[go: up one dir, main page]

JPS60210175A - Vibration wave motor - Google Patents

Vibration wave motor

Info

Publication number
JPS60210175A
JPS60210175A JP59065402A JP6540284A JPS60210175A JP S60210175 A JPS60210175 A JP S60210175A JP 59065402 A JP59065402 A JP 59065402A JP 6540284 A JP6540284 A JP 6540284A JP S60210175 A JPS60210175 A JP S60210175A
Authority
JP
Japan
Prior art keywords
vibrating body
vibration
ring
electrostrictive element
bending vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59065402A
Other languages
Japanese (ja)
Other versions
JPH0510914B2 (en
Inventor
Hitoshi Mukojima
仁 向島
Akira Hiramatsu
平松 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59065402A priority Critical patent/JPS60210175A/en
Publication of JPS60210175A publication Critical patent/JPS60210175A/en
Priority to US07/143,238 priority patent/US4831305A/en
Publication of JPH0510914B2 publication Critical patent/JPH0510914B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To obtain a high output by forming the peripheral surface of a vibrator as the contacting surface with a movable element in a motor for driving the element by generating a vibration wave by an electrostrictive element, and polarizing the elements into inner and outer rows, thereby efficiently generating the bending vibration in the ring surface. CONSTITUTION:A polarized ring-shaped electrostrictive element 112 is secured to the planar surface of a ring-shaped vibrator 31. The element is polarized in inner and outer rows in a plane oppositely in the polarizing direction. A movable element 35 energized by a spring 20 is planely contacted with the inner or outer peripheral surface of the vibrator 31, a frequency voltage to generate a bending vibration on the ring surface of the vibrator 31 is applied to the element 112 to drive the element 35. Thus, the bending vibration can be efficiently utilized, and the contacting area can be increased. Accordingly, high output can be obtained.

Description

【発明の詳細な説明】 本発明は進行性振動波により駆動する回転型の振1jJ
J波モータの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a rotary type vibration 1jJ driven by progressive vibration waves.
This relates to the structure of a J-wave motor.

振動波モータは、電歪素子に周波電圧を印加したときに
生ずる振動運動を回転運動又は−次元運動に変換するも
ので、従来の電磁モータに比へて巻線を必要としないた
め、構造が簡単で小型になり、低速回転時にも高トルク
か得られるという利点があり、近年注目されている。
A vibration wave motor converts the vibration motion that occurs when a frequency voltage is applied to an electrostrictive element into rotational motion or -dimensional motion, and has a simpler structure than conventional electromagnetic motors because it does not require windings. It has been attracting attention in recent years because it is simple, compact, and can provide high torque even when rotating at low speeds.

第1図、第2図は従来の振動波モータの駆動原理を示す
もので、第1図は上記モータの振動波の発生状態を示し
ている。振動体l (通常は金属)に接着された電歪素
子2a、2bは、振動体1の片側、適度に離れた所に、
空間的に入/4の位相ずれを満足するように配置されて
いる。
1 and 2 show the driving principle of a conventional vibration wave motor, and FIG. 1 shows the state in which vibration waves are generated by the motor. Electrostrictive elements 2a and 2b bonded to the vibrating body 1 (usually metal) are placed on one side of the vibrating body 1 at a moderate distance.
They are arranged to spatially satisfy a phase shift of 1/4.

振動体1を電歪素子2a、2bの一方の電極とし、電歪
素子2aには、交IQ電源3aから■=VOsinωt
、電歪素子2bには90″移相器3bを通して入/4位
相のすれたv=v□sin (ωt±π/2)の交流電
圧を印加する前記式中の(+) (−)が移動体5を動
かす方向によって移相器3bでυノ換えられる。今、(
−)側にνJ換えてあり、電歪素子2bには■=V□5
in(ωt−π/2)の電圧が印加されているとする。
The vibrating body 1 is used as one electrode of the electrostrictive elements 2a and 2b, and the electrostrictive element 2a is supplied with ■ = VO sin ωt from the AC IQ power source 3a.
, an AC voltage of v=v□sin (ωt±π/2) with input/four phases is applied to the electrostrictive element 2b through a 90″ phase shifter 3b. The phase shifter 3b changes υ depending on the direction in which the moving body 5 is moved.
−) side, and the electrostrictive element 2b has ■=V□5.
Assume that a voltage of in(ωt-π/2) is applied.

