JPS60202341A - Pressure-reduction-degree checking device of packed body - Google Patents
Pressure-reduction-degree checking device of packed bodyInfo
- Publication number
- JPS60202341A JPS60202341A JP6001484A JP6001484A JPS60202341A JP S60202341 A JPS60202341 A JP S60202341A JP 6001484 A JP6001484 A JP 6001484A JP 6001484 A JP6001484 A JP 6001484A JP S60202341 A JPS60202341 A JP S60202341A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- chamber
- package
- amount
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002950 deficient Effects 0.000 claims abstract description 10
- 238000001514 detection method Methods 0.000 claims description 14
- 238000006073 displacement reaction Methods 0.000 claims description 12
- 238000007689 inspection Methods 0.000 claims description 9
- 230000006837 decompression Effects 0.000 claims description 4
- 230000008961 swelling Effects 0.000 abstract description 10
- 239000003638 chemical reducing agent Substances 0.000 abstract 1
- 238000009413 insulation Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 5
- 235000013305 food Nutrition 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 235000019362 perlite Nutrition 0.000 description 2
- 239000010451 perlite Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/36—Investigating fluid-tightness of structures by using fluid or vacuum by detecting change in dimensions of the structure being tested
- G01M3/363—Investigating fluid-tightness of structures by using fluid or vacuum by detecting change in dimensions of the structure being tested the structure being removably mounted in a test cell
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Examining Or Testing Airtightness (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は食品や断熱材等の充填物を内包して減圧した包
装体の性能検査に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the performance inspection of a reduced-pressure package containing a filler such as a food product or a heat insulating material.
従来例の構成とその問題点
近年、断熱箱体の断熱性能を壁厚を増やすことを向上さ
せるため容器内にパーライト等の粉末からなる充填物を
減圧密封した包装体を用いることが提案されている。こ
の包装体の構造を第1図を参考に説明すると1は包装体
で、プラスチックス−金属のラミネートフィルム等から
なる柔軟性を有する容器2内にパーライトの粉末から成
る充填物3を詰めて、内部をITorr に減圧した後
容器2を密閉させたものであった。Conventional structure and its problems In recent years, in order to improve the insulation performance of the insulation box by increasing the wall thickness, it has been proposed to use a package in which a container is sealed with a filling made of powder such as perlite under reduced pressure. There is. The structure of this package will be explained with reference to FIG. 1. In the package 1, a flexible container 2 made of a plastic-metal laminate film or the like is filled with a filling 3 made of pearlite powder. After reducing the internal pressure to ITorr, the container 2 was sealed.
しかしこのような包装体1は減圧することにより断熱性
能を向上させているので、この容器2の密閉度が悪いと
所定の減圧度が維持されず断熱性能が劣化することとな
る。そのため従来のこのような包装体1の断熱性能の検
査装置について第2図を参考に説明すると、4は熱伝導
率測定装置であり40℃の恒温を保つ上面熱板5と10
℃の恒温を保つ下面熱板6及び熱流量を測定する熱流セ
ンサー7から成っている。そして前記包装体1を上面熱
板6と下面熱板6中に配置し、包装体1が熱移動に対し
平衡に達したとき貫流する熱流量を熱流センサー7で測
定することにより熱流量に包装体1の厚みを乗じ、上、
下面板5,6の温度差で除すことにより包装体1の熱伝
導率がめられた。However, since such a package 1 improves its heat insulation performance by reducing the pressure, if the container 2 is poorly sealed, a predetermined degree of pressure reduction will not be maintained and the heat insulation performance will deteriorate. Therefore, the conventional inspection device for the thermal insulation performance of such a package 1 will be explained with reference to FIG.
It consists of a lower heat plate 6 that maintains a constant temperature of °C and a heat flow sensor 7 that measures heat flow. Then, the package 1 is placed between the upper heat plate 6 and the lower heat plate 6, and the heat flow sensor 7 measures the flow of heat when the package 1 reaches equilibrium with respect to heat transfer. Multiply the thickness of body 1, top,
The thermal conductivity of the package 1 was determined by dividing by the temperature difference between the bottom plates 5 and 6.
次に上記従来例の作用について説明する。Next, the operation of the above conventional example will be explained.
