[go: up one dir, main page]

JPS60209214A - High-speed clarification process of filthy water - Google Patents

High-speed clarification process of filthy water

Info

Publication number
JPS60209214A
JPS60209214A JP6507884A JP6507884A JPS60209214A JP S60209214 A JPS60209214 A JP S60209214A JP 6507884 A JP6507884 A JP 6507884A JP 6507884 A JP6507884 A JP 6507884A JP S60209214 A JPS60209214 A JP S60209214A
Authority
JP
Japan
Prior art keywords
water
rock
particle size
treatment
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6507884A
Other languages
Japanese (ja)
Other versions
JPH0533081B2 (en
Inventor
Fujio Hotta
堀田 不二夫
Kiyoko Hotta
堀田 清子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6507884A priority Critical patent/JPS60209214A/en
Publication of JPS60209214A publication Critical patent/JPS60209214A/en
Publication of JPH0533081B2 publication Critical patent/JPH0533081B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PURPOSE:To clarify filthy water easily and in a short time utilizing the fact that precipitation of contaminants is performed quickly and with remarkably high clarifying effect when a mixture of fine igneous rock powder (e.g. liparite), fine powder of pumiceous sedimentary rock, and an inorg. coagulant is added to filthy water. CONSTITUTION:10-5,000ppm treating agent (a) consisting of fine powder of igneous rock such as liparite having an adjusted particle size distribution comprising >=70% particles having 30-100mum particle size, 0-500ppm treating agent (b) consisting of fine powder of pumiceous sedimentary rock having particle size adjusted to 30-100mum, and 10-10,000ppm inorg. coagulant comprising aluminium sulphate, were added to filthy water and the mixture is stirred and formed precipitate is removed. As the result, filthy water is clarified easily in a short time without requirement for a large size treating apparatus.

Description

【発明の詳細な説明】 (3−1) 産業上の利用分野 本発明は汚濁水を高速に清澄化する処理方法に係9、詳
細圧は、豪モ紋岩、真珠岩、泥溶岩等肢璃質に長石(斜
長石、アルカリ長石)を含む火成岩(以下単に「泉爬紋
岩等」ということにする。)の微粉と、免t、紋岩質浮
岩堆積岩、浮石質凝灰岩等壌璃質に斜長石を含む浮岩質
堆積岩(以下単に「浮岩質堆積岩」というときはこれを
指すことKする。)の微粉とを配合した微粉剤とアルミ
ニウム塩等の無機凝集剤とを同時に汚濁水に注入するこ
とによって汚濁成分の凝集沈降を従来法に較べて格段に
効率化した汚濁水の高速清澄処理法に関する。
Detailed Description of the Invention (3-1) Industrial Application Field The present invention relates to a treatment method for rapidly clarifying polluted water. Fine powder of igneous rocks containing feldspar (plagioclase, alkali feldspar) in the pyrite (hereinafter simply referred to as ``Izumi reptile, etc.'') and pyrolithic rocks such as pyrolithic floating rock sedimentary rock, pyrolithic tuff, etc. A pulverizing agent containing a fine powder of floating rock sedimentary rock containing plagioclase (hereinafter simply referred to as "floating sedimentary rock") and an inorganic flocculant such as aluminum salt are simultaneously polluted. The present invention relates to a method for high-speed clarification of polluted water, which makes coagulation and sedimentation of polluted components much more efficient than conventional methods by injecting them into water.

(3−2) 従来技術 濁質を含む水を処理する場合としては、上水、バエ業用
水の浄化処理、病院、学校、ホテル、厨房、産業排水等
の生活排水の処理、食品、染色、化学、薬品工場排水等
の工業排水の処理尋が考えられるが、いずれの場合に亀
、篩分槽、沈澱槽、ろ過徊等の設備を設置し、その設備
において適宜、吸着、凝集、活性化等の処理操作を行う
仁とによって清澄化が行なわれている。
(3-2) Conventional technology In the case of treating water containing suspended solids, it is possible to purify tap water, water for fly industry, treatment of domestic wastewater such as hospitals, schools, hotels, kitchens, industrial wastewater, food, dyeing, etc. Treatment of industrial wastewater such as chemical and pharmaceutical factory wastewater can be considered, but in either case, equipment such as a sieve, sieving tank, sedimentation tank, filtration tank, etc. will be installed, and the equipment will carry out adsorption, coagulation, and activation as appropriate. Clarification is carried out by means of processing operations such as the following.

たとえば上水の浄化処理においては、塩素によるマンガ
ン、鉄の化学的分離または滅菌処理、ポリ塩化アルミニ
ウムい硫酸アルミニウム、塩化鉄等の凝集剤と、消石灰
、ソーダ灰等の凝集助剤による沈澱等重力利用の物理的
、化学的処理、汚泥、活性態による生物学的処珈、等を
適宜組合わせる仁とによって処理が行なわれている。し
かしながらこれ等の汚濁水を処理する従来の処理法にお
いてはいずれも大型の処理設備が必要で、大きな設備費
と、設置場所を必要とし、また処理忙はかなりの時間を
必要とする欠点があった。
For example, in water purification treatment, chemical separation or sterilization of manganese and iron using chlorine, flocculants such as polyaluminum chloride, aluminum sulfate, and iron chloride, and coagulation aids such as slaked lime and soda ash are used to prevent gravity precipitation. Treatment is carried out by appropriate combinations of physical and chemical treatments, sludge, biological treatments using activated forms, and the like. However, all of these conventional treatment methods for treating polluted water require large-scale treatment equipment, requiring large equipment costs and installation space, and have the drawbacks of requiring considerable time for treatment. Ta.

(3−3) 発明の目的 本発明は汚濁水を清澄化する従来の処理法の以上述べた
欠点を改善し、大型の処理設備を必要とせず容易圧しか
も極めて短時間に汚濁水を清澄化する処理法を提供し、
併せて災害時等における緊急用水確保のための簡便な方
法を提供することな目的としている。
(3-3) Purpose of the invention The present invention improves the above-mentioned drawbacks of conventional treatment methods for clarifying polluted water, and clears polluted water easily and in an extremely short time without requiring large-scale treatment equipment. We provide a processing method to
The aim is also to provide a simple method for securing emergency water in times of disaster.

(3−4) 発明の構成・作用 汚濁水の処理用として無機凝集剤が使用されたのはか′
&)以前からであるが、産業、工業の発展に伴って、急
速な発展、変遷を経てお、り、1960年代に英国、米
国で塩基性塩化アルミニウムが発見され、我国において
はその改良品が発明され(特公昭47−21401号)
て広く使用されている。
(3-4) Structure and function of the invention When was an inorganic flocculant used to treat polluted water?
&) It has been going through rapid development and changes with the development of industry and industry for some time, and basic aluminum chloride was discovered in the UK and the US in the 1960s, and improved products of it were introduced in Japan. Invented (Special Publication No. 47-21401)
is widely used.

その特長に加水分解およびイオンによる吸着、フロック
架橋、凝集による汚濁分の分離にある。
Its features include separation of contaminants through hydrolysis, ion adsorption, floc cross-linking, and coagulation.