電歪素子2aだけが単独で電圧v=v□ s i nω
tにより振動した場合は、同図(a)に示すような定在
波による振動が起り、電歪素子2bだけが単独で電圧V
=VQsin (ωt−π/2)により振動した場合は
、同図(b)に示すような定在波による振動が起る。上
記位相のずれた2つの交流電圧を同時に各々の電歪素子
2a、22bに印加すると振動波は進行性になる。(イ
)は時間t=2nπ/ω、 (ロ)はt=π/2ω+2
nπ/ω、(ハ)はt=π/ω+2nπ/ω、(ニ)は
t=3π/2ω+2nπ/ωの時のもので、振動波の波
面はX方向に進行する。
Only the electrostrictive element 2a has a voltage v=v□ s i nω
When vibration occurs due to t, vibration occurs due to standing waves as shown in FIG.
=VQsin (ωt-π/2), vibration occurs due to a standing wave as shown in FIG. 2(b). When the two phase-shifted AC voltages are simultaneously applied to each electrostrictive element 2a, 22b, the vibration wave becomes progressive. (a) is time t=2nπ/ω, (b) is t=π/2ω+2
nπ/ω, (c) is when t=π/ω+2nπ/ω, and (d) is when t=3π/2ω+2nπ/ω, and the wavefront of the vibration wave advances in the X direction.

このような進行性の振動波は縦波と横波を伴なっており
、第2図に示すように振動体lの質点Aについて着目す
ると、縦振幅Uと横振幅Wで反時計方向の回転楕円運動
をしている。振動体lの表面には移動体5が加圧接触し
ており振動面の頂点にだけ接触することになるから(実
際には、ある幅をもって面接触している)、頂点におけ
る質点A、A′、・・・・・・・・・・・・の楕円運動
の縦振幅Uの成分に駆動され、移動体5は矢印N方向に
移動する。90@移相器により+90°位相をずらせば
振動波は−X方向に進行し、移動体5はN方向と逆向き
に移動する。
Such progressive vibration waves are accompanied by longitudinal waves and transverse waves, and if we focus on the mass point A of the vibrating body l as shown in Fig. 2, we can see that it forms an ellipse of revolution in the counterclockwise direction with a longitudinal amplitude U and a transverse amplitude W. I'm exercising. Since the movable body 5 is in pressure contact with the surface of the vibrating body 1 and is in contact only with the apex of the vibrating surface (actually, it is in surface contact with a certain width), the mass points A and A at the apex are The moving body 5 moves in the direction of the arrow N, driven by the component of the longitudinal amplitude U of the elliptical motion of ', . . . . If the phase is shifted by +90° using a 90@ phase shifter, the vibration wave will proceed in the -X direction, and the moving body 5 will move in the opposite direction to the N direction.

この振動波モータを使って回転運動を起こさせるような
回転型振動波モータの構造を第3図に示す゛。第4図は
その断面図である。第3図において11は主に金属より
なる弾性を有する振動体、12は振動体11に接合され
る電歪素子、15は振動体11に加圧接触する移動体、
16は回転円板(回転軸)、17は振動体itを支持す
る吸振体、18は固定体である。
FIG. 3 shows the structure of a rotary vibration wave motor that uses this vibration wave motor to generate rotational motion. FIG. 4 is a sectional view thereof. In FIG. 3, 11 is an elastic vibrating body mainly made of metal, 12 is an electrostrictive element joined to the vibrating body 11, 15 is a movable body that presses into contact with the vibrating body 11,
16 is a rotating disk (rotating shaft), 17 is a vibration absorber that supports the vibrating body it, and 18 is a fixed body.

電歪素子2と同様の構造よりなる電歪素子12に外部電
源より周波電圧を印加し、振動体11が共振するような
駆動周波数とする。バネ20によりスラスト軸受9を介
して振動体11に加圧接触する移動体15には摩擦力が
作用し、移動体15に接合されている回転軸16は回転
する。固定カバー21はビス22により固定体18に固
定され、電歪素子12と固定体18の間に吸振体17を
挿入する事で振動体11の超音波振動を固定体18に伝
えないような構造となっている。
A frequency voltage is applied from an external power source to an electrostrictive element 12 having a structure similar to that of the electrostrictive element 2, and a driving frequency is set such that the vibrating body 11 resonates. Frictional force acts on the movable body 15 that is pressed into contact with the vibrating body 11 via the thrust bearing 9 by the spring 20, and the rotating shaft 16 joined to the movable body 15 rotates. The fixed cover 21 is fixed to the fixed body 18 with screws 22, and has a structure in which the ultrasonic vibration of the vibrating body 11 is not transmitted to the fixed body 18 by inserting a vibration absorber 17 between the electrostrictive element 12 and the fixed body 18. It becomes.

