[go: up one dir, main page]

JPS6020323B2 - Nitrogen gas purification method - Google Patents

Nitrogen gas purification method

Info

Publication number
JPS6020323B2
JPS6020323B2 JP3998181A JP3998181A JPS6020323B2 JP S6020323 B2 JPS6020323 B2 JP S6020323B2 JP 3998181 A JP3998181 A JP 3998181A JP 3998181 A JP3998181 A JP 3998181A JP S6020323 B2 JPS6020323 B2 JP S6020323B2
Authority
JP
Japan
Prior art keywords
nitrogen gas
purification
gas
alloy
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3998181A
Other languages
Japanese (ja)
Other versions
JPS57156308A (en
Inventor
良夫 森脇
孝治 蒲生
伸行 柳原
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3998181A priority Critical patent/JPS6020323B2/en
Publication of JPS57156308A publication Critical patent/JPS57156308A/en
Publication of JPS6020323B2 publication Critical patent/JPS6020323B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/045Physical processing only by adsorption in solids
    • C01B21/0483Physical processing only by adsorption in solids in getters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 本発明は、窒素ガス中に含まれる不純物ガスを除去し、
窒素ガスの純度を向上させる方法に関するものである。
Detailed Description of the Invention The present invention removes impurity gas contained in nitrogen gas,
The present invention relates to a method for improving the purity of nitrogen gas.

現在窒素ガスは、金属、電子、化学等の各種工業分野に
おいて多量に使用されており、製品の信頼性向上の点か
ら、より高純度の窒素ガスが要望されている。したがっ
て高純度窒素ガスの需要も伸びつつある。本発明はこの
高純度窒素ガスを品質よく、しかも容易に得ることので
きる精製方法を提供するものである。従来、この窒素ガ
スの精製方法に関しては、吸収法、吸着法、拡散法、冷
却分離法、化学反応法などがあり、その精製目的や精製
条件の差によって、これらの方法が使い分けられていた
Nitrogen gas is currently used in large quantities in various industrial fields such as metal, electronics, and chemistry, and higher purity nitrogen gas is desired from the standpoint of improving product reliability. Therefore, demand for high-purity nitrogen gas is also increasing. The present invention provides a purification method that can easily obtain high-purity nitrogen gas with good quality. Conventionally, methods for purifying this nitrogen gas include absorption methods, adsorption methods, diffusion methods, cooling separation methods, and chemical reaction methods, and these methods have been used depending on the purpose of purification and differences in purification conditions.

これらの方法の中でも一般的に広く利用されている方法
は吸着法であり、吸着剤としてPd系触媒やNi系触媒
、ゼオライト系触媒などが主として採用されている。
Among these methods, the most widely used method is the adsorption method, in which Pd-based catalysts, Ni-based catalysts, zeolite-based catalysts, and the like are mainly employed as adsorbents.

これらの触媒は比較的高価であり、安価な触媒はその吸
着能力、再生法等に問題があってより安価で、取り扱い
容易な窒素ガスの精製方法が望まれている。本発明によ
る精製方法も吸着法に属するものであるが、吸着剤とし
て水素吸蔵用合金の水素化と脱水黍化の工程を少なくと
も1回施した粉末を用いた新規な精製方法であって、こ
れにより上記の問題点を解決したものである。
These catalysts are relatively expensive, and inexpensive catalysts have problems with their adsorption capacity, regeneration method, etc., and a cheaper and easier to handle method for purifying nitrogen gas is desired. The purification method according to the present invention also belongs to the adsorption method, but it is a new purification method that uses a powder that has been subjected to at least one hydrogenation and dehydration process of a hydrogen storage alloy as an adsorbent. This solves the above problems.

従釆からTi,Zr,Ca等の水素化物を形成する金属
が、ガスの乾燥剤や酸素除去用として用いられているが
、製法が困難なことや、価格、特性面で問題があった。
Metals that form hydrides, such as Ti, Zr, and Ca, are used as drying agents for gases and for removing oxygen, but they are difficult to manufacture and have problems in terms of cost and properties.

