JPS60203242A - Reflection type ultrasonic nonlinear reflection coefficient measuring device - Google Patents
Reflection type ultrasonic nonlinear reflection coefficient measuring deviceInfo
- Publication number
- JPS60203242A JPS60203242A JP6040184A JP6040184A JPS60203242A JP S60203242 A JPS60203242 A JP S60203242A JP 6040184 A JP6040184 A JP 6040184A JP 6040184 A JP6040184 A JP 6040184A JP S60203242 A JPS60203242 A JP S60203242A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- reflection coefficient
- medium
- nonlinear
- band
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、反射型非線形反射係数測定装置に係り、超音
波媒体内に照射された超音波が、媒体内の非線形な反射
係数の影響で、照射された超音波の音圧に依存して反射
されることを利用し、超音波媒体内の非線形反射係数を
測定し、さらには二次元的または三次元にその分布を測
定する超音波応用装置に関する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a reflection type nonlinear reflection coefficient measuring device, in which ultrasonic waves irradiated into an ultrasonic medium are affected by nonlinear reflection coefficients within the medium. An ultrasonic application device that measures the nonlinear reflection coefficient within an ultrasonic medium, and further measures its distribution two-dimensionally or three-dimensionally, by utilizing the fact that irradiated ultrasonic waves are reflected depending on the sound pressure. Regarding.
従来の反射エコー法による超音波診断装置6では、生体
組織内の音響インピーダンスの変化lこ関する情報、つ
まり肝臓等の組織の輪郭は抽出できるが組織の性質、例
えば正常な肝臓なのか、あるいは悪性腫瘍に侵された肝
臓なのかという区別を行なうのは困難であった。このよ
うな組織の性質を識別しようとする方法を組織特性弁別
(TissueCharacterization )
と総称し、例えば超音波の非線形パラメータが組織の性
質により異なることから、この非線形パラメータを測定
し、組織の性質を識別しようという方法が考案されてい
る。(特願昭58−119100.特願昭、5B−16
8599)しかし、従来の非線形パラメータ測定>iの
うち、透過型の装置(特願昭58−119100)は、
送波用の探触子と受波用の探触子を、互いにそのビーム
軸を合せて対向させねばならず、超音波を透過しにくい
骨や体腔内の空隙あるいは組織内の屈折などにより、制
限を受けるという欠点を持っている。また、反射係数へ
の非線形パラメータの寄与を利用して被観察部位の非線
形パラメータの変化量の分布が得られる反射型の装置(
特願昭58168599)も、測定用超音波バースト波
とボンピング用超音波連続波が互いに直交するように配
置しなければならず、かつボンピング波は被観察部位を
カバーする平面波状の波でなければならないなど、その
装置構成には多くの制約がある。そのため、装置全体が
大きくなり、また、被観察部位も制限され、操作性も悪
いという欠点があった。The ultrasound diagnostic device 6 using the conventional reflection echo method can extract information related to changes in acoustic impedance within living tissues, that is, the outline of tissues such as the liver, but it is possible to extract information about the nature of the tissue, such as whether the liver is normal or malignant. It was difficult to distinguish whether the liver was affected by a tumor or not. Tissue Characterization is a method that attempts to identify the properties of such tissues.
For example, since the nonlinear parameters of ultrasound vary depending on the nature of the tissue, methods have been devised to measure these nonlinear parameters and identify the nature of the tissue. (Japanese Patent Application No. 58-119100. Patent Application No. 58-119100.
8599) However, among the conventional nonlinear parameter measurement
The transmitting probe and the receiving probe must be placed facing each other with their beam axes aligned, and due to refraction in bones, cavities in body cavities, or tissues that are difficult for ultrasound to pass through, It has the disadvantage of being limited. In addition, a reflection-type device (
Japanese Patent Application No. 5,816,8599) also requires that the ultrasonic burst wave for measurement and the continuous ultrasonic wave for bombing must be arranged orthogonally to each other, and the bombing wave must be a plane wave-like wave that covers the area to be observed. There are many restrictions on the device configuration, such as: As a result, the overall size of the device increases, the number of parts to be observed is limited, and operability is poor.