しかしながら、この振動波モータを回転させた際には振
動体11がリング状をなしているため、第2図に示す様
なモードの振動をするだけではなく、振動体11がリン
グ面に垂直な方向に曲げ振動を生じるとともにリング面
の円周方向のまわりに第5図に示す様なねじりが発生し
、リング面に垂直な曲げ振動とリング面の円周方向のま
わりのねじりがともに発生する。ここで振動波モータに
おいてはリング面に垂直な方向に生じる曲げ振動による
進行波を利用して移動体15を駆動していたためリング
面の円周方向のまわりに発生する振動のねじり成分番と
よる進行波を有効に利用していなかったため、円周方向
のまわりに発生する振動のねじり成分のエネルギーが損
失することになった。
However, when this vibration wave motor is rotated, since the vibrating body 11 has a ring shape, it not only vibrates in the mode shown in Fig. 2, but also vibrates in a direction perpendicular to the ring surface. Bending vibration occurs in the direction, and twisting occurs around the circumferential direction of the ring surface as shown in Figure 5, and both bending vibration perpendicular to the ring surface and twisting around the circumferential direction of the ring surface occur. . Here, in the vibration wave motor, since the moving body 15 is driven using the traveling wave caused by the bending vibration generated in the direction perpendicular to the ring surface, the torsional component number of the vibration generated around the circumferential direction of the ring surface is determined. Since the traveling waves were not used effectively, the energy of the torsional component of the vibration generated around the circumference was lost.

したがって振動波モータの効率が低下するという欠点が
あった。
Therefore, there is a drawback that the efficiency of the vibration wave motor is reduced.

更には振動体11のリング面の円周方向のまわりの振動
のねじり成分の振幅は第5図に示すようにリング面の内
径側から外径側にうつるにつれて大きくなるため振動体
11の表面上に発生する質点の楕円運動は内径側から外
径側に行くに従って大きくなる。その結果移動体15が
おもにリング面の外径側の部分に接触し、振動体11の
リング面の内径側の部分には接触しなくなる。
Furthermore, since the amplitude of the torsional component of the vibration around the circumferential direction of the ring surface of the vibrating body 11 increases from the inner diameter side to the outer diameter side of the ring surface as shown in FIG. The elliptical motion of the mass point that occurs in the curve increases from the inner diameter side to the outer diameter side. As a result, the movable body 15 mainly contacts the outer diameter side portion of the ring surface, and does not contact the inner diameter side portion of the ring surface of the vibrating body 11.

すなわち移動体15と振動体11の接触面積は実質的に
小さくなり振動体lの進行波が移動体15に伝わる効率
が低下して充分な出力が得られなくなるという欠点があ
った。
That is, the contact area between the movable body 15 and the vibrating body 11 becomes substantially small, and the efficiency with which the traveling wave of the vibrating body 1 is transmitted to the movable body 15 decreases, resulting in a disadvantage that a sufficient output cannot be obtained.

この点に鑑みてリング面の円周方向のまわりの振幅のね
じり成分の振動をモータの駆動に用いるのではなく、リ
ング面へ面内の曲げ振動を利用して移動体を駆動させる
方法が考えられている。リング面の面内の曲げ振動を第
6図を用いて説明する。
In view of this, instead of using the vibration of the torsional component of the amplitude around the circumferential direction of the ring surface to drive the motor, a method has been considered that uses in-plane bending vibration to the ring surface to drive the moving body. It is being In-plane bending vibration of the ring surface will be explained using FIG. 6.

第6図は振動体11と電歪素子12のリング面内の曲げ
振動を示す図で、振動体11の固有振動モードを有限要
素法で解析した図である。
FIG. 6 is a diagram showing the bending vibration within the ring plane of the vibrating body 11 and the electrostrictive element 12, and is a diagram obtained by analyzing the natural vibration mode of the vibrating body 11 using the finite element method.