本発明の発明者はこの無機凝集剤に他の物質を加えて汚
濁水の清澄化を図ることKついて各種の研究を重ねた結
果、火成岩の一種で我国ではいたるところに存在してい
る鍋紋岩等と、同様に我国ではいたるところに存在して
いる浮−岩質堆積岩の微粉に無機凝集剤を加えることに
よって、汚濁物質の沈澱が著しく急速に行なわれ、しか
もその清澄効果も格段にすぐれていることを発見するに
至つ、た。
The inventor of the present invention has conducted various studies on adding other substances to this inorganic flocculant to clarify polluted water. By adding an inorganic flocculant to the fine powder of floating rocks, etc., which are also found everywhere in Japan, the sedimentation of pollutants is extremely rapid, and the clarification effect is also excellent. I came to discover that.

本発明はその結果なされたものであり、汚濁水に所定の
粒度調整を行なった糸臘岩等と、浮岩質堆棟岩の微粉と
無機凝集剤とを所定の割合で加え攪拌後生酸した沈澱物
を除去することKよって前記目的を達成している。
The present invention was made as a result of this, and after adding a predetermined ratio of itobara rock, etc. whose particle size has been adjusted to polluted water, fine powder of floating rock sedimentary rock, and an inorganic flocculant in a predetermined ratio, the raw acid was added to the polluted water. This objective is achieved by removing the precipitate.

以下各処理剤の成分について詳述する。The components of each processing agent will be explained in detail below.

(α)h紋岩等微粉:前記したよう町娩赦岩等は火成岩
の一種であシ、被璃質に斜長石、アルカリ長石等の長石
を含み、さらに石英、雲母を含有しており、岩漿が火山
から吹き出して硬化したものである。我国ではいたると
ころ忙産出するが、筆ル紋岩(τhyolitt)は長
野系更級郡稲山町、神戸市兵庫区有馬町、長野布、等に
産出するものが代表的なものである。また真珠岩(pa
rlitg)ま佐賀県伊万里市とか愛知県南設楽郡鳳来
寺山等圧産出するものが著名である。さらに泥溶岩(m
ud−1avα)の産地としては熊本系天草、宮崎県臼
杵郡高地穂町等が知られている。これらの火成岩はいず
れも30〜ioomμのものを70チ以上含有するよう
に粒度調整がされるが、30mμ未満の微粉は汚濁分の
凝集xPhjiLシ1吉hシ干、 片騒晧藺ルリ柊1.
?b正喜1.イ憎磐烟11fを悪くする欠点があシ、ま
た100mμを超えるものは急速に沈降するため、吸着
、凝集、フロックの生成を妨げる欠点を有する。
(α) Fine powder such as harystone: As mentioned above, Machikisha rock is a type of igneous rock, and contains feldspars such as plagioclase and alkali feldspar in its pyrite, and further contains quartz and mica. It is hardened rock volcanic material ejected from a volcano. Although it is produced all over the country, τhyolitt is typically found in Inayama Town, Sarashina District, Nagano, Arima Town, Hyogo Ward, Kobe City, and Naganofu. Also pearlite (pa
rlitg) Imari City, Saga Prefecture, and Mt. Horaiji, Minamishitara District, Aichi Prefecture are famous. Furthermore, mud lava (m
Kumamoto-based Amakusa, Takachiho-cho, Usuki-gun, Miyazaki Prefecture, etc. are known as producing areas of ud-1avα). The particle size of all of these igneous rocks is adjusted so that they contain 70 or more particles of 30 to ioomμ, but the fine powder of less than 30μ is agglomeration of contaminants. ..
? b Masaki 1. It has the disadvantage of worsening the 11f of smoke, and also has the disadvantage of impeding adsorption, coagulation, and formation of flocs because it rapidly settles if it exceeds 100 mμ.

粒径30〜lQQmμのもの7(lと定めたもう1つの
理由は、誤漱岩は金、銀、銅等の金属鉱床で、粉砕、微
粉化、精錬の工程中において前記範囲の粒径のものが不
要品として副産するため、原価がきわめて廉いからであ
る。
Another reason why the grain size is 30 to 1QQmμ7 (l) is that the rock is a metal deposit of gold, silver, copper, etc., and during the process of crushing, pulverization, and refining, the grain size in the above range is This is because the cost is extremely low because the product is produced as a by-product as an unnecessary item.

(b) 浮岩質堆積岩暑浮岩質堆積岩はその主成分は硫
紋岩等と同様に波璃質、長石、石英等から成っている。
(b) Floating sedimentary rock The main components of floating sedimentary rock are corrugated, feldspar, quartz, etc., as well as sulfurite.

簀る点は地紋者等が火山よp吹き出した岩漿が硬化した
火成岩であるのに対して、浮岩質堆積岩は、岩石が破砕
されて地表または水域に沈澱堆積して生成した多孔性の
岩石である点である。
In contrast to igneous rock, which is hardened rock that has been ejected from volcanoes, floating sedimentary rock is porous rock that is formed by crushing rocks and depositing them on the surface of the earth or in water. This is a point.

1岩質浮岩堆積岩(rhyolitjc pwmicg
、sadimgntary珪酸質、ナトリウム、カリ、
カルシウム類等)を吸着した火成岩が堆積岩に変質した
ものである。
1 lithology floating rock sedimentary rock (rhyolitjc pwmicg
, sadimgntary siliceous, sodium, potassium,
It is an igneous rock that has adsorbed calcium (calcium, etc.) and has been transformed into a sedimentary rock.

また浮石質凝灰岩(pumicgow ttLg)は栃
木県河内郡山山村に産する大谷石として知られる岩石で
ある。− これらの岩石は七〇粒径が30〜100mμになるよう
に粒度調整がされている。SOWμ未満の粒径のものは
帷紋岩等の場合と同様、汚濁分の凝集効果を妨げ、沈降
時間を著しく延長して清澄濁度を悪くする欠点があシ、
また100mμを超える粒は、急速に沈降するため吸着
、凝集、フロックの生成を妨げる欠点を有する。また浮
岩質堆積岩を加工して植物育成床やみがき砂を製造する
際に36〜lQQmμ程度のものが規格外品として副産
するため原価がきわめて廉いという点は疵紋岩等の場合
と同様である。
Furthermore, pumice tuff (pumicgow ttLg) is a rock known as Oya stone, which is produced in Yamayama Village, Kawachi District, Tochigi Prefecture. - The grain size of these rocks is adjusted so that the grain size is 30 to 100 mμ. Particles with a particle size smaller than SOW μ have the disadvantage of hindering the agglomeration effect of pollutants, significantly prolonging settling time, and worsening clarity and turbidity, as in the case of shingles, etc.
Furthermore, particles exceeding 100 mμ have the disadvantage of rapidly settling, which hinders adsorption, aggregation, and the formation of flocs. In addition, when processing floating rock sedimentary rock to produce plant beds and polishing sand, substances of the order of 36 to 1QQmμ are produced as non-standard products, so the cost is extremely low, similar to the case with rock. It is.