また反射係数の音圧依存性の要因として非線形パラメー
タしか考慮していないが、さらに。In addition, although only nonlinear parameters are considered as factors for the sound pressure dependence of the reflection coefficient,
■ 超音波の放射圧による微小散乱の配向に伴う散乱断
面積の変化。■ Changes in the scattering cross section due to the orientation of minute scattering due to ultrasonic radiation pressure.
■ 超音波の放射圧による超音波媒体の微細構造の変化
に伴う各散乱点からの反射波の位相の変化。■ Changes in the phase of reflected waves from each scattering point due to changes in the ultrasonic medium's fine structure due to ultrasonic radiation pressure.
なども考慮しなければならず、反射における非線形性を
考えるには、非線形パラメータだけでなく非線形な反射
係数そのものを考える必要がある。In order to consider nonlinearity in reflection, it is necessary to consider not only the nonlinear parameters but also the nonlinear reflection coefficient itself.
本発明の目的は、生体組織等の超音波媒体内に超音波パ
ルスまたは連続波を照射し、その入射音圧に依存して変
化する反射係数の非線形性そのものに着目し、超音波媒
体内で反射される超音波の特定の周波数成分または該周
波数成分の時間波形を測定することにより、非線形反射
係数の分布をめることのできる反射型非線形反射係数分
布測定装置を提供するにある。The purpose of the present invention is to irradiate ultrasonic pulses or continuous waves into an ultrasonic medium such as a living tissue, and focus on the nonlinearity of the reflection coefficient itself, which changes depending on the incident sound pressure. An object of the present invention is to provide a reflection type nonlinear reflection coefficient distribution measuring device that can measure the distribution of nonlinear reflection coefficients by measuring a specific frequency component of reflected ultrasonic waves or the time waveform of the frequency component.
本発明は、生体組織等の超音波媒体が媒体内部に加わる
音圧によって変化する非線形な反射係数を持つことを利
用し、媒体内部からの反射エコー信号の特定の周波数成
分またはその時間波形を分離して測定することにより、
媒体内部を伝播する超音波ビーム軸上での非線形反射係
数の分布をめ、さらにこの測定を一次元または二次元的
に走査しながら繰り返して、該非線形反射係数の分布苓
−二次元または三次元的に表示できるようにしたもので
ある。The present invention utilizes the fact that an ultrasound medium such as a living tissue has a nonlinear reflection coefficient that changes depending on the sound pressure applied inside the medium, and separates a specific frequency component or its temporal waveform of a reflected echo signal from inside the medium. By measuring
Measure the distribution of the nonlinear reflection coefficient on the axis of the ultrasound beam propagating inside the medium, and repeat this measurement while scanning in one or two dimensions to determine the distribution of the nonlinear reflection coefficient in two or three dimensions. It is designed so that it can be displayed visually.
超音波媒体内の位置X(X=0は超音波探触子面を表わ
す。)での反射体の反射係数を、その音圧依存性まで考
慮し、次式のように表現する。The reflection coefficient of the reflector at position X within the ultrasound medium (X=0 represents the ultrasound probe surface) is expressed as follows, taking into account its sound pressure dependence.
r(x)=r+(x)+rt(x)P+rs(x)P”
(1)伊し、Pは超音波媒体内に加えられる音圧で、
音圧Pに関し、3乗以上の項は無視する。ここで、1次
の反射係vi、r+(ト)は静圧時の反射係数で、2次
の反射係数rt(x)、3次の反射係数rfiに)はそ
れぞれP、P”の係数である。r(x)=r+(x)+rt(x)P+rs(x)P”
(1) P is the sound pressure applied within the ultrasonic medium,
Regarding the sound pressure P, terms higher than the third power are ignored. Here, the first-order reflection coefficients vi and r+(g) are the reflection coefficients at static pressure, and the second-order reflection coefficients rt(x) and third-order reflection coefficients rfi) are the coefficients of P and P'', respectively. be.