(波数が3の場合)第6図において11’は振動体で有
限要素法で解析する微小単位を格子に分割して描いであ
る。11″は振動体11’が面内曲げ振動を起こしてい
ることを示しており、振動体の内側と外側のみ示しであ
る。第6図では振動体11の面内曲げ振動をわかりやす
く表現するため面内曲げ振動の振幅の大きさを誇張しで
ある。尚面内振動を起こすのに適した周波数f2は下式
でめられる。
(When the wave number is 3) In Fig. 6, 11' is a vibrating body, and the minute units to be analyzed by the finite element method are divided into lattices. 11'' indicates that the vibrating body 11' is causing in-plane bending vibration, and only the inside and outside of the vibrating body are shown. Figure 6 expresses the in-plane bending vibration of the vibrating body 11 in an easy-to-understand manner. Therefore, the magnitude of the amplitude of the in-plane bending vibration is exaggerated.The frequency f2 suitable for causing the in-plane vibration can be determined by the following formula.

ここで、A;振動体の断面図、E;ヤング率、n;振動
の波数、r;振動体リングの半ある。 従来用いられた
振動子の電歪素子12の配置方法は第7図に示される。
Here, A: sectional view of the vibrating body, E: Young's modulus, n: wave number of vibration, r: half of the vibrating body ring. A method of arranging the electrostrictive element 12 of a conventionally used vibrator is shown in FIG.

尚第7図は電歪素子12の配置を示す平面図である。第
7図においてO″位相極を12aが±90°位相極を1
2bが示して、それぞれλ/4離れていて、この場合は
波数6の例を示している。
Incidentally, FIG. 7 is a plan view showing the arrangement of the electrostrictive element 12. In Figure 7, the O'' phase pole is 12a, and the ±90° phase pole is 1
2b are shown and are separated by λ/4 from each other, in this case showing an example of a wave number of 6.

しかしながら従来の電歪素子12の配置方法では第6図
に示した面内曲げ振動の振幅が大きくならないという欠
点があった。したがって効率を向上させることができず
、また出力も大きくすることができなかったという欠点
があった。
However, the conventional method of arranging the electrostrictive element 12 has the disadvantage that the amplitude of the in-plane bending vibration shown in FIG. 6 cannot be increased. Therefore, there were drawbacks in that efficiency could not be improved and output could not be increased.

本発明はこの点に鑑みて振動子の面内曲げ振動を起しゃ
す〈電歪素子の配置した振動波モータを提供することを
目的とするものである。
In view of this point, it is an object of the present invention to provide a vibration wave motor in which an electrostrictive element is arranged to cause in-plane bending vibration of a vibrator.

第8図は本発明の一実施例あ振動波モータの断面図で、
第9図は電歪素子112の配置を示す平面図である。第
8図において112は電歪素子、35は移動体、36は
回転円板でその他の第4“図を同じ要素については説明
を省略する。第9図においてθ″位相極を112aが±
906位相極をl 12bが示して、それぞれ入/4#
れているのは第7図に示す従来例と同じである。これも
波数6の例である。但し、内・外2列に、分極方向の異
なる電歪素子の配置としている点か異なる。従って、外
側の電歪素子が長方方向に伸びる時、内側の゛電歪素子
が縮み、外側の電歪素子が縮む時、内側の電歪素子が伸
びるので、リング面内の曲げ振動が発生し41b、電歪
素子112よりなる摩擦駆動部の断面を示す断面図、第
10図(a)が、振動体の内径面を移動体との接触面と
する例、第10図(b)が、振動体の外径面を移動体と
の接触面とする例である。第1O図に示した実施例に依
れば、振動体の内径面又は外径面を、移動体との接触面
とし、リング面内の振動を駆動に用いる事ができる。実
際は、第1O図に示す様に、接触面はリング面に対しで
ある傾きを持ち、自動調心性を持たせである。
FIG. 8 is a sectional view of a vibration wave motor according to an embodiment of the present invention.
FIG. 9 is a plan view showing the arrangement of the electrostrictive element 112. In FIG. 8, 112 is an electrostrictive element, 35 is a movable body, and 36 is a rotating disk, and the description of other elements that are the same as those in FIG. 4 will be omitted. In FIG.
906 phase poles are indicated by l 12b, respectively input/4#
This is the same as the conventional example shown in FIG. This is also an example of wave number 6. However, the difference is that electrostrictive elements with different polarization directions are arranged in two inner and outer rows. Therefore, when the outer electrostrictive element extends in the longitudinal direction, the inner electrostrictive element contracts, and when the outer electrostrictive element contracts, the inner electrostrictive element stretches, causing bending vibration within the ring plane. 10(a) is a cross-sectional view showing a cross section of a friction drive unit made of an electrostrictive element 112, and FIG. 10(b) is an example in which the inner diameter surface of the vibrating body is the contact surface with the moving body. This is an example in which the outer diameter surface of the vibrating body is the contact surface with the moving body. According to the embodiment shown in FIG. 1O, the inner diameter surface or outer diameter surface of the vibrating body is used as the contact surface with the moving body, and vibration within the ring surface can be used for driving. Actually, as shown in FIG. 1O, the contact surface has a certain inclination with respect to the ring surface, and is designed to have self-centering properties.

