド率が測定できない体の温度が変
化する場合であっても測定流体の温度変化に伴う管路の
静電容量の変化を補正して精度良く流路の平均ボイド率
を測定できる気液二相流の流路平均ボイド率測定方法及
び装置を提供することである。
Conventional devices for measuring void ratio from changes in capacitance of pipes include probe-type void meters, Zen-shaped void meters, and other types of void meters in which a detector is placed in the flow of fluid. However, this type of void meter has the disadvantage that it can only measure the void fraction in a local area of the flow path, and therefore cannot measure the average void fraction of the flow path, and also has the disadvantage of disturbing the fluid flow because the detector is placed in the flow. there were. Furthermore, with this type of void meter, the capacitance of the conduit fluctuates when the temperature of the fluid being measured changes, making it impossible to accurately measure the average void ratio even when the body temperature changes. It is an object of the present invention to provide a method and device for measuring the average void fraction of a gas-liquid two-phase flow, which can accurately measure the average void fraction of a flow channel by correcting changes in capacitance of a pipeline due to changes in fluid temperature. .

以下に図面を診照して本発明の実施例について詳細に説
明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の気液二相流の流路平均ボイド率測定装
置の実施例を示す図である。この実施例のボイド検出器
は、筒形絶縁体1.ボイド検出用電極5.リード線4及
び熱電対5から構成される。
FIG. 1 is a diagram showing an embodiment of the flow path average void fraction measuring device for gas-liquid two-phase flow according to the present invention. The void detector of this embodiment consists of a cylindrical insulator 1. Void detection electrode 5. It is composed of a lead wire 4 and a thermocouple 5.

詳細には、気液二相流が流れている管路2と同じ寸法の
筒形絶縁体1を流れを乱さないように管路2と同軸上に
結合し、この筒形絶縁体1の外周表面に全周にわたって
一定の幅でボイド検出用電極6を取り付け、このボイド
検出用電極6に温度信号取り出し用リード線4を接続し
、終わりに測定流体の温度を測定する熱電対5を管路2
zに貫設して構成される。
In detail, a cylindrical insulator 1 having the same dimensions as the pipe 2 through which the gas-liquid two-phase flow flows is coaxially connected to the pipe 2 so as not to disturb the flow, and the outer circumference of the cylindrical insulator 1 is A void detection electrode 6 is attached to the surface with a constant width over the entire circumference, a temperature signal extraction lead wire 4 is connected to the void detection electrode 6, and a thermocouple 5 for measuring the temperature of the fluid to be measured is connected to the pipe. 2
It is constructed by penetrating the z.

第2図は本発明の気液二相流の流路平均ボイド率測定装
置の電気回路のブロック図である。ボイド検出用電極6
には常に一定周波数、例えば2ME(Zの正弦波高周波
電圧が町加されている。ボイド検出用電極3と静電容量
検出回路6とで共振回路が構成される。気液二相流が筒
形絶縁体1の内部を流れ、当該気液二相流に応じてボイ
ド検出用電極乙の静電容量が変化すると、前述の共振回
路のインピーダンスが変化する。これによりリード線4
による検出電圧が変化する。この検出電圧を知ることに
よってボイド検出用電極3の内部を流れる気液二相流の
流路平均ボイド率が測定できる。
FIG. 2 is a block diagram of the electric circuit of the flow path average void ratio measuring device for gas-liquid two-phase flow according to the present invention. Void detection electrode 6
A constant frequency, for example, a sinusoidal high frequency voltage of 2ME (Z) is always applied to the voltage. The void detection electrode 3 and the capacitance detection circuit 6 constitute a resonant circuit. When the capacitance of the void detection electrode B changes in accordance with the gas-liquid two-phase flow flowing inside the shaped insulator 1, the impedance of the above-mentioned resonant circuit changes.As a result, the lead wire 4
The detection voltage changes. By knowing this detection voltage, the channel average void ratio of the gas-liquid two-phase flow flowing inside the void detection electrode 3 can be measured.

測定流体の温度が変化する場合には、筒形絶縁体1内の
静電容量が変化し測定匝に再現性がなくなる。本実施例
では、これを補正するために前記熱電対5の出力を基に
筒形絶縁体1の静電容量の変化に応じた温度補正信号を
発生させる温度補正信号発生回路7を設けている。温度
補正信号発生回路7からの温度補正信号と静電容量検出
回路乙の出力信号とが補正演算回路8で加算、減算及び
除算演算されて、温度による静電容量の変化が補正され
た流路平均ボイド率が補正演算回路8から出力される。
When the temperature of the fluid to be measured changes, the capacitance within the cylindrical insulator 1 changes and the measurement spoof loses its reproducibility. In this embodiment, in order to correct this, a temperature correction signal generation circuit 7 is provided which generates a temperature correction signal according to the change in capacitance of the cylindrical insulator 1 based on the output of the thermocouple 5. . The temperature correction signal from the temperature correction signal generation circuit 7 and the output signal of the capacitance detection circuit B are subjected to addition, subtraction, and division calculations in the correction calculation circuit 8, thereby creating a flow path in which changes in capacitance due to temperature are corrected. The average void ratio is output from the correction calculation circuit 8.