さらに、位値x1時刻tに加わる音圧P(x、t)を。Furthermore, the sound pressure P(x, t) applied at position value x1 at time t.
P (x、 t)=f(t −’−) (2)といつ音
圧波形fで表わす。但し、Cは超音波が媒体内で進む音
速である。P (x, t)=f(t-'-) (2) When the sound pressure waveform is expressed as f. However, C is the sound speed at which the ultrasonic wave travels within the medium.
すると、位置X9時刻tでの反射係数rcx*t)は。Then, the reflection coefficient rcx*t) at position X9 and time t is.
r (x、 t)= rt (X)+ rt Cxrf
Ct −j) + rs (yJ(f(t 4)H3)
となる。即ち位Rxw時刻tで反射される1s(x+t
)は。r (x, t) = rt (X) + rt Cxrf
Ct −j) + rs (yJ(f(t4)H3)
becomes. That is, 1s(x+t
)teeth.
s (x、 t) =r(x、 t)f(t−、−)=
r*bdf (t4)+rt(x)げ(t−4))”+
r、に)(f(を−1月3・・・(4)となる。反射エ
コーは超音波媒体内を往復して返ってくることを考慮す
ると、x = 0に位IIJする探触子が時刻tで受波
する位置xからの反射エコー信号は時刻委において反射
されたエコーi(x、 りである。よって、実際探触子
に愛護される反射エコー4に号はすべての位置xで反射
された波の重ね合せとして表現でき。s (x, t) = r (x, t) f (t-, -) =
r*bdf (t4)+rt(x)ge(t-4))”+
r, to)(f(-1 month 3...(4). Considering that the reflected echo returns by going back and forth within the ultrasonic medium, the probe at position IIJ at x = 0 The reflected echo signal from position x that is received at time t is the echo i(x, It can be expressed as a superposition of waves reflected by.
s (t)= / s (x、−B) dx=/(:
rt(x)fc!;−’:) +rt(x)げ(”−:
)]’+rs(x)げ(”) ) ” ) dx −(
s)C
となる。ここでf (i−x) = f (” −x)
なる函数f2a 2
を考えると。s (t) = / s (x, -B) dx = / (:
rt(x)fc! ;-':) +rt(x)ge(”-:
)]'+rs(x) (”) )”) dx −(
s) becomes C. Here f (i-x) = f (''-x)
Considering the function f2a 2 .
a(t)= /Cr+ (x)? (”−−x)七rt
(x)(f(’±−X))′2
+ rs(x)(f(−−x) )”) dx=[r+
(x)* f(x)+r*(x)*(P(x))”+
r s (X)* (’ (X)) ”) X =−z
−””” (6)となる。但し、*はたたみ、こみ演算
を示す0超音阪媒体に加わる音圧波形を示す函数tを次
式のように互いに異なる周波数帯域をもつtpとtll
との和と表されるものとする。a(t)= /Cr+ (x)? (”--x)7rt
(x) (f('±-X))'2 + rs(x)(f(--x) )") dx=[r+
(x)* f(x)+r*(x)*(P(x))”+
r s (X) * (' (X)) ”) X = -z
−””” (6). However, * indicates the folding and folding operation. The function t indicating the sound pressure waveform applied to the ultrasonic medium is expressed as tp and tll which have different frequency bands as shown in the following equation.
It shall be expressed as the sum of
f = f p + f a ・・・・・・(7)ここ
で。f = f p + f a (7) Here.
Ifpl>>l?l ・・・・・・(8)と仮定し、2
sについて1次の項のみを残して近似すると。Ifpl>>l? l...Assuming (8), 2
If we approximate s by leaving only the first-order term.
t=fp+fs ・・・・・・(7)
?””t’p+2fp@fm ・・・・・・(9)りs
:f3p−)3ダp′−1・・・・・・αのとなる。よ
って(6)式は。t=fp+fs...(7)? ""t'p+2fp@fm ・・・・・・(9) Ris
:f3p-)3dap'-1......α. Therefore, equation (6) is.