(C) 無機凝集剤:無機凝集剤は水の中に懸濁して力
が荷電による反発力を上回るようにして水中の汚濁物質
の凝集を促進する作用を持つものであり、安価で無害な
ものとしては、硫酸アルミニウム(Ajz(Sot)s
・18Hgo )、塩層性塩化アルミニウム(A〜(O
H)mc’sヤ、のポリマー)、硫酸第一鉄(Fs80
4゛7HsO)、塩化第二鉄(F#CLs°6 Hs 
O)、硫酸第二鉄CF<5(804)畠・F&出O)、
塩素化コツバラス(Fn(80m) *” FsCls
 ) 等カアル。上水道用に使用される無機凝集剤はJ
ISK−1475でその規格が定められている。
(C) Inorganic flocculants: Inorganic flocculants have the effect of promoting the flocculation of pollutants in water by suspending them in water so that the force exceeds the repulsive force due to electrical charge, and they are inexpensive and harmless. As aluminum sulfate (Ajz(Sot)s
・18Hgo), salt layered aluminum chloride (A~(O
H) mc's polymer), ferrous sulfate (Fs80
4゛7HsO), ferric chloride (F#CLs°6Hs
O), ferric sulfate CF < 5 (804) Hatake, F & De O),
Chlorinated Kotsubarasu (Fn (80m) *” FsCls
) Tokaal. The inorganic flocculant used for water supply is J.
The standard is defined in ISK-1475.

以上説明した処理剤(α)$(A)l(C)を適宜の割
合で配合し、汚濁水に加えて(汚濁水の性質如何によっ
ては適切な高分子凝集剤および凝集助剤を加えれば更に
よい結果が得られる。)、攪拌すれば、従来法に較べて
フロックの生成連間、沈降性はきわめて大きくなる。
By blending the treatment agents (α), $(A), l(C) described above in appropriate proportions, and adding them to the polluted water (depending on the nature of the polluted water, adding an appropriate polymer flocculant and coagulation aid), (better results can be obtained.) If the mixture is stirred, the floc formation rate and sedimentation properties will be significantly greater than in the conventional method.

たとえば濁度’l 4717至1フ0の汚れた河川水を
処理する場合、規定のシリンダーテスト法で攪拌した後
、処理水の全量を濁度2°まで低下させるに要する時間
は従来法では約125分、本発明に係る方法では約9分
であった。このように、本発明に係る処理法は従来法の
115〜”A5の短時間で汚濁水の高速処理化が可能で
ある。
For example, when treating polluted river water with a turbidity of 4,717 to 1,00 degrees, the conventional method requires approximately 30 minutes to reduce the total amount of treated water to a turbidity of 2 degrees after stirring using the specified cylinder test method. 125 minutes, and about 9 minutes in the method according to the invention. As described above, the treatment method according to the present invention enables high-speed treatment of polluted water in a short time of 115 to "A5" compared to the conventional method.

このような事実は、当業者にとって全く予想もできない
ことであり、従来何人もよくなし得なかつたことである
Such a fact was completely unexpected to those skilled in the art, and was something that no one had been able to accomplish in the past.

このような汚濁水の高速清澄化の作用機構4、未だ明ら
かではないが、次のように推測す・ることかできる。す
なわち処理剤(αバA)VC含まれる斜長石。
The working mechanism 4 of such high-speed clarification of polluted water is not yet clear, but it can be inferred as follows. In other words, plagioclase contains the treatment agent (αBaA) VC.

波縞質成分と多孔質の浮岩質堆積岩の成分構造による吸
着浄化作用に加えてp粒度調整された粒子の持つ負電荷
が硫酸イオンを含む凝集剤の高正電荷と適合した親和性
を持ち、さらに処理剤(a)、(A)の微粉が凝集剤に
よる巨大フロックの生成及び架橋を安定にし、適尚な大
きさに緊縮し、強固にする作用がある本のと考えられる
。また処理剤(α) I (b)に含まれる成分および
浮岩組織tit、水に溶解している不純物を強力に吸着
する作用があるものと推測される。以上のような物理的
、゛化学的作用によって汚濁水の高速清澄化が達成され
たものではないかと考えられる。
In addition to the adsorption purification effect due to the component structure of the wave-stripe component and porous floating rock sedimentary rock, the negative charge of the P particle size-adjusted particles has an affinity that matches the high positive charge of the flocculant containing sulfate ions. Furthermore, it is believed that the fine powder of processing agents (a) and (A) has the effect of stabilizing the formation and crosslinking of giant flocs by the flocculant, tightening them to an appropriate size, and making them stronger. It is also presumed that it has the effect of strongly adsorbing the components contained in the treatment agent (α) I (b), the floating rock structure tit, and impurities dissolved in water. It is thought that high-speed clarification of polluted water was achieved through the physical and chemical effects described above.

実際に本発明の処理法によって得られた凝集沈澱物を顕
彼鏡で調べると、処理剤(α)(b)の粒度を調整した
微粉は塩化アルミニウムの角錐単体間の汚濁物凝集結合
に凝着し、フロックの大きさも2〜3mmで架橋も密に
なつ七おシ、処理剤(a)(b)の効果がよく観察され
る。これに対して従来法で行った場合、凝集のフロック
の大きさは約4〜7mmで塩化アルミニウム角錐間のか
らみ合い、凝集およびフロックの架橋も粗であることが
観察される。
When the coagulated precipitate obtained by the treatment method of the present invention was actually examined under a microscope, it was found that the fine powder with adjusted particle size of the treatment agents (α) and (b) coagulated into the contaminant coagulation bonds between the pyramidal units of aluminum chloride. The effect of treatment agents (a) and (b) can be clearly observed, with the flocs having a size of 2 to 3 mm and dense crosslinking. On the other hand, when the conventional method is used, the size of the aggregated flocs is about 4 to 7 mm, and it is observed that the entanglement between the aluminum chloride pyramids, the aggregation, and the crosslinking of the flocs are rough.

また本発明の処□理法に係る顕微鏡調査ではフロックの
生成に洩れた多数のアルミニウム微細結合体(20〜1
00mμ)も1mμ前後以上の汚濁物を凝集結合してお
夛、これらにも洩れなく処理剤(α)。
In addition, microscopic investigations related to the processing method of the present invention revealed that a large number of aluminum fine aggregates (20 to 1
00mμ) also coagulates and binds contaminants with a size of around 1mμ or more, and the treatment agent (α) is used for these as well.

(b)粒子が凝着している□ことが観察される。従来法
ではこれらの汚濁物を含む20〜1ooo yxμ程度
のアルミニウム微細−合体は鹸化した有機物の妨げ等も
あp1沈降も浮上もせず長時間水中に浮遊するが、処理
剤(g)(A))tそれらすべての微細結合体の浮上を
抑え、水から分離沈降させている実態がよく観察される
(b) It is observed that the particles are adhered □. In the conventional method, fine aluminum aggregates of about 20 to 100 y x μ containing these pollutants remain suspended in water for a long time without settling or floating due to the interference of saponified organic matter, etc. ) It is often observed that all these fine aggregates are prevented from floating and are separated from the water and allowed to settle.

この処理剤(a)(b)を添加して水を清澄化する処理
法は従来の処理法とは処理時間的には逆行するものであ
る。すなわち、この処理剤(α) t (b)の添加に
より強制沈降のみをさ昼れば普通は水質の低下を生ずる
のは轟然である。・し・かしながら以上述べた。
This treatment method of adding treatment agents (a) and (b) to clarify water is a process that is backward in time from conventional treatment methods. That is, if only the forced sedimentation is prevented by adding the treatment agent (α)t(b), it is obvious that the quality of the water will deteriorate.・However, that is what I have said above.