以上説明した様に、振動体の内径又は外径面を移動体と
の接触面とし、リング面内の曲げ振動の発生し易い電歪
素子の配置にする事で、リング面内の曲げ振動を効率よ
く駆動に利用し、振動体の厚さに応じて前記接触面積を
拡大できるので、高出力が得られる。また、前記接触面
がリング面に対して傾いているので、自動調心性を有し
、回転ムラの少ない安定した出力が得られる。
As explained above, by using the inner diameter or outer diameter surface of the vibrating body as the contact surface with the moving body, and arranging the electrostrictive element where bending vibration within the ring surface is likely to occur, bending vibration within the ring surface can be suppressed. Since the contact area can be efficiently used for driving and the contact area can be expanded according to the thickness of the vibrating body, high output can be obtained. Further, since the contact surface is inclined with respect to the ring surface, it has self-aligning property and stable output with little rotational unevenness can be obtained.

更に、平板状の電歪素子を用いるので簡単な開園、第3
図、第4図はそれぞれ従来例の斜視図及び断面図、第5
図は従来の振動波モータの振動体、移動体の振動を示す
断面図、第6図は振動体11と電歪素子12のリング面
内の曲げ振動を示す図、第7図は従来の電歪素子の配置
方法を示す図、第8図は本発明の一実施例の振動波モー
タの断面図、第9図は本発明の電歪素子の配置方法を示
す図、第1O図は移動体、振動体、電歪素子からなる摩
擦駆動部の断面を示す断面図である。
Furthermore, since a flat plate-shaped electrostrictive element is used, it is easy to open the park, and the third
Figure 4 is a perspective view and sectional view of the conventional example, and Figure 5 is a perspective view and a sectional view of the conventional example, respectively.
The figure is a cross-sectional view showing the vibration of the vibrating body and moving body of a conventional vibration wave motor, FIG. 6 is a diagram showing the bending vibration within the ring plane of the vibrating body 11 and the electrostrictive element 12, and FIG. FIG. 8 is a cross-sectional view of a vibration wave motor according to an embodiment of the present invention, FIG. 9 is a diagram showing a method of arranging an electrostrictive element of the present invention, and FIG. FIG. 2 is a cross-sectional view showing a cross section of a friction drive unit including a vibrating body and an electrostrictive element.

1.11.31.41a、41bは振動体。1.11.31.41a and 41b are vibrating bodies.

5.15,35.45a、45bは移動体。5.15, 35.45a, 45b are moving objects.

2.12,112は電歪素子、17は吸振絆である。2. 12 and 112 are electrostrictive elements, and 17 is a vibration absorbing bond.

第1圏 C二) χ 手続補正書(方式) 昭和59年 7月26日 事件の表示 昭和59年 特許願 第 65402 号発明の名称 振動波モータ 補正をする者 事件との関係 特許出願人 任 所 東京都大田区下丸子3−30−2名称 (+0
0)キャノン株式会社 5、補正命令の日付 昭和59年6月26日(発送日付) 6、補正の対象 明細書 7、補正の内容
Category 1 C2) χ Procedural amendment (method) Indication of the July 26, 1980 case 1982 Patent application No. 65402 Name of the invention Vibration wave motor Amendment person Relationship with the case Patent applicant's office 3-30-2 Shimomaruko, Ota-ku, Tokyo Name (+0
0) Canon Co., Ltd. 5. Date of amendment order: June 26, 1980 (shipment date) 6. Specification subject to amendment 7. Contents of amendment

Claims (1)