5(t)’ (rl d* (ダp (X)+ f m
(xi)+rt(yJ*(fp’(x)+2fp(x
)・ri(x))十r3へ)* Cf P”に)+3f
p’(幻?畠に))〕工=0となる。 ・・四〇〇
(7)式で表現される音圧波形2を得るには異なる2つ
の周波数帯域をもつ1個の探触子を用いても良いし、ま
たは異なる周波数帯域をもつ異なる探触子を並べて同時
に用いても良い。5(t)' (rl d* (dap (X)+ f m
(xi)+rt(yJ*(fp'(x)+2fp(x
)・ri(x))to r3)*Cf P”)+3f
p' (phantom?Hatani))] engineering = 0. ...To obtain the sound pressure waveform 2 expressed by equation 400(7), one probe with two different frequency bands may be used, or different probes with different frequency bands may be used. Children may be lined up and used at the same time.
ここで01)式中のfp(t)の7−リエスベクトルf
pCハが第1図(a)のようであれば、それぞれ(fp
(/11’。Here, 01) 7-lies vector f of fp(t) in Eq.
If pC is as shown in Figure 1(a), then (fp
(/11'.
($’p(t))’のフーリエスペクトルG!p(イ)
tGspCハ゛は第1図(b)、 (a)のようになる
。但しfPはGp(ハの中心周波数であり、この時、2
fP、3fPはそれぞれGtpCf)、Gs p(イ)
の中心周波数となる。 Gp(f)が十分狭帯域であれ
ばGp(f)とG s p V)のfp付近の成分の重
なり以外はGp(f)+Gtp(イ)、 G3 p(f
)の周波数成分は互いに他の周波数成分と分離可能であ
る0
(11)式をフーリエ変換すると。Fourier spectrum G of ($'p(t))'! p (a)
The tGspC waveforms are as shown in Figures 1(b) and (a). However, fP is the center frequency of Gp (c), and at this time, 2
fP and 3fP are respectively GtpCf) and Gs p(a)
is the center frequency of If Gp(f) is a sufficiently narrow band, Gp(f)+Gtp(a), G3 p(f) except for the overlap of the components near fp of Gp(f) and Gs p
) can be separated from other frequency components by Fourier transform of 0 (11).
SOつ=a+Cf)・(GpV)+G島(f))十Rバ
カ+(GtP(7’)+2GpV)*Ga(ハ)十Rs
(f)−(Gs PCf)+3Gt p(JQ* G
8(7)1となる。 ・・・・・【12)
但し、8(AGa(1)はa(t)、 fa(1)のフ
ーリエ変換を示す。またR順、Rt(A、R5(力はr
+(鴫山σ)。SO = a + Cf) (GpV) + G island (f)) 10R stupid + (GtP (7') + 2GpV) * Ga (c) 10Rs
(f)-(Gs PCf)+3Gt p(JQ*G
8(7)1. ...[12] However, 8(AGa(1) indicates the Fourier transform of a(t), fa(1). Also, in R order, Rt(A, R5(force is r
+ (Shizuyama σ).
2
r−(”>の7−リエ変換を示す。GsV)の中心周波
数をfsとし、G s (f)が線スペクトルまたは十
分狭帯域である場合は、5(f)の周波数スペクトル成
分からGp(A Gt p(7′)、Gm pcf)及
びGIIV)の成分を分離することができる。残りの成
分をS′(ハとすると。Indicates the 7-Rier transform of 2r-(">.GsV). If the center frequency of GsV is fs, and Gs(f) is a line spectrum or a sufficiently narrow band, Gp (A Gt p(7'), Gm pcf) and GIIV) can be separated. Let the remaining component be S' (c).