ような本発明に係る処理法では後述実施データの水質試
験(第5表、第8表)に示すように処理剤(IZ) t
 (A)が不純物の吸収、吸着に大きな寄与をしている
ものと推定されるのである。
In the treatment method according to the present invention, the treatment agent (IZ) t
It is presumed that (A) makes a large contribution to the absorption and adsorption of impurities.

粒度調整範囲外の処理剤(α) l (A)微粉(たと
えば4mμ〜10711μ)は質量電荷が僅少であるた
6か、凝集剤との結合はなく、単体で水中を浮遊し、ま
た処理剤(α)(b)の粗大粒子(200mμ以上)は
塩化アルミニウムの角錐に凝着して急沈している。これ
らの観察から処理剤(Q) l (h)の粒度調整した
以外の粒子は凝集剤の特性とする汚濁物の吸着、凝集、
架橋、フロック沈降の機能を妨げていることが判明する
Treatment agent outside the particle size adjustment range (α) l (A) Fine powder (for example, 4 mμ to 10711 μ) has a small mass charge6, does not bond with the flocculant, and floats alone in water, and the treatment agent (α) The coarse particles (200 mμ or more) of (b) adhere to the pyramids of aluminum chloride and rapidly settle. From these observations, particles other than those whose particle size was adjusted in treatment agent (Q) l (h) have the characteristics of a flocculant, such as adsorption, flocculation, and
It was found that the cross-linking and floc sedimentation functions were hindered.

処理剤(a) L <b>は乾燥粒状で別々忙使用し、
または混合して使用する。処理剤(C)は液状で用いて
も乾燥粉粒で用いても効果に影響itない。
Treatment agent (a) L<b> is in dry granular form and used separately.
Or use a mixture. Whether the processing agent (C) is used in liquid form or in dry powder form, the effect is not affected.

また処理剤(α) j Cb) * (e)は乾燥粉粒
で使用するに際しては、水分による溶融同化等がない限
夛、長期間性能は安定している。
Furthermore, when the processing agent (α) j Cb) * (e) is used in the form of dry powder, its performance is stable over a long period of time as long as there is no melting and assimilation due to moisture.

本発明に係る高速清澄処理法の対象とまる水は上水、産
業排水、工業排水等であるが処理剤ra>、’。
The water targeted by the high-speed clarification treatment method according to the present invention includes tap water, industrial wastewater, industrial wastewater, etc., and the treatment agent ra>,'.

(A) # (0)の添加量は、被処理水の性質すなわ
ち濁度、懸濁粒子の大きさ、PH1電荷性、成分の種類
等 。
(A) # The amount of (0) added depends on the properties of the water to be treated, including turbidity, size of suspended particles, PH1 charge, type of components, etc.

の他処理濁度、処理装置の機構、処理用添加剤の有無そ
の他で一概に云うことはできない。
It is not possible to make a general statement depending on other factors such as the turbidity of the treatment, the mechanism of the treatment equipment, the presence or absence of additives for treatment, etc.

しかしながら、一般的には微細粒子懸濁液に対しては処
理剤(a)は約10〜5.000PPm 、 (A)は
約0〜500 ppm、 、(c)は約10〜10,0
00 ppm程度であp。
However, in general, for fine particle suspensions, the treatment agent (a) is about 10 to 5,000 ppm, (A) is about 0 to 500 ppm, and (c) is about 10 to 10,0 ppm.
p at about 00 ppm.

よシ具体的に云えば、下水汚泥に準するような懸濁粒子
の濃度が大きい場合には処理剤(α)は約500PPn
〜5,000 ppm、 (b)は0〜5007F77
1 (0)は約500〜10.000 ppmの範囲で
使用する。また地下水、河川水等比較的低濁度原液の場
合には処理剤(a)は10〜1ρOOppm 、 (A
)は0〜100.pPm (C)は10〜1,000p
p簿の範囲で使用する。
To be more specific, when the concentration of suspended particles is high, similar to that of sewage sludge, the treatment agent (α) is approximately 500 PPn.
~5,000 ppm, (b) is 0~5007F77
1(0) is used in a range of about 500 to 10.000 ppm. In addition, in the case of relatively low turbidity stock solutions such as groundwater and river water, the treatment agent (a) should be 10 to 1ρOOppm, (A
) is 0 to 100. pPm (C) is 10 to 1,000p
Use within the range of p book.

実際の処理に際してに被処理水の性質の必要事項を調査
した上で後記する実施例を参考にして実験的に最も優れ
た処理剤(α) + (b) + (’)の配分を定め
ることが必要である。
After investigating the necessary properties of the water to be treated during actual treatment, the most excellent distribution of treatment agents (α) + (b) + (') should be determined experimentally with reference to the examples described later. is necessary.

本発明の特筆すべき利用法としては災害時の緊急用水が
考えられる。地震等の災害時に際して最も不自由するの
は水であるというのが定説であるが、災害時に風呂水、
溜水等を本発明に係る方法で処理した後、次亜塩紫酸ソ
ーダを使用することによって後述風呂残シ湯の水質試験
で実証されるように簡単に飲用水が得られる。
A notable use of the present invention is for emergency water use during disasters. It is a well-established theory that water is the most inconvenient thing in the event of a disaster such as an earthquake.
After treating accumulated water or the like with the method of the present invention, by using sodium hypochlorite, potable water can be easily obtained as demonstrated by the water quality test of leftover bath water described below.

(3−5) 実施例 以下に本発明の効果等を具体的に理解す、るため圧ホテ
ル厨房排水、地“下水、河川水および風呂排水の高速清
澄処理の実施例について説明するが、これらはいずれも
例示のためのものであシ、本発明がこの実施例のみに限
定されることなく、他の各種の水処理にも有効に実施で
きることは勿論である。
(3-5) Examples In order to specifically understand the effects of the present invention, examples of high-speed clarification of hotel kitchen wastewater, underground sewage, river water, and bath wastewater will be described below. All of these examples are for illustrative purposes only, and it goes without saying that the present invention is not limited to these examples and can be effectively implemented in various other water treatments.

〔実施例1〕 (第1表、処理剤(α)は鶴紋岩微粉、
<h>は浮岩質堆積岩微粉を使用) 産業排水の一例としてホテル厨房排水で1次篩分沈降処
理後の2次排水(濁度74°)を採集し、これを11ジ
ヤーテストで清筺度試験を行なった。
[Example 1] (Table 1, treatment agent (α) is tsururoite fine powder,
<h> uses floating rock sedimentary rock fine powder) As an example of industrial wastewater, secondary wastewater (turbidity 74°) after primary sieve sedimentation treatment was collected from hotel kitchen wastewater, and this was tested for purity using an 11-jar test. I conducted a test.

本発明に係る処理法としては処理剤(α)soo(b)
10077mを混合し、処理剤(c)成分は水道用JI
S規格a粟剤700ppmと有機高分子1町を添加する
The processing method according to the present invention includes processing agent (α) soo (b)
10077m, and the treatment agent (c) component is JI for water supply.
Add 700 ppm of S standard A millet and 1 portion of organic polymer.