本発明は、これら金属単体でなく、水素貯蔵用として知
られている合金の粉末を用いて先の問題点を解決したも
のであり、この点でも全く新規な精製方法である。本発
明者らは、水素貯蔵用金属材料の中で、Ti−Mn系、
Tj−Fe系、希土類一Ni系などの合金粉末が窒素ガ
ス中の不純物ガス、例えば、02,C0,C02,CH
4,広0等を吸着除去し、窒素ガスの純度を向上させる
効果が高い事を見し、出した。
The present invention solves the above problems by using powders of alloys known for hydrogen storage instead of these metals alone, and is a completely new refining method in this respect as well. The present inventors found that among hydrogen storage metal materials, Ti-Mn-based,
Alloy powders such as Tj-Fe-based and rare earth-Ni based impurity gases in nitrogen gas, such as 02, C0, C02, CH
4. It was found that it was highly effective in adsorbing and removing nitrogen gas and improving the purity of nitrogen gas.

さらに具体的には、水素蔵用合金を作成した後、それを
機械的に粉砕するかもしくはこれを高圧水素雰囲気下で
水素化反応を行って金属水素化物とする。この場合、金
属水素化物は水素化反応によって自動的に粉末化する。
水素化した金属水素化物粉夫をさらに脱水素化反応する
ことによってガス吸着用合金粉末ができる。なお、この
金属粉末は、吸着特性を高めるために、水素化と脱水素
化の一連の反応を2回以上繰り返したり、不活性雰囲気
中で機械的粉砕を施し、微粉末化させる方法も効果があ
る。
More specifically, after creating a hydrogen storage alloy, it is mechanically pulverized or subjected to a hydrogenation reaction in a high-pressure hydrogen atmosphere to produce a metal hydride. In this case, the metal hydride is automatically pulverized by the hydrogenation reaction.
The hydrogenated metal hydride powder is further subjected to a dehydrogenation reaction to produce an alloy powder for gas adsorption. In addition, in order to improve the adsorption properties of this metal powder, it is also effective to repeat the series of hydrogenation and dehydrogenation reactions two or more times, or to mechanically crush it in an inert atmosphere to make it into a fine powder. be.

このようにして得られた合金粉末を、第1図に示す様な
保持容器に充填した構成で精製器とし、一方から原料窒
素ガスを連続的に導入し、合金粉末に効果的に接触通過
させる。
The alloy powder obtained in this way is packed into a holding container as shown in Figure 1 to form a purifier, and raw material nitrogen gas is continuously introduced from one side to effectively contact and pass through the alloy powder. .

こうして第1図の出口側より得られる精製窒素ガスを原
料窒素ガスと純度分析による比較を行った。純度分析は
日本工業規格(JIS)等で定められている通常の方法
によつた。その結果、原料窒素ガスと比較して精製窒素
ガスは、02,C○,C02,C比,日20等いずれの
不純物ガスも大幅に減少しており、窒素ガスの精製効果
が高いことを見し、出した。
The purified nitrogen gas thus obtained from the outlet side in FIG. 1 was compared with the raw material nitrogen gas by purity analysis. Purity analysis was carried out by the usual method specified by Japanese Industrial Standards (JIS) and the like. As a result, compared to the raw nitrogen gas, the purified nitrogen gas had significantly reduced impurity gases such as 02, C○, C02, C ratio, and 20%, indicating that the purification effect of nitrogen gas was high. I put it out.