第5図は流路平均ボイド率の実際の測定結果を例示する
図である。実際に試作した本発明の流路平均ボイド率測
定装置によって水−空気二相流の上向き流れのボイド率
測定と、ボイラから高温水を放出した際の水−蒸気二相
流のボイド率測定とを行なった。第6図に示した測定結
果は水−空気二相流の上向き流れのボイド率の測定匝と
設定値の関係を示している。この結果、良好な測定結果
が得られることを確認できた。
FIG. 5 is a diagram illustrating actual measurement results of channel average void ratio. The flow path average void fraction measurement device of the present invention, which was actually prototyped, can measure the void fraction of an upward flow of water-air two-phase flow and the void fraction of water-steam two-phase flow when high-temperature water is discharged from a boiler. I did this. The measurement results shown in FIG. 6 show the relationship between the measurement value and the set value of the void fraction of the upward flow of the water-air two-phase flow. As a result, it was confirmed that good measurement results were obtained.

本発明の効果は、ボイド検出用の筒形絶縁体1が管路と
同じ内径の筒形であるため二相流の流れを乱すことなく
流路平均ボイド率を測定できること、測定流体の温度が
変化しても温度補正が行なわれるので再現性の高い測定
を行うことができること、ボイド検出器の流路内に電気
ヒーター等の構造物を挿入した場合であっても構造物の
存在に無関係に高精度で流路平均ボイド率が測定できる
ことが挙げられる。
The effects of the present invention are that since the cylindrical insulator 1 for void detection is cylindrical with the same inner diameter as the pipe, the flow channel average void ratio can be measured without disturbing the flow of the two-phase flow, and the temperature of the measured fluid is Temperature correction is performed even if the temperature changes, so measurements can be performed with high reproducibility, and even if a structure such as an electric heater is inserted into the flow path of the void detector, it is independent of the presence of the structure. One of the advantages is that the flow path average void fraction can be measured with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の気液二相流の流路平均ボイド率測定装
置の実施例を示す図、第2図は第1図の測定装置の電気
回路のブロック図、第6図は流路平均ボイド率の実際の
測定結果を例示する図である。 1:筒形絶縁体 2:管 路 5:ボイド検出用電極 4:リード線 5:熱電対 6:静電容量検出回路 7:温度補正信号発生回路 8:補正演算回路 (外4名) 襄l凹 躬2[!I
FIG. 1 is a diagram showing an embodiment of the flow path average void ratio measuring device for gas-liquid two-phase flow of the present invention, FIG. 2 is a block diagram of the electric circuit of the measuring device shown in FIG. 1, and FIG. 6 is a flow path It is a figure which illustrates the actual measurement result of an average void ratio. 1: Cylindrical insulator 2: Pipe line 5: Void detection electrode 4: Lead wire 5: Thermocouple 6: Capacitance detection circuit 7: Temperature correction signal generation circuit 8: Correction calculation circuit (4 people in addition) Concave 2 [! I

Claims (1)

【特許請求の範囲】 +11 気液二相流体の流れる管路にこの管路と同じ寸
法の筒形絶縁体を同軸上に結合し、該筒形絶縁体の外表
面全周に電極を一定の幅で取り付け、該電極に所定周波
数の高周波電圧を印加し、前記管路の静電容量の変化を
測定することにより前記気液二相流の流路平均ボイド率
を測定することを特徴とする気液二相流の流路平均ボイ
ド率測定方法。 (2、特許請求の範囲第1項記載の方法において、流体
の温度変化を検出し、該温度変化に伴う前記静電容量の
変化を温度補正する補正信号を発生し、演算によって温
度補正された気液二相流の流路平均ボイド率を測定でき
ることを特徴とする気液二相流の流路平均ボイド率測定
方法。 (31気液二相流体の流れる管路と同じ寸法であって該
管路に同軸上に結合される筒形絶縁体と、該筒形絶縁体
の外表面全周に一定の幅で取り付けられ所定の高周波電
圧を印加される電極と、該電極からの静電容量の信号を
取り出すリード線と、測定流体の温度を検出する熱電対
と、前記電極の静電容量の変化を検出する静電容量検出
回路と、前記熱電対の出力を基にして静電容量の温度に
よる変化を補正する信号を発生する補正信号発生回路と
、前記靜′亀容量検出回路の出力と前記補正信号発生回
路の出力とを加算、減算及び除算演算し。 温度補正された静電容量信号を出力する補正演算回路と
から成ることを特徴とする気液二相流の流路平均ボイド
率測定装置。
[Claims] +11 A cylindrical insulator having the same dimensions as the conduit is coaxially connected to a conduit through which a gas-liquid two-phase fluid flows, and electrodes are provided at a constant rate around the entire outer surface of the cylindrical insulator. The average void fraction of the gas-liquid two-phase flow is measured by applying a high-frequency voltage of a predetermined frequency to the electrode and measuring the change in capacitance of the pipe. Method for measuring channel average void fraction in gas-liquid two-phase flow. (2. In the method set forth in claim 1, a temperature change in the fluid is detected, a correction signal for temperature-correcting the change in the capacitance accompanying the temperature change is generated, and the temperature is corrected by calculation. A method for measuring the average void fraction of a gas-liquid two-phase flow, characterized in that the average void fraction of the gas-liquid two-phase flow can be measured. A cylindrical insulator coaxially coupled to a conduit, an electrode attached at a constant width around the entire outer surface of the cylindrical insulator to which a predetermined high frequency voltage is applied, and capacitance from the electrode. A lead wire for extracting the signal, a thermocouple for detecting the temperature of the fluid to be measured, a capacitance detection circuit for detecting the change in the capacitance of the electrode, and a capacitance detection circuit for detecting the change in capacitance of the electrode, based on the output of the thermocouple. A correction signal generation circuit that generates a signal to correct changes due to temperature, and an output of the static capacitance detection circuit and an output of the correction signal generation circuit are subjected to addition, subtraction, and division operations. Temperature-corrected capacitance 1. A flow path average void fraction measuring device for gas-liquid two-phase flow, characterized by comprising a correction calculation circuit that outputs a signal.
JP6729384A 1984-04-04 1984-04-04 Method and device for measuring channel average void fraction of gas-liquid two-phase flow Pending JPS60210753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6729384A JPS60210753A (en) 1984-04-04 1984-04-04 Method and device for measuring channel average void fraction of gas-liquid two-phase flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6729384A JPS60210753A (en) 1984-04-04 1984-04-04 Method and device for measuring channel average void fraction of gas-liquid two-phase flow