被処理液には処理後pH7,1となるようにNaOH溶
液を必要量加える。被処理液を攪拌しながら処理剤(C
)を注入し、次いで処理剤(α)(A)を添加し急速攪
拌(150y:pm、)を3分間行ない、続いて緩速攪
拌(40?:P、−を1°0分間行なった後10分間靜
装置てからその上澄液の濁度とCODの水質を測定した
A necessary amount of NaOH solution is added to the liquid to be treated so that the pH becomes 7.1 after treatment. The processing agent (C) is added while stirring the liquid to be processed.
) was injected, then treatment agent (α) (A) was added and rapid stirring (150y:pm, ) was performed for 3 minutes, followed by slow stirring (40?:P, - for 1°0 minutes). After 10 minutes in a quiet device, the turbidity and COD of the supernatant were measured.

その結果は第1表に示す通9である。The results are shown in Table 1.

第1表 水質試験結果 表中本発明品とあるのは本発明に係る方法で処理した処
理水を示しく以下の各実施例も同様である(ただし第2
表以下の実施例では有機高分子は使用していない。)λ
比較品とは比較のため忙行なった方法処理剤(α)l(
b)を添加せず、その他は本発明に係る処理法と同一の
処理を行なったもの。)で処理した処理水以下の各実施
例でも同様である。ル示してu4゜第1表の結果から明
らかなように1本発明に係る処理法では従来の処理法で
ある比較品に較べて濁度は急速に低下し優秀な成績を示
しているが、CODは殆ど変っていない。これは凝集剤
の特性を損っていないことを示している。
Table 1 In the water quality test results table, the product of the present invention indicates treated water treated by the method according to the present invention, and the same applies to each of the following examples (however,
In the examples below in the table, no organic polymer was used. )λ
The comparative product is a method treatment agent (α) l (
Item b) was not added, and the rest was treated in the same manner as the treatment method according to the present invention. ) The same applies to each of the following Examples. As is clear from the results in Table 1, the treatment method according to the present invention shows excellent results in that the turbidity rapidly decreases compared to the comparative product using the conventional treatment method. COD hasn't changed much. This shows that the properties of the flocculant are not impaired.

この例で示したように本発明に係る処理法においては前
記したようなジャーテスト攪拌方法でに沈降清澄が速す
ぎるため、以下の実施例では攪拌法として次に示すよう
なシリンダーテスト法を使250mJ−を採取し、処理
剤(α)(b)を注入し、次いで処理剤(C)を注入後
、急速転倒30秒、緩速転倒7分を行ない、静置する。
As shown in this example, in the treatment method according to the present invention, sedimentation and clarification are too fast with the jar test stirring method described above, so in the following examples, the cylinder test method as shown below is used as the stirring method. 250 mJ- was collected, treatment agent (α) (b) was injected, then treatment agent (C) was injected, followed by rapid inversion for 30 seconds and slow inversion for 7 minutes, and left to stand.

清澄が急速に行なわれるため、液全量の濁度およびpH
を測定する(液の上部、中部、下部より等量採取して行
なう。)。
Because clarification occurs rapidly, the turbidity and pH of the entire liquid
(Take equal amounts from the top, middle, and bottom of the liquid.)

なお上澄水については一部静置後の分刻みで記入する。For supernatant water, enter the information in minutes after it has been allowed to stand still.

処理剤(O)は上水道用凝集剤(JIS K−1475
規格品)を使用する。
The treatment agent (O) is a flocculant for waterworks (JIS K-1475
Standard products).

〔実施例2〕 (第2表、第3表、処理剤(G)(b)
は実施例1と同じ) 原水濁度98°、7)H7,42の地下水を採取し、処
理剤(a)(A)を一定((g) sooppm、 (
b) 10100ppとし、処理剤(C)の濃度を変化
させることによる静置後30分の濁度とpHの変化(第
2表)および処理剤(G)(A)(C)を定量にしたと
きの本発明品と従来法による比較品の経時濁度変化(第
3表)を測定した。
[Example 2] (Table 2, Table 3, Treatment agent (G) (b)
(same as Example 1) Raw water turbidity 98°, 7) Groundwater of H7.42 was collected, and treatment agents (a) and (A) were kept constant ((g) sooppm, (
b) Changes in turbidity and pH for 30 minutes after standing by changing the concentration of treatment agent (C) at 10,100 pp (Table 2) and quantification of treatment agents (G), (A), and (C). Changes in turbidity over time (Table 3) of the product of the present invention and a comparative product made by the conventional method were measured.

、第2表 処理剤(O)の注入量の変化による試験結果 〔処理剤(a)500ppm、 (b) 100PPI
定量添加、水温22°C〕 第3表 経時濁度試験結果 〔処理剤(g) 5ooPpm、 (A) 100FF
ffl (C) 2ooppm )この第2表の結果か
ら、処理剤(C)の注入量が200ppm以上であると
き、濁度の清澄化に著しい効果があられれていることが
わかる。また第3表の結果から、濁度の低下は比較品に
較べて著しく速く、また上澄液は静置後10分で0.8
°という良好な価を示し、比較品よシも優れていること
がわかる。
, Table 2 Test results by changing the injection amount of treatment agent (O) [Treatment agent (a) 500ppm, (b) 100PPI
Quantitative addition, water temperature 22°C] Table 3 Time-dependent turbidity test results [Treatment agent (g) 5ooPpm, (A) 100FF
ffl (C) 2ooppm) From the results in Table 2, it can be seen that when the injection amount of the treatment agent (C) is 200 ppm or more, a remarkable effect is achieved in clarifying the turbidity. In addition, from the results in Table 3, the decrease in turbidity was significantly faster than that of the comparative product, and the supernatant liquid was 0.8
It shows a good value of °, which shows that it is also superior to the comparative products.

以上第1表ないし第3表から、濁度50’〜100゜前
後の被処理液はその性質にもよるが処理剤(α)は50
0〜1,000 PPm、処理剤(b)ハ約1,000
 PPT!Ls処理剤(C)は200〜1,000 p
pm 、が実用され、また濁度100“以上の処理液に
ついては処理剤(a)(b)(C)の注入量はそれぞれ
前記以上のものが必要となる。
From Tables 1 to 3 above, it can be seen that for the liquid to be treated with a turbidity of around 50' to 100°, the processing agent (α) is 50°, depending on its properties.
0 to 1,000 PPm, processing agent (b) c approx. 1,000
PPT! Ls treatment agent (C) is 200 to 1,000 p
pm is used in practice, and for processing liquids with a turbidity of 100" or more, the injection amounts of processing agents (a), (b), and (C) must be greater than the above.

〔実施例3〕 (第4表、処理剤(α)(b)は実施例
1と同じ) 神奈川県鶴見用下流の表i水(濁度14.5°、pH7
,5)を採取し、前記試験法で測定を行った。この場合
処理剤(α) 250PP7に、 (b) 50PPW
L、 (C) 150PPm 、を原水に注入し、経時
濁度、pHおよび静置後lO分の上澄水濁度、pHを発
明品と比較品とで測定し、その結果を第4表に示した。
[Example 3] (Table 4, treatment agents (α) and (b) are the same as in Example 1) Table I water downstream of Tsurumi, Kanagawa Prefecture (turbidity 14.5°, pH 7
, 5) was sampled and measured using the test method described above. In this case, the treatment agent (α) is 250PP7, (b) 50PPW
L, (C) 150PPm was injected into raw water, and the turbidity over time, pH, and supernatant water turbidity and pH of 10 minutes after standing were measured for the invention product and the comparison product, and the results are shown in Table 4. Ta.