合金粉末は、水素化処理をしない合金をそのまま機械的
に徴粉化してもある程度の吸着特性を有するが、好まし
くは水素化、脱水素化処理を施すことによりさらに活性
化を促進し、吸着特性を高めることができる。なお、水
素化と脱水素化の処理は、例えば第1図に示す様な精製
器の中で行っても、別の容器で行った後精製器に充填し
ても吸着特性としては同様の結果であった。なお、本発
明者らはすでに、水素ガスと希ガスの精製方法に関して
合金粉末を用いる方法を提案してきた。
Alloy powder has adsorption properties to a certain extent even if the alloy is mechanically powdered without hydrogenation treatment, but it is preferable to further promote activation by subjecting it to hydrogenation or dehydrogenation treatment to improve adsorption properties. can be increased. Furthermore, whether the hydrogenation and dehydrogenation treatments are performed in a purifier as shown in Figure 1, or whether they are performed in a separate container and then filled into the purifier, the adsorption properties will be the same. Met. Note that the present inventors have already proposed a method using alloy powder for purifying hydrogen gas and rare gas.

このうち、水素ガスの精製については、水素ガスを合金
に吸蔵させて金属水素化物とし、水素放出反応に伴って
得られる水素を精製ガスとする点で、原理的に本発明と
全く異なる。また、希ガスの精製方法に関しては、希ガ
ス中の窒素ガスも不純物ガスとして除去できるものであ
り、本発明の窒素ガスの精製は技術的に困難である事が
予想された。しかし、実験的に確認してみると、主ガス
である窒素ガスもいくらか吸着除去されるものの、それ
以外の02,C0,C02,C比,日20の不純物ガス
を充分吸着除去できるものである事が見し、出されたの
で、窒素ガスの精製方法について提案したものである。
本発明による窒素ガスの精製方法には、次の様な特徴が
ある。
Of these, the purification of hydrogen gas is fundamentally different from the present invention in that hydrogen gas is occluded in an alloy to form a metal hydride, and hydrogen obtained through a hydrogen release reaction is used as purified gas. Furthermore, regarding the method for purifying rare gas, nitrogen gas in the rare gas can also be removed as an impurity gas, and it was expected that the purification of nitrogen gas according to the present invention would be technically difficult. However, when confirmed experimentally, although some of the main gas, nitrogen gas, is adsorbed and removed, other impurity gases of 02, C0, C02, C ratio, and 20 can be sufficiently adsorbed and removed. After seeing this, I proposed a method for purifying nitrogen gas.
The method for purifying nitrogen gas according to the present invention has the following features.

すなわち、【1ー不純物ガスに対する吸着能力が非常に
高く、あらゆる不純物ガスを同時に除去できる、■複雑
な吸着プロセスを必要としないため、それに伴う精製装
置の構成および操作が容易である、‘3’吸着剤の価格
が比較的安価である、‘4’吸着剤の再生が比較的容易
にできる、などがあげられる。これらの特徴をさらに詳
しく説明すると、まず【1’の吸着能力については、純
度分析においてほぼ不純物元素の検出が困難な程度まで
純度を向上できて、かつ除去したい不純物を選択するこ
となく一種類の吸着剤で達成できる。また‘2’の吸着
プロセスについては、精製したい窒素ガスを通過させる
事のみで高い純化効果が得られるため、従来のものに比
較すれば装置構成および操作、メンテナンスが極めて容
易である。また‘3’の価格についても、高価な材料を
使わず製造プロセスも容易なため、従来のものに比較し
て低価格である。‘4に示した吸着剤の再生は、通常の
加熱脱ガス処理で吸着特性を損なう事なく容易に再生が
可能である。合金は粉砕も容易でかつ一連の水素化と脱
水素化反応によって徴粉化される程度が、従来の単体水
素化物に比べれば極端に大きい事がすぐれた吸着特性の
原因になっているものと考えられる。
In other words, [1- It has a very high adsorption capacity for impurity gases and can remove all impurity gases at the same time; ■ It does not require a complicated adsorption process, so the configuration and operation of the accompanying purification equipment is easy; '3' Examples include that the price of the adsorbent is relatively low, and that the '4' adsorbent can be regenerated relatively easily. To explain these characteristics in more detail, first of all, regarding the adsorption capacity of [1'], it is possible to improve the purity to the extent that it is almost difficult to detect impurity elements in purity analysis, and it is possible to improve the adsorption capacity of one type of impurity without selecting the impurity to be removed. This can be achieved with adsorbents. Regarding the adsorption process '2', a high purification effect can be obtained simply by passing the nitrogen gas to be purified, so the equipment configuration, operation and maintenance are extremely easy compared to conventional ones. Also, the price of '3' is lower than that of conventional products because it does not use expensive materials and the manufacturing process is easy. The adsorbent shown in '4 can be easily regenerated by normal heating and degassing treatment without impairing the adsorption properties. The alloy is easy to crush, and the extent to which it is pulverized through a series of hydrogenation and dehydrogenation reactions is extremely large compared to conventional simple hydrides, which is thought to be the reason for its excellent adsorption properties. Conceivable.