S ’<f)= 2 Rt(A” (G P(f)*
G 14 Cf1)+3Ra(f)・(Gtp(力*G
Sし))・・・・−03)となる。但し*はたたみこみ
演算を示す。見方をかえると、(13)式は時間信号s
(t)に対し、適当なバンドパスフィルターを用いる
と、その出力a’(t)は。S'<f)=2 Rt(A”(G P(f)*
G 14 Cf1)+3Ra(f)・(Gtp(force*G
S))...-03). However, * indicates a convolution operation. Looking at it from a different perspective, equation (13) represents the time signal s
If an appropriate bandpass filter is used for (t), the output a'(t) will be.
s’(t)=(2rt(x)*(fp(x)fa(x)
)+3 rs (x)*(f’p (x) f s (
x)) ) 、=憂Q4)となることを意味する。s'(t)=(2rt(x)*(fp(x)fa(x)
)+3 rs (x)*(f'p (x) f s (
x))) , = Q4).
ここでGp(f)、 Gs(力の周波数スペクトルが第
2図(a)のようであるとすると、(13)式の第1項
からl fP−Jニーfm 1.第2項からはl 2f
pffa l の周波数成分が生じ、第2図軸)のよう
になる。但しGp (7)。Here, Gp (f), Gs (assuming that the frequency spectrum of the force is as shown in Figure 2 (a), from the first term of equation (13), l fP - J knee fm 1. From the second term, l 2f
A frequency component of pffal is generated, as shown in Fig. 2 (axis). However, Gp (7).
G2P(力、GsPヴ)及びGs(1)の成分は除いで
ある。The components of G2P (force, GsPv) and Gs(1) are excluded.
但し、例えばf m =2 Z pなる関係があると第
1項の周波数成分と第2項の周波数成分はともに周波数
ムに詔いて生じ、互いに重なり合ってしまうため、(1
3)式第1項の周波数成分と第2項の周波数成分が重な
り合わないjp=fmの組合せが必要である。However, for example, if there is a relationship f m = 2 Z p, the frequency component of the first term and the frequency component of the second term are both generated by the frequency m and overlap each other, so (1
3) A combination of jp=fm is required in which the frequency component of the first term of the equation and the frequency component of the second term do not overlap.
ここで例えば12fp−falの周波数成分に着目する
。この成分はGtpCf:とGa(ハとのたたみこみま
たはrtpとfmとの積の結果、生ずる成分であるが、
Gap(f)とGS(f)または11pとrsは測定可
能であるので、04)式第2項の逆たたみこみ演算によ
り、超音波ビーム軸上の三次の非線形反射係数の分布r
、に)がめられる。Here, for example, attention is paid to the frequency component of 12 fp-fal. This component is a component generated as a result of the convolution of GtpCf: and Ga(C) or the product of rtp and fm,
Since Gap(f) and GS(f) or 11p and rs can be measured, the distribution r of the third-order nonlinear reflection coefficient on the ultrasound beam axis can be calculated by deconvolution of the second term of equation 04).
, to) be criticized.
同様に1fp−falの成分に着目すれば、04)式第
1項から二次の非線形反射係数r!(ト)の分布がめら
れる。Similarly, if we focus on the 1fp-fal component, from the first term of equation 04), the second-order nonlinear reflection coefficient r! The distribution of (g) can be seen.
例えば生体のような超音波媒体内での滅べ・散乱におけ
る周波数特性が問題となる場合は、例えば生体内の深部
を1ら返ってくるエコーはつ感涙を上げて増幅(Sen
aitlvityTime Control略して5T
C)したり、減衰・散乱の逆特性をかけるなどの補正を
すれば問題はない。For example, if the frequency characteristics of destruction and scattering within an ultrasound medium such as a living body are a problem, for example, the echoes returning from deep within the living body may be amplified by emitting sensitizing tears.
aitlvityTime Control abbreviated as 5T
C) or by applying the inverse characteristics of attenuation and scattering, etc., there is no problem.