第4表 濁度・pH試験結果 〔水温24°C〕表に示
すように、静置後10分の濁度は比較品に較べて格段に
良好であり、また発明品においては処理液全量について
もきわめて速い濁度の低下を示している。
Table 4: Turbidity/pH test results [Water temperature 24°C] As shown in the table, the turbidity after 10 minutes of standing was much better than that of the comparative product, and the inventive product also showed that the total amount of treated liquid also shows an extremely rapid decrease in turbidity.

〔実施例4〕(第5表゛) 実施例3の原水を使用し、試験方法、処理剤、水温等も
実施例3と同一条件でテストを行ない1第4表に示すよ
うな急速な濁度の低下が水質に及ぼす影響を調べる目的
で発明品と比較品との九理液について水質の測定を行な
ってみた。すなわち、静置30分抜液をASAF紙でr
過し、2種のr液と原水でCODその他の項目を測定し
た。その結果は第5表に示す通シである。
[Example 4] (Table 5) Using the raw water of Example 3, a test was conducted under the same test method, treatment agent, water temperature, etc. as in Example 3.1 Rapid turbidity as shown in Table 4 was observed. In order to investigate the effect of a decrease in water temperature on water quality, we measured the water quality of the invented product and comparative product. In other words, let it stand for 30 minutes and drain it with ASAF paper.
COD and other items were measured using two types of R liquids and raw water. The results are shown in Table 5.

第5表 水質試験結果 表に示すように、濁度が急速に低下しているにも拘わら
ず、本発明品は比較品忙較べて水質が阻害されることな
く、各項目について向上がみられる。
As shown in Table 5, water quality test results, despite the rapid decrease in turbidity, the inventive product does not impede water quality compared to the comparative product, and improvements are seen in each item. .

〔実施例5〕(第6表、第7表、処理剤(α)は真珠岩
微粉(h)は実施例1と同じ) 家庭における残シ湯(風呂水)(濁度13.5°。
[Example 5] (Tables 6 and 7, the treatment agent (α) and pearlite fine powder (h) are the same as in Example 1) Household residual bath water (turbidity 13.5°).

pH7,24、濁質は主に水中に溶融または浮遊する有
機物)を1日経過後採取し試験を行なった。この試験は
緊急用水として風呂水が使用できるか否かをしらべるた
めのものである。本試験では本発明に係る高速清澄処理
が水質に及ぼす影響をみるためにCOD等他の賭項目も
併せて試験を行なった。
The pH was 7.24, and suspended solids (mainly organic matter dissolved or suspended in water) were collected after one day and tested. This test was conducted to determine whether bath water can be used as emergency water. In this test, other risk factors such as COD were also tested to see the effect of the high-speed clarification process according to the present invention on water quality.

まず第1の試験では処理剤(C)を先に注入し、処理剤
(G) l (b)を後から注入する方法を採用した。
First, in the first test, a method was adopted in which the treatment agent (C) was injected first, and the treatment agent (G) l (b) was injected later.

処理剤(C!)は150ppmで固定し、処理剤(a)
 t (A>pt 1 : 0.2の重量比で混合した
ものを用゛い、その混合物の注入量を−えて濁度、PH
を測定した。その結果は第6表に示す通りである。
The treatment agent (C!) was fixed at 150 ppm, and the treatment agent (a)
t (A>pt) A mixture with a weight ratio of 1:0.2 was used, and the injection amount of the mixture was changed to improve the turbidity and pH.
was measured. The results are shown in Table 6.

第6表 処理剤(4)、(b)の注入量変化による試験
結果〔静置後30分、水温24.5°C〕 また第2の試験では処理剤(α> 、 <b>は前記し
た1:0.2の重量比で混合したもので300ppmと
し、処理剤(C)は150ppmとして、濁度、COD
等の水質を測定した。その結果は第7表に示す通ルであ
るO 第7表 水質試験結果 尚このテストでは沈降物のみを排除して全波の測定をし
た。
Table 6 Test results by changing the injection amount of treatment agents (4) and (b) [30 minutes after standing, water temperature 24.5°C] In addition, in the second test, treatment agents (α>, <b> are as described above) 300 ppm was mixed at a weight ratio of 1:0.2, and the treatment agent (C) was 150 ppm.
The water quality was measured. The results are shown in Table 7. Table 7 Water quality test results In this test, only sediment was removed and the whole wave was measured.

第6表から判るように、処理剤(a) I (h)の混
合物の注入量は、この条件下では300.ppmで充分
であシ、それ9上の注入は特別な場合、たとえば原水が
高い汚濁度を示した場合等を除き必要がないものと思わ
れる。また第7表の結果から、本発明に係る処理法が異
常な高速清澄性を示しているKも拘わらず水質はさらに
”優秀な数値を示し、凝集剤の特性を全く損なわないこ
とが併せて実証されている。
As can be seen from Table 6, the injection amount of the mixture of treatment agents (a) I (h) was 300. ppm is sufficient, and injection above 9 is not considered necessary except in special cases, such as when the raw water exhibits a high degree of contamination. Furthermore, from the results in Table 7, it can be seen that although the treatment method according to the present invention exhibits an abnormally high-speed clarifying property, the water quality still shows excellent values and does not impair the properties of the flocculant at all. Proven.

〔実施例6〕(第8表、処理剤(α)(h)は実施例1
と同じ) 実施例5の所見によシ、更に荷酷な条件下で家庭風呂の
残水に対して厚生省令水質基準に基き、飲料水可否の試
験を行った。
[Example 6] (Table 8, treatment agent (α) (h) is the same as Example 1.
Based on the findings of Example 5, a test was conducted on the residual water in a home bath under even more severe conditions to determine whether it was drinkable based on the water quality standards of the Ministry of Health and Welfare.

家庭の風呂に2日間3人が連日入湯し、残シ湯を更に2
日間放置した後、試水用原水とした。処理剤(α)(A
)+i実施例1と同様であり、処理法に実施例5と同様
に行なったが、i理剤は(α)十(b)=200Pp”
 + (α) r (A)= 1 ? 0.1 t (
C)= 1100FFとした。
Three people bathed in the bath at home for two consecutive days, and added two more leftover baths.
After leaving it for a day, it was used as raw water for testing. Processing agent (α) (A
)+i is the same as in Example 1, and the treatment method was the same as in Example 5, but the i chemical is (α) + (b) = 200Pp”
+ (α) r (A) = 1? 0.1 t (
C) = 1100FF.

また処理水には滅菌剤として次亜塩素酸ソーダを残留塩
素が1.0 ppmになるように添加した。その結果は
第8表の通りである。
In addition, sodium hypochlorite was added to the treated water as a sterilizing agent so that the residual chlorine was 1.0 ppm. The results are shown in Table 8.