事実、合金材料の中でも水素化反応による徴粉化の度合
が強いTiとMnを主成分とするMgZ−型Ti−Mn
系合金は他のTi−Fe系合金等に比較して吸着特性は
良好なものであった。本発明の窒素ガス精製方法は、第
1図に示す様な粉末保持容器1に合金粉末2をなるべく
窒素ガスと有効に接触する様に充填することが基本とな
るが、原料窒素ガスの品質や、精製の程度およびガス量
などの各種条件によって種々の応用が考えられる。
In fact, among alloy materials, MgZ-type Ti-Mn, whose main components are Ti and Mn, has a high degree of particle formation due to hydrogenation reaction.
The adsorption properties of the alloys were better than those of other Ti--Fe alloys. The nitrogen gas purification method of the present invention is basically to fill a powder holding container 1 as shown in FIG. 1 with alloy powder 2 so as to come into contact with nitrogen gas as effectively as possible. Various applications can be considered depending on various conditions such as the degree of purification and the amount of gas.

例えば、精製能力をより向上させる目的で、第2図に示
すように、第1図の精製装置を複数個設け、窒素ガスの
流れに対して直列に連結配置した多段式による方法があ
る。
For example, in order to further improve the purification capacity, there is a multi-stage method, as shown in FIG. 2, in which a plurality of the purification apparatuses shown in FIG. 1 are provided and arranged in series with respect to the flow of nitrogen gas.

この多段式精製方法によって窒素ガスの品質はさらに向
上させる事が可能である。次に、水素吸蔵用合金として
、Ti−Mn系合金の中からTIMn,.5合金を用い
た場合の精製方法について説明する。
The quality of nitrogen gas can be further improved by this multi-stage purification method. Next, as a hydrogen storage alloy, TIMn, . The refining method when using No. 5 alloy will be explained.

結晶形が六方晶のMgZn2型に属するTIMn,.5
合金をアーク溶解等の方法で作成し、これを5〜20メ
ッシュの大きさに機械的な粉砕をし、密閉容器中で水素
化処理し、TIMn,.5日2.45を得た。
TIMn, whose crystal form belongs to the MgZn2 type with a hexagonal system. 5
An alloy is prepared by a method such as arc melting, mechanically pulverized to a size of 5 to 20 mesh, and hydrogenated in a closed container to form TIMn, . I got 2.45 on the 5th.