この測定を場所をかえて行なうことによって二次元また
は三次元の非線形反射係数の分布が得られる。By performing this measurement at different locations, a two-dimensional or three-dimensional distribution of nonlinear reflection coefficients can be obtained.
次に装置全体の構成を第3図に示す。Next, the configuration of the entire device is shown in FIG. 3.
図中1はシステムコントローラで、トリガー発生器2旧
よびバントパスフィルタ9.減衰・散乱補正部109表
示部13をコン)1−−ルする。In the figure, 1 is the system controller, which includes a trigger generator 2 and a bandpass filter 9. Control the attenuation/scattering correction section 109 display section 13.
図中3,4は送波用探触子囚5.送波用探触子(B)6
を駆動するための増幅器である。送波された超音波は媒
体7で反射され、受波探触子8で受波される。送波探触
子5,6は夫々中心周波数fp+f8のパルス又は連続
波を送出する。受波探触子8は充分広い受信帯域をもつ
ものとする0受波信号はバンドパスフィルタ9に入力さ
れるが、どの帯域の成分を通過させるかはシステムコン
トローラlで6制御される。その出力は減衰・散乱補正
部10に入力される。補正のための減衰拳散乱の逆特性
はシステムコントローラ1により制御される。In the figure, 3 and 4 are the transmitter probes 5 and 4. Transmission probe (B) 6
This is an amplifier for driving. The transmitted ultrasonic waves are reflected by the medium 7 and received by the wave receiving probe 8 . The wave transmitting probes 5 and 6 each transmit pulses or continuous waves having a center frequency of fp+f8. The reception probe 8 is assumed to have a sufficiently wide reception band.The 0 reception signal is input to a band pass filter 9, and the system controller 1 controls 6 which band components are allowed to pass. The output is input to the attenuation/scattering correction section 10. The inverse characteristics of the attenuated fist scattering for correction are controlled by the system controller 1.
信号処理部11で逆たたみこみ演算をし、非線形反射係
数をめる。このデータはlffl7像メモリ12に蓄え
られ、表示部13を通して画像表示される〇〔発明の他
の実施例〕
本発明の他の冥施例として1つの帯域をもつ超音波を媒
体に照射し、媒体内部で反射されもどってくるエコーの
周波数成分から非線形反射係数の分布をめる手段がある
。The signal processing unit 11 performs a deconvolution operation to obtain a nonlinear reflection coefficient. This data is stored in the lffl7 image memory 12 and displayed as an image through the display section 13. [Other Embodiments of the Invention] As another embodiment of the invention, ultrasonic waves having one band are irradiated onto the medium, There is a means of determining the distribution of nonlinear reflection coefficients from the frequency components of echoes that are reflected and returned inside the medium.
即ち、(7)式において。That is, in equation (7).
f s = 0 つまり G s = 0 ・聞・(1
5)の場合、01)式、02)式は。f s = 0, that is, G s = 0
In the case of 5), equations 01) and 02) are.
a(t)= (r+(x)*Pp(x)+r*(x)*
f’p(x)十rs(x)* f 5p(yJ )
c t ・・・・・−(16)x=T
S(ハ=R言力G p (f)+ R! (ハGtp(
f)+R8(ハGsp(ハ ・・・・・・07)となる
。第1図のようにGp(A、 Gtp(A Gsp(イ
)が互いに分離可能であれば。a(t) = (r+(x)*Pp(x)+r*(x)*
f'p(x) rs(x)* f 5p(yJ)
c t ......-(16) x = T S (Ha = R word power G p (f) + R! (Ha Gtp
f)+R8(haGsp(c...07).If Gp(A, Gtp(A Gsp(a)) can be separated from each other as shown in FIG.
g*(t)=Crt(X)*ftP(7J〕ctx=T
as(t)=(rs(x)*IPsp(x)) si
−(18)8=2
あるいは。g*(t)=Crt(X)*ftP(7J]ctx=T as(t)=(rs(x)*IPsp(x)) si
-(18)8=2 Or.