第8表 風呂残り湯の飲料適否試1結果〔処理剤(α)
十(b) = 200ppm (α):(A)=t :
 0.1 、(C)表の数値は厚生省令の水質基準に合
格しておル、しかも処理剤(α) 、 (b) 、 (
e)の分量は少くて済んでいる。すなわちこの高速沈降
処理法は緊急時に大きな威力を発揮することは勿論であ
るが、その他各方面での活用が可能である。なお、上記
の清澄水を活性微粉炭50%を含有する不織布の積層を
通過させることによfi、CODを更忙低下させること
ができた。
Table 8: Residual bath water drinking suitability test 1 results [Treatment agent (α)]
10(b) = 200ppm (α):(A)=t:
0.1, (C) The values in table pass the water quality standards of the Ministry of Health and Welfare Ordinance, and the treatment agents (α), (b), (
The amount of e) is small. In other words, this high-speed sedimentation treatment method is of course very effective in emergencies, but it can also be used in various other fields. In addition, by passing the above-mentioned clear water through a laminated layer of nonwoven fabric containing 50% activated pulverized carbon, it was possible to further reduce fi and COD.

以上の実施例が示すように本発明に係る水の処理法によ
れば、汚濁水を速やかに清澄化することが可能であシ、
この実施例に示した以外の原水に対しても処理剤(α)
 e (b) + (0)の濃度を適宜変更することに
よって前記実施例と同様にきのめて良好な結果を得るこ
とができる。
As shown in the above examples, according to the water treatment method according to the present invention, it is possible to quickly clarify polluted water.
Treatment agent (α) can also be used for raw water other than those shown in this example.
By appropriately changing the concentration of e (b) + (0), excellent results can be obtained in the same manner as in the above embodiments.

実施例に使用されている処理剤(a)はすべて粒径30
〜100苧のもの70−以上を含有するごとく粒度調整
をしたものであるが、この粒度調整の範囲は概略の目安
を定めたものであって、この範囲を多少逸脱したもので
も本発明が有効に実施できるのは当然である。処理剤(
b)の粒径範囲の30〜100mμ屯処理剤(a)の場
合と同様概略の目安であって、多少逸脱したものでも本
発明は有効に実施できる。
The processing agent (a) used in the examples all had a particle size of 30
The particle size was adjusted to contain 70-100 mm or more, but this particle size adjustment range is a rough guideline, and the present invention is effective even if the particle size slightly deviates from this range. Of course, it can be implemented. Processing agent(
As in the case of the particle size range of 30 to 100 mμ in b), this is a general guideline as in the case of the treatment agent (a), and the present invention can be effectively carried out even if the particle size range is slightly deviated.

同様のことは各処理剤(−) j (句、(C)の注入
量についても云うことができる。本発明においては成分
(α)の注入量は10〜5,000 ppm 、 (b
)は0〜500ppm 、 (c)は10〜10,00
0 ppmと限定しているがこれもまた概略の目安を示
したもので、原水の性情如伺によっては、この範囲を多
少逸脱したものでも本発明が有効に実施できる。
The same can be said about the injection amount of each processing agent (-) j (phrase, (C). In the present invention, the injection amount of component (α) is 10 to 5,000 ppm, (b
) is 0 to 500 ppm, (c) is 10 to 10,00
Although it is limited to 0 ppm, this is also a rough guideline, and depending on the characteristics of the raw water, the present invention can be effectively implemented even with a value slightly outside this range.

(3−6) 発明の効果 本発明は適宜粒度な調整した鶴紋岩等、浮岩質堆積岩お
よび無機凝集剤の所定量を汚濁水圧注入して攪拌し生成
した沈澱物を除去することKよって、汚濁水を高速に清
澄処理することを可能としておシ、次に示すようなすぐ
れた効果を有するものである。
(3-6) Effects of the Invention The present invention involves water pressure injecting a predetermined amount of a floating sedimentary rock such as cranestone and an inorganic coagulant whose particle size has been adjusted appropriately, stirring the mixture, and removing the generated precipitate. , it is possible to clarify polluted water at high speed, and it has the following excellent effects.

(1)従来使用されている各種凝集剤に較べて凝集沈降
時間は大巾に短縮される。前記した河川水の側圧よれは
、従来法の1/6〜l/15の短時間で処理できる。
(1) Compared to various flocculants used conventionally, the flocculation and sedimentation time is greatly shortened. The above-mentioned lateral pressure deviation of river water can be treated in a short time of 1/6 to 1/15 of the conventional method.

(2)高速清澄処理が行なわれるKも拘わらず、従来使
用されている凝集剤の機能(有機物の除去、濁度の低下
)を損うことなく、濁度の低下に極めて促進される。
(2) Although K is used for high-speed clarification, it greatly promotes the reduction of turbidity without impairing the functions of conventional flocculants (removal of organic matter, reduction of turbidity).

(3)ケーキの含水率は低く剥離性も優れている。(3) The moisture content of the cake is low and the peelability is excellent.

本発明に係る方法によって凝集沈降したケーキは含水率
が50%前後と低く、剥離性も優れていくため、沈澱槽
下部導管から容易に抜き取ることができる。また抜き収
られたケーキは自然乾燥で容易に固化できるため処理が
容易であるという特性を有している。
The cake coagulated and sedimented by the method of the present invention has a low moisture content of around 50% and has excellent peelability, so it can be easily extracted from the lower conduit of the settling tank. In addition, the extracted cake can be easily solidified by natural drying, making it easy to process.

(4) 従来の方法に較べて処理剤(α) 、 (b)
を必要とするが、この処理剤(α) 、 (b)は使用
量もわずかでしかも安価である。すなわち、処理剤(α
) l (b)はそれぞれ林岩等、浮岩質堆積岩の微粉
から成っているが、これらを原料としてみがき砂や植物
用の苗床を生産するに際し、また金、銀、銅の製造に際
しその製造工程の格外品または不要品を篩で粒度な選別
するだけで容易に使用できるからである。処理剤(a)
と(b)とは実施例においても明らかなように110.
1〜0.2の範囲で使用されることが多いから、最初か
らその程度の割合で混合したものを用いるのも便利であ
る。− (5)腐蔽物等の有機物を容易に液中から分離沈降せし
め、沈降状態を維持する。
(4) Compared to conventional methods, processing agent (α), (b)
However, the processing agents (α) and (b) are used in small quantities and are inexpensive. That is, the processing agent (α
) l (b) are each made of fine powder of floating rock such as forest rock, and these are used as raw materials to produce polishing sand and plant nurseries, and in the production of gold, silver, and copper. This is because products that are out of grade or unnecessary can be easily used by simply sorting them by particle size using a sieve. Treatment agent (a)
and (b) are 110. as is clear from the examples.
Since it is often used in a range of 1 to 0.2, it is convenient to use a mixture at that ratio from the beginning. - (5) Easily separate and precipitate organic matter such as decayed matter from the liquid and maintain the precipitated state.

(6) 水処理設備を新設するに際して、本発明に係る
方法によれば、撹拌、凝集、沈降、排出等の設備費、敷
地を大巾に節約することができる。
(6) When newly installing water treatment equipment, according to the method of the present invention, equipment costs such as agitation, flocculation, sedimentation, and discharge, as well as site space, can be significantly reduced.