この水素化物を脱水素化し、再度水素化と脱水秦化を繰
り返した後、高温下で真空脱ガス処理をして吸着剤とし
た。この脱水秦化されたTIMn,.5合金は、水素化
反応によって多くは数ミクロンから数十ミクロンの微粉
末になっていた。このTi−Mh系合金を第1図に示す
ステンレス鋼からできた粉末保持容器1に適当量充填し
た。なお精製ガスである窒素ガスがスムーズに流れ、か
つ効果的に合金粉末2であるTi一Mh系合金と接触す
る様に、スポンジ状の多孔性金属を同時に容器1内に充
填した。また第1図に示した様に容器の出入口には、さ
らに微細な穴径を有する競結金属よりなる粉末飛散防止
フィルター3を配した。以上の様な精製装置を作成し、
一方より比較的不純物を多く含む原料窒素ガスを連続的
に精製装置に送り込み、精製装置を通して得られる窒素
ガスを精製窒素ガスとして、それぞれのガスを一般的な
方法によって純度分析した。
This hydride was dehydrogenated, and after repeating hydrogenation and dehydration, it was subjected to vacuum degassing treatment at high temperature to obtain an adsorbent. This dehydrated TIMn, . Most of Alloy No. 5 was turned into fine powder from several microns to several tens of microns by the hydrogenation reaction. An appropriate amount of this Ti-Mh alloy was filled into a powder holding container 1 made of stainless steel as shown in FIG. Note that a sponge-like porous metal was simultaneously filled into the container 1 so that the purified nitrogen gas flowed smoothly and effectively contacted the Ti-Mh alloy that was the alloy powder 2. Further, as shown in FIG. 1, a powder scattering prevention filter 3 made of a compacted metal having a finer hole diameter was placed at the entrance and exit of the container. Create a purification device like the one above,
On the other hand, the raw material nitrogen gas containing relatively more impurities was continuously fed into a purification device, and the nitrogen gas obtained through the purification device was treated as purified nitrogen gas, and the purity of each gas was analyzed by a general method.

次表に原料窒素ガスと精製窒素ガスの不純物分析の結果
の一例を比較して示す。表からわかる様に、TIMn,
.5は、いずれの不純物ガスに対しても高い吸着能力を
示す。
The following table shows a comparison of an example of the results of impurity analysis of raw nitrogen gas and purified nitrogen gas. As can be seen from the table, TIMn,
.. No. 5 shows high adsorption ability for any impurity gas.

次に第2の実施例として、第1の実施例の方法による精
製装置を第2図に示す様にガスの流れに対して5個直列
に配列した多段式精製方法による効果を述べる。
Next, as a second example, the effects of a multi-stage purification method in which five purification apparatuses according to the method of the first example are arranged in series with respect to the gas flow as shown in FIG. 2 will be described.

原料窒素ガスは第1の実施例と同様のものを用いたが、
得られる精製窒素ガスはQく0.1脚,COく0.1脚
,C02く0.1脚,CH4く0.1跡,母0<1脚と
いずれの不純物ガス成分も分析計の検出限界以下になる
という結果であった。これによって多段式精製方法は極
めて有効な方法であると言える。この様に、本発明の精
製方法は、窒素ガスを吸収するが、Q,C0,C02,
40,CMなどが優先的に吸着除去されるので、その精
製効果が大きい。また、Ti−Mn系合金以外のTi−
Fe系合金、La−Ni系合金ながについても、不純物
ガスの吸着能力などはほぼ同様の効果が得られた。
The raw material nitrogen gas used was the same as in the first example, but
The purified nitrogen gas obtained is 0.1 traces of Q, 0.1 traces of CO, 0.1 traces of CO2, 0.1 traces of CH4, and all impurity gas components are detected by the analyzer. The result was that it was below the limit. Therefore, it can be said that the multistage purification method is an extremely effective method. In this way, the purification method of the present invention absorbs nitrogen gas, but Q, C0, C02,
Since 40, CM, etc. are preferentially adsorbed and removed, the purification effect is great. In addition, Ti- other than Ti-Mn alloys
Almost the same effects, such as the ability to adsorb impurity gases, were obtained with Fe-based alloys and La-Ni-based alloys.

ただし、Ti一Mn系がそれらの合金材料の中では最良
のものであった。また、窒素ガスにアルゴンや、ヘリウ
ムなどの希ガスを混合したガスの精製効果についても検
討した結果、同様の効果が得られることがわかつた。こ
のように水素吸蔵用合金の徴粉を吸着剤とする本発明の
窒素ガスの精製方法は、比較的安価な材料を用いてかつ
非常に簡単な構成や操作で優れた精製効果を持つもので
ある。
However, the Ti-Mn system was the best among these alloy materials. They also investigated the purification effect of a mixture of nitrogen gas with argon or a rare gas such as helium, and found that similar effects could be obtained. As described above, the nitrogen gas purification method of the present invention, which uses hydrogen storage alloy powder as an adsorbent, uses relatively inexpensive materials and has an excellent purification effect with a very simple configuration and operation. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の窒素ガスの精製方法を示す精製装置の
構成図、第2図は本発明の方法を用いた多段式精製方法
を示す図である。 1・・・・・・容器、2・・・・・・合金粉末。
FIG. 1 is a block diagram of a purification apparatus showing the nitrogen gas purification method of the present invention, and FIG. 2 is a diagram showing a multistage purification method using the method of the present invention. 1... Container, 2... Alloy powder.