Si力=RバハG重(ハ
3g(1)=Rs(f)GsI)(ハ
と分離できる。但し、Gp(AとGap(4の成分はj
p付近で重なるため、G s p V)の有効な帯域と
しては3fp付近しかない。Si force = R Baja G weight (C3g(1) = Rs(f)GsI) (can be separated from C. However, Gp(A and Gap(4 components are j
Since they overlap near p, the effective band for G sp V) is only near 3 fp.
最終的に、(18)式の逆たたみこみ演算あるいは、(
19)式から送信スペクトルGip(nと受信スペクト
ルStす)との比St(ハ/GipV)(但し1=2.
3)を計算し、この比の逆フーリエ変換から、6次の非
線形反射係数r、(2)+rJに)がまる。Finally, the deconvolution operation of equation (18) or (
From equation 19), the ratio St(c/GipV) of the transmission spectrum Gip(n and reception spectrum Sts) (where 1=2.
3), and from the inverse Fourier transform of this ratio, the sixth-order nonlinear reflection coefficient r, (2)+rJ) is calculated.
生体組織等の超音波媒体は高周波はど大きく減衰するの
で、減衰が大きくなると高周波成分Glp(ハ、Gsp
(力の検出感度は制限をうけるが、送信用の探触子が1
つですむという利点がある。Ultrasonic media such as biological tissue greatly attenuates high frequencies, so when the attenuation increases, the high frequency component Glp (c, Gsp
(The force detection sensitivity is limited, but the transmitting probe is 1
It has the advantage of being easy to use.
超音波媒体に入射される超音波の入射音圧に依存して変
化する非線形反射係数は、生体組織等の物理的特性や組
織の状態の微妙な差異を反映するが、本発明によれば、
この非線形反射係数の分布を測定できるので、生体組織
等の組線特性弁別を行なうことができる。The nonlinear reflection coefficient, which changes depending on the incident sound pressure of the ultrasonic wave incident on the ultrasonic medium, reflects subtle differences in the physical properties and tissue conditions of biological tissues, etc., and according to the present invention,
Since the distribution of this nonlinear reflection coefficient can be measured, it is possible to discriminate the wire characteristics of biological tissues and the like.
第1図(a)l(b)、 (e)は超音波媒体の加えら
れた音圧波形tp+c対し、各k fp、 f”p、
f”p (D周波数スペクトルGpV)−G* p(ハ
* GspV)を示す。
第2図(a)、 (b)は異なる2つの帯域をもつ超音
波の周波数スペクトルと、この超音波を非線形な反射係
数をもつ媒体に照射した時に得られる周波数スペクトル
を夫々示す。
第3図は装置全体の一実施例構成ブロック図を示し、1
はシステムコントローラ、5,6は送波探触子、8は受
波探触子、9はバンドパスフィルタ、11は信号処理部
、13は表示部ぞある。
)l 因
b is
$ 、? iFigures 1(a), 1(b), and 1(e) show the sound pressure waveforms tp+c of the ultrasonic medium, respectively k fp, f''p,
f"p (D frequency spectrum GpV) - G*p (Ha*GspV). Figures 2 (a) and (b) show the frequency spectrum of an ultrasound having two different bands and the nonlinear The frequency spectra obtained when a medium with a reflection coefficient is irradiated are shown respectively.