Publications (1)

Publication Number Publication Date
JPS60210753A true JPS60210753A (en) 1985-10-23

Family

ID=13340788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6729384A Pending JPS60210753A (en) 1984-04-04 1984-04-04 Method and device for measuring channel average void fraction of gas-liquid two-phase flow

Country Status (1)

Country Link
JP (1) JPS60210753A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103776875A (en) * 2014-01-23 2014-05-07 天津大学 Four-section distributed conductivity sensor for two-phase flow detection
JP2014163891A (en) * 2013-02-27 2014-09-08 Mitsubishi Heavy Ind Ltd Gas-liquid ratio acquisition system, bearing device, rotary machine and gas-liquid ratio acquisition method
JPWO2023100793A1 (en) * 2021-11-30 2023-06-08

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163891A (en) * 2013-02-27 2014-09-08 Mitsubishi Heavy Ind Ltd Gas-liquid ratio acquisition system, bearing device, rotary machine and gas-liquid ratio acquisition method
CN103776875A (en) * 2014-01-23 2014-05-07 天津大学 Four-section distributed conductivity sensor for two-phase flow detection
JPWO2023100793A1 (en) * 2021-11-30 2023-06-08
WO2023100793A1 (en) * 2021-11-30 2023-06-08 京セラ株式会社 Bubble fraction meter

Similar Documents

Publication Publication Date Title
US4101827A (en) Method and apparatus for determining the location of a leak in a pipe buried underground
US4513624A (en) Capacitively-coupled magnetic flowmeter
US11629982B2 (en) Magnetic-inductive flowmeter and measuring point having a magnetic-inductive flowmeter of this type
CN109708564B (en) Gas-liquid/oil-gas-water multiphase flow liquid film thickness distributed conductivity measurement method
US4320650A (en) Flow rate measuring apparatus having vortex-generating element and hot wire element
US3587312A (en) Differential sensor bluff body flowmeter
US7946184B2 (en) Electromagnetic flowmeter having temperature measurement value for correcting electrical conductivity value
US9810559B2 (en) Systems and methods for detecting leaks in an electromagnetic flowmeter
US4688432A (en) Averaging velocity sensor for measuring fluid flow in a conduit
CN207795230U (en) Conductance probe sensor and water content measuring device using same
US4938073A (en) Expanded range magnetic flow meter
US11852514B2 (en) Magnetic-inductive flowmeter for rotationally unsymmetric flows
US4122714A (en) Magnetic current meter for open channel flow measurement
JPS60210753A (en) Method and device for measuring channel average void fraction of gas-liquid two-phase flow
US3885433A (en) Apparatus for measuring the velocity of flow of an electrically conductive fluid
EP0305609A1 (en) Averaging velocity sensor for measuring fluid flow in a conduit
CN117470326A (en) An electromagnetic flow measurement device and method
CN110243876B (en) Conductivity sensor for transient measurement of gas holdup in gas-liquid two-phase flow
JP3009314B2 (en) Capacitive electromagnetic flowmeter
JPH0257916A (en) Extreme temperature flowmeter
CN116223575B (en) Conductivity sensor for transient measurement of gas content in gas-liquid two-phase flow in spiral tube
TW202043709A (en) Full bore magnetic flowmeter assembly with temperature sensing element
CN110608786A (en) A Conductivity Liquid Level Gauge
KR890000690B1 (en) Piezoelectric sensor
US3040571A (en) Electromagnetic flowmeter for conductive fluids