Claims (1)

【特許請求の範囲】[Claims] 1 窒素ガス中に含まれる不純物ガスを除去する方法に
おいて、水素吸蔵用合金の水素化と脱水素化の工程を少
なくとも1回施した粉末を開口を有する容器内に充填し
、原料窒素ガスを上記容器内を通過させて精製すること
を特徴とする窒素ガスの精製方法。
1 In a method for removing impurity gases contained in nitrogen gas, a powder that has been subjected to at least one hydrogenation and dehydrogenation process of a hydrogen storage alloy is filled into a container with an opening, and the raw material nitrogen gas is A method for purifying nitrogen gas, which is characterized by purifying nitrogen gas by passing it through a container.
JP3998181A 1981-03-18 1981-03-18 Nitrogen gas purification method Expired JPS6020323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3998181A JPS6020323B2 (en) 1981-03-18 1981-03-18 Nitrogen gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3998181A JPS6020323B2 (en) 1981-03-18 1981-03-18 Nitrogen gas purification method

Publications (2)

Publication Number Publication Date
JPS57156308A JPS57156308A (en) 1982-09-27
JPS6020323B2 true JPS6020323B2 (en) 1985-05-21

Family

ID=12568119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3998181A Expired JPS6020323B2 (en) 1981-03-18 1981-03-18 Nitrogen gas purification method

Country Status (1)

Country Link
JP (1) JPS6020323B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6299670B1 (en) 1999-06-10 2001-10-09 Saes Pure Gas, Inc. Integrated heated getter purifier system
JP4795741B2 (en) * 2005-07-25 2011-10-19 ウチヤ・サーモスタット株式会社 Nitrogen gas generator and fuel cell power generation system using the same

Also Published As

Publication number Publication date
JPS57156308A (en) 1982-09-27

Similar Documents

Publication Publication Date Title
KR0180946B1 (en) How to remove gaseous impurities from hydrogen flow
JPS61268336A (en) Method for purifying inert gas stream
US5489327A (en) Process for purifying hydrogen gas
JPH054809A (en) Purification of pare gas
JPH08509454A (en) Improved method for removing gaseous impurities from hydrogen streams
JPH09142813A (en) Method and apparatus for producing stream substantially freed from at least either of oxygen and carbon monoxide as impurities
KR100243560B1 (en) Hazardous Gas Purification Method
WO1997011768A1 (en) Low temperature inert gas purifier
JPH07330313A (en) Method and apparatus for preparation of high purity liquid nitrogen
US6017502A (en) Hydrogen purification using metal hydride getter material
JPH0688765B2 (en) Noble gas refining equipment
KR20020047114A (en) Rejuvenable ambient temperature purifier
JPS6020323B2 (en) Nitrogen gas purification method
JP2977606B2 (en) Noble gas purification method
US5737941A (en) Method and apparatus for removing trace quantities of impurities from liquified bulk gases
JPS6230127B2 (en)
US4358429A (en) Oxygen stabilized zirconium vanadium intermetallic compound
US4215008A (en) Rare earth-containing alloys and method for purification of hydrogen gas therewith
JPS621566B2 (en)
JPH03126607A (en) Method for refining rare gas
JPS6348802B2 (en)
JPH02293310A (en) Equipment for high-purity refining of rare gas
JPS58190801A (en) Method for recovering high purity hydrogen from coke oven gas
JP4059663B2 (en) Method for purifying hydrogen gas
JPS5953202B2 (en) Hydrogen gas purification equipment