〈マ) 現在稼動中の水処理設備にも本発明に係る方法
は容易に利用でき、利用することによってその設備能力
を増大することができる。
(M) The method according to the present invention can be easily applied to water treatment equipment currently in operation, and by using it, the equipment capacity can be increased.

(8)以上要するに水処理設備の性能を向上しその設備
費を低減(、公害防除尋に大きな貢献をもたらし、また
特に災害時における緊急用水の確保をきわめて容易圧す
る。
(8) In short, improving the performance of water treatment equipment and reducing its equipment costs (makes a great contribution to pollution control and makes it extremely easy to secure emergency water, especially in times of disaster).

特許出願人 堀 1)不二夫 (ほか1名) 代理人 弁理士 塚 本 大三部Patent applicant Hori 1) Fujio (1 other person) Agent: Patent Attorney Tsuka Moto Osanbe

Claims (1)

【特許請求の範囲】 汚濁水に下記(α)の成分を有する処理剤YIO〜5.
000 ppm、 (b)の成分を有する処理剤をθ〜
500ppm、 (c)の成分を有する処理剤10〜1
0,000 ppmを加え、攪拌した後生成された沈澱
物を除去することを特徴とする汚濁水の高速清澄処理法
。 (α)粒径30〜100mμのもの70−以上を含有す
るごとく粒度を調整した蟻赦岩(rhyolita )
、真珠岩(parlitg ) 、泥溶岩(mm −1
ava )等琥璃゛質に長石(斜長石、アルカリ長石)
を含む火成岩微粉 (b) 粒径30〜100mpに粒度を調整した1ン紋
岩質浮岩堆積岩(rhyoli tHic pumic
g 、sgdimtntary rock)。 浮石質凝灰岩(pumicgow t*bff )等波
縞質に斜長石を含む浮岩質堆積岩微粉 (C)硫酸アルミニウム、硫酸第一鉄、硫酸第二鉄、1
7+バカ昂−りし シぼlし噌 瞥1 )−^ j f
fl+l ル1.−1し啼 11ミ二ウム等の無機凝集
[Scope of Claims] Treatment agent YIO-5 containing the following component (α) for polluted water.
000 ppm, the processing agent having the component (b) at θ~
500 ppm, processing agent having component (c) 10-1
A method for high-speed clarification of polluted water, which comprises adding 0,000 ppm, stirring, and then removing the generated precipitate. (α) Rhyolita whose particle size has been adjusted to contain 70 or more particles with a particle size of 30 to 100 μm.
, pearlite (parlitg), mud lava (mm −1
ava ) iso-vitreous and feldspar (plagioclase, alkali feldspar)
Igneous rock fine powder containing (b) Igneous rock sedimentary rock (rhyolitic floating rock with particle size adjusted to 30-100 mp)
g, sgdimtntary rock). Floatstone tuff (pumicgow t*bff) Floatstone sedimentary rock fine powder containing plagioclase in equiwave banded structure (C) Aluminum sulfate, ferrous sulfate, ferric sulfate, 1
7 + Baka-Rishi Shibolishisomeme 1 )-^ j f
fl+l le1. Inorganic flocculants such as -1 and 11minium
JP6507884A 1984-04-03 1984-04-03 High-speed clarification process of filthy water Granted JPS60209214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6507884A JPS60209214A (en) 1984-04-03 1984-04-03 High-speed clarification process of filthy water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6507884A JPS60209214A (en) 1984-04-03 1984-04-03 High-speed clarification process of filthy water

Publications (2)

Publication Number Publication Date
JPS60209214A true JPS60209214A (en) 1985-10-21
JPH0533081B2 JPH0533081B2 (en) 1993-05-18

Family

ID=13276554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6507884A Granted JPS60209214A (en) 1984-04-03 1984-04-03 High-speed clarification process of filthy water

Country Status (1)

Country Link
JP (1) JPS60209214A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024266A1 (en) * 1994-03-11 1995-09-14 Mosaic Tile And Pottery Co. Pty. Ltd. Waste treatment agent
US6017310A (en) * 1996-09-07 2000-01-25 Andaris Limited Use of hollow microcapsules
JP2007216201A (en) * 2006-02-15 2007-08-30 Npo Machinami Ikuseikai Natural flocculation precipitant for water purification

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024266A1 (en) * 1994-03-11 1995-09-14 Mosaic Tile And Pottery Co. Pty. Ltd. Waste treatment agent
US6017310A (en) * 1996-09-07 2000-01-25 Andaris Limited Use of hollow microcapsules
JP2007216201A (en) * 2006-02-15 2007-08-30 Npo Machinami Ikuseikai Natural flocculation precipitant for water purification
JP4655279B2 (en) * 2006-02-15 2011-03-23 特定非営利活動法人まちなみ育成会 Natural material water purification coagulating sedimentation agent

Also Published As

Publication number Publication date
JPH0533081B2 (en) 1993-05-18

Similar Documents

Publication Publication Date Title
Semerjian et al. High-pH–magnesium coagulation–flocculation in wastewater treatment
Al-Mutairi et al. Coagulant selection and sludge conditioning in a slaughterhouse wastewater treatment plant
Ghernaout et al. ENHANCED COAGULATION FOR ALGAE REMOVAL IN A TYPICAL ALGERIA WATER TREATMENT PLANT.
Singh et al. Combined coagulation and intermittent sand filtration for on-site treatment of greywater
Güneş Seasonal Characterization of Landfill Leachate and Effect of Seasonal Variations on Treatment Processes of Coagulation/Flocculation and Adsorption.
JPS60209214A (en) High-speed clarification process of filthy water
Zainullin et al. Some features of the synthesis and coagulation treatment wastewater from the TNRS production
JP2005199248A (en) Raw water treatment process
WO2005035448A1 (en) Process for purification of waste water
WO2004045740A1 (en) Purification agent for wastewater and sludge water
JPH0356104A (en) High speed clarifier for polluted water
JP2003245504A (en) Method and device for treating wastewater
Almatin et al. Estimating of optimal dose of PACL for turbidity removing from water
RU2250877C1 (en) Method of natural and industrial wastewater purification
FI95561C (en) Procedure for reducing the aluminum content in drinking water
Sriwiriyarat et al. Selection of coagulant with consideration of sludge characteristics for treatment of industrial wastewater containing high strength mixed surfactants
WO2007110733A1 (en) A process for the recovery of superior quality and super white industrial grade salt from subsoil/sea brines
JPS6279812A (en) High-speed clarifier for polluted water
JPH06335604A (en) Inorganic high speed clarification treating agent for dirty water
CN106186241A (en) Flocculant for Acid Dye Wastewater
Clemensis et al. Chemical precipitation of aerobically treated olive mill wastewater
El Diwani et al. Bitterns as coagulants for treatment of municipal wastewater
Merzah et al. Evaluation of porcelanite and bentonite performance as an effective coagulant agent for petroleum contaminated wastewater treatment
Rustamjonovich Methods Of Purification Of Drinking Water With Coagulants
Bakar et al. Treatment and Recycling of Wastewater From Food Industry using Fixed-Bed Adsorption Treatment on the Tertiary Stage