1 is a system controller, 5 and 6 are transmitting probes, 8 is a receiving probe, 9 is a band pass filter, 11 is a signal processing section, and 13 is a display section. )l Cause is $,? i
Claims (1)
パルスまたは連続波を送信し、少なくとも1つの該送信
帯域Ω、と、該送信帯域以外の少なくとも1つの帯域Ω
、で受信する1個の兼用の、または個別の超音波探触子
と、該超音波パルスまた(ま該連続波の、該超音波媒体
内からの反射波の該帯域Ω、と該帯域ρ、での周波数成
分S1(イ)、S鵞(イ)またはその時間波形!It(
tl+ at(t3をめる信号処理回路と、該周波数成
分S1ω、S*V)またはその時間波形s+(t)、
s宜(t)と、該超音波媒体内の非線形反射係数を関係
づける計算処理回路とを有することを特徴きする反射型
超音波非線形反射係数測定装置。transmitting an ultrasound pulse or continuous wave with at least one band Ω1 in an ultrasound medium, at least one transmission band Ω, and at least one band Ω other than the transmission band;
, one dual-purpose or separate ultrasonic probe to receive the ultrasonic pulses or (of the continuous wave, the band Ω, and the band ρ of the reflected wave from within the ultrasonic medium) , the frequency component S1(a), S鵞(a) or its time waveform!It(
tl+ at (signal processing circuit that takes t3 and the frequency component S1ω, S*V) or its time waveform s+(t),
1. A reflection type ultrasonic nonlinear reflection coefficient measuring device, comprising a calculation processing circuit that correlates a nonlinear reflection coefficient in the ultrasonic medium with a nonlinear reflection coefficient in the ultrasonic medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6040184A JPS60203242A (en) | 1984-03-28 | 1984-03-28 | Reflection type ultrasonic nonlinear reflection coefficient measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6040184A JPS60203242A (en) | 1984-03-28 | 1984-03-28 | Reflection type ultrasonic nonlinear reflection coefficient measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60203242A true JPS60203242A (en) | 1985-10-14 |
JPH0425016B2 JPH0425016B2 (en) | 1992-04-28 |
Family
ID=13141103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6040184A Granted JPS60203242A (en) | 1984-03-28 | 1984-03-28 | Reflection type ultrasonic nonlinear reflection coefficient measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60203242A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58173539A (en) * | 1982-04-07 | 1983-10-12 | 富士通株式会社 | Method for measuring biological tissue characteristics using ultrasound |
-
1984
- 1984-03-28 JP JP6040184A patent/JPS60203242A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58173539A (en) * | 1982-04-07 | 1983-10-12 | 富士通株式会社 | Method for measuring biological tissue characteristics using ultrasound |
Also Published As
Publication number | Publication date |
---|---|
JPH0425016B2 (en) | 1992-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Madsen et al. | Method of data reduction for accurate determination of acoustic backscatter coefficients | |
TW531407B (en) | System and method for phase inversion ultrasonic imaging | |
Busse | Three-dimensional imaging using a frequency-domain synthetic aperture focusing technique | |
EP3729133B1 (en) | Methods and instrumentation for estimation of wave propagation and scattering parameters | |
US4265122A (en) | Nondestructive testing apparatus and method utilizing time-domain ramp signals | |
US4509524A (en) | Ultrasonic medium characterization system | |
JPS59171540A (en) | Measurement method using spectral shape | |
JPS58173539A (en) | Method for measuring biological tissue characteristics using ultrasound | |
JPS59174152A (en) | Measuring system of ultrasonic medium characteristics | |
JP2629734B2 (en) | Ultrasonic object inspection equipment | |
Varslot et al. | Aberration in nonlinear acoustic wave propagation | |
JPS60203242A (en) | Reflection type ultrasonic nonlinear reflection coefficient measuring device | |
JPH0246214B2 (en) | ||
Silva et al. | Stress field forming of sector array transducers for vibro-acoustography | |
JPS5875056A (en) | probe | |
JP3317988B2 (en) | Ultrasound bone diagnostic equipment | |
Derode et al. | The notion of coherence in optics and its application to acoustics | |
JPS6053133A (en) | Ultrasonic diagnostic apparatus | |
JPS6176138A (en) | Reflection type ultrasonic nonlinear reflection coefficient measuring device | |
JPH0548130B2 (en) | ||
JPS63194644A (en) | Ultrasonic measuring apparatus | |
Cai et al. | Adapting parametric acoustic arrays for tomographic imaging | |
JPH0663047A (en) | Ultrasonic tomographic image photographing device | |
JPH0239253B2 (en) | ||
JPH0614929B2 (en) | Ultrasonic measuring device |