【特許請求の範囲】[Claims] (、t )リング状振動体の平面部に複数の゛−E歪素
子の位相差的に接合し、又は複数に位相差的に分極処理
された電歪素子を接合し、該電歪素子に周波電圧を印加
して該振動体に進行性振動波を発生させ、その進行性振
動波により、前記振動体に加圧接触させた移動体を摩擦
駆動するモータにおいて、前記振動体の内径面又は外径
面を、前記移動体との接触面とし、電歪素子の配置を、
内・外2列に分極方向の異なる1rki置として駆動周
波数を、前記振動体リング面内の曲げ振動の発生する共
振動波数とするモータ。
(, t) A plurality of ゛-E strain elements are joined to the plane part of the ring-shaped vibrating body in a phase difference manner, or a plurality of electrostriction elements polarized in a phase difference manner are joined to the plane part of the ring-shaped vibrating body. In a motor that applies a frequency voltage to generate a progressive vibration wave in the vibrating body, and uses the progressive vibration wave to frictionally drive a movable body that is brought into pressure contact with the vibrating body, the inner diameter surface of the vibrating body or The outer diameter surface is the contact surface with the moving body, and the electrostrictive element is arranged as follows.
A motor in which two rows of inner and outer polarization directions are arranged at 1rki intervals and the driving frequency is set to a resonant wave number at which bending vibration occurs in the plane of the vibrating ring.
JP59065402A 1984-04-02 1984-04-02 Vibration wave motor Granted JPS60210175A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59065402A JPS60210175A (en) 1984-04-02 1984-04-02 Vibration wave motor
US07/143,238 US4831305A (en) 1984-04-02 1988-01-07 Vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59065402A JPS60210175A (en) 1984-04-02 1984-04-02 Vibration wave motor

Publications (2)

Publication Number Publication Date
JPS60210175A true JPS60210175A (en) 1985-10-22
JPH0510914B2 JPH0510914B2 (en) 1993-02-12

Family

ID=13285981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59065402A Granted JPS60210175A (en) 1984-04-02 1984-04-02 Vibration wave motor

Country Status (1)

Country Link
JP (1) JPS60210175A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS552393A (en) * 1978-05-12 1980-01-09 Sp Pk I Tekunorogichiesukoe Bi Vibration motor
JPS55145575A (en) * 1979-04-24 1980-11-13 Sp Pk I Tekunorogichiesukoe Bi Vibrating motor
JPS59183087A (en) * 1983-04-02 1984-10-18 Shinsei Kogyo:Kk Surface wave motor
JPS60190178A (en) * 1984-03-08 1985-09-27 Matsushita Electric Ind Co Ltd Piezoelectric motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS552393A (en) * 1978-05-12 1980-01-09 Sp Pk I Tekunorogichiesukoe Bi Vibration motor
JPS55145575A (en) * 1979-04-24 1980-11-13 Sp Pk I Tekunorogichiesukoe Bi Vibrating motor
JPS59183087A (en) * 1983-04-02 1984-10-18 Shinsei Kogyo:Kk Surface wave motor
JPS60190178A (en) * 1984-03-08 1985-09-27 Matsushita Electric Ind Co Ltd Piezoelectric motor

Also Published As

Publication number Publication date
JPH0510914B2 (en) 1993-02-12

Similar Documents

Publication Publication Date Title
US4484099A (en) Piezoelectric vibration wave motor with multiple traveling wave generating members
JPH05949B2 (en)
US4831305A (en) Vibration wave motor
JPH0795777A (en) Oscillatory wave driving device
JPS61224878A (en) Vibration wave motor
JPS59148581A (en) Elastic wave motor
JPS60210175A (en) Vibration wave motor
JPS60210173A (en) Vibration wave motor
JP2994023B2 (en) Ultrasonic motor
JPH0448148Y2 (en)
JP2532425B2 (en) Ultrasonic motor
JPS61142977A (en) Vibration wave motor
JPS63277482A (en) Ultrasonic motor
JPS60210176A (en) Vibration wave motor
JPH03289371A (en) Oscillation wave motor
JPH0681523B2 (en) Vibration wave motor
JPS6135176A (en) Piezoelectric motor
JPH08172782A (en) Ultrasonic motor
JPS63277480A (en) Ultrasonic motor
JPH0474951B2 (en)
JP2885802B2 (en) Ultrasonic motor
JP2560873Y2 (en) Ultrasonic motor
JPH0223074A (en) Ultrasonic motor
JPS62254666A (en) Piezoelectric motor
JPS63268476A (en) Oscillatory wave motor