このような熱伝導率測定装置4により包装体1の熱伝導
率がめられ、性能の良否が判定できるが、熱流量は包装
体1の温度勾配により変化するため熱移動が平衡状態と
ならないと測定できない。つまり上面熱板5から下面熱
板6に供給される熱流により包装体1が一定の温度勾配
に保たれることが不可欠である。この結果、1回の測定
に通常1〜2時間という検査時間を要す。又、非平衡状
態の熱流量をとらえてその特性から熱伝導率をめること
もできるが、包装体1が熱伝導率0.2hl/mh℃程
度の容器2に覆われているため、この影響を受けて包装
体1中の充填物3の0.005bし′mh℃という熱伝
導率を検出することは困難である。この結果量産下色装
体1を全数検査するには時間的に困難であり非常に多く
の検査装置が必要で莫大な投資が必要となる問題があっ
た。Such a thermal conductivity measurement device 4 measures the thermal conductivity of the package 1 and can determine whether the performance is good or bad, but since the heat flow rate changes depending on the temperature gradient of the package 1, measurement is difficult unless the heat transfer reaches an equilibrium state. Can not. In other words, it is essential that the package 1 is maintained at a constant temperature gradient by the heat flow supplied from the upper heating plate 5 to the lower heating plate 6. As a result, one measurement typically requires an inspection time of 1 to 2 hours. It is also possible to calculate the thermal conductivity from the properties of the heat flow in a non-equilibrium state, but since the package 1 is covered by the container 2 with a thermal conductivity of about 0.2 hl/mh°C, this Under this influence, it is difficult to detect the thermal conductivity of 0.005 mh°C of the filling 3 in the package 1. As a result, it is difficult to inspect all mass-produced undercolor bodies 1 in terms of time, and a large number of inspection devices are required, resulting in a huge investment.
発明の目的
本発明は上記従来例の欠点を除去するものであり、短時
間で包装体の性能検査を可能とし、全数検査によって真
空ブレーク及び減圧不足による不良品を除くことにより
品質の確保に寄与するものである。Purpose of the Invention The present invention eliminates the drawbacks of the above-mentioned conventional examples, and makes it possible to inspect the performance of packages in a short time, and contributes to ensuring quality by eliminating defective products due to vacuum breaks and insufficient vacuum through 100% inspection. It is something to do.
発明の構成
本発明は上記目的を達成するため柔軟性を有する容器に
充填物を入れて内部を減圧した包装体を収容するチャン
バーと、このチャンバー内を減圧させる減圧装置と、前
記チャンバー内に設けられた包装体の容器の膨れ変化量
を光学式の変位変換機で検知する検知装置により、包装
体をチャンバー内に静置しチャンバーを減圧装置により
所定の圧力捷で減圧したときの包装体の膨れ変化量を光
学式の変位変換機による検知装置により検知し、前記検
知装置により膨れ変化量の大きさが一定以上である包装
体を不良品であると良否半定手段により判定するもので
ある。Structure of the Invention In order to achieve the above-mentioned object, the present invention provides a chamber for accommodating a package in which a flexible container is filled and the inside pressure is reduced, a pressure reducing device for reducing the pressure in the chamber, and a pressure reduction device provided in the chamber. A detection device that uses an optical displacement transducer to detect the amount of change in the bulge of the container of the packaged product is used to detect the amount of change in the packaged product when the package is left in a chamber and the chamber is depressurized at a predetermined pressure using a decompression device. The amount of change in bulge is detected by a detection device using an optical displacement converter, and a package whose amount of change in bulge is greater than a certain level by the detection device is determined to be a defective product by a half-determined means. .
実施例の説明
以下に本発明の一実施例の構成について第3図第6図を
参考に説明するが、従来の同一の構成については同一番
号を付してその詳細な説明を省略する。DESCRIPTION OF EMBODIMENTS The structure of an embodiment of the present invention will be described below with reference to FIGS. 3 and 6, but the same reference numerals will be given to the same conventional structures and detailed explanation thereof will be omitted.
図において、8は包装体1の減圧度検査装置で上、下容
器4,10に分割され上容器9が上下に移動し開閉を行
なうチャンバー11と、前記チャンバー11内に配設さ
れた圧力スイツチ12と、前記圧力スイッチ12によっ
て所定圧力になると減圧を停止する減圧装置13と、チ
ャンバー11内に設けられた包装体1の容器2の膨れ変
化量を検知する検知装置14と、前記圧力スイッチ12
の作動に連動し、所定圧力になったときの膨れ変化量を
表示し、膨れ変化量の大きさが4++++++以上のと
きランプが点灯する表示部16とから成っている。In the figure, reference numeral 8 denotes a reduced pressure degree inspection device for the package 1, which is divided into upper and lower containers 4 and 10, and includes a chamber 11 in which the upper container 9 moves up and down to open and close, and a pressure switch disposed within the chamber 11. 12, a pressure reducing device 13 that stops reducing pressure when the pressure reaches a predetermined pressure by the pressure switch 12, a detection device 14 that detects the amount of change in swelling of the container 2 of the package 1 provided in the chamber 11, and the pressure switch 12.
The display section 16 displays the amount of change in swelling when a predetermined pressure is reached, and a lamp lights up when the amount of change in swelling is 4+++++++ or more.
前記検知装置14はレーザービーム発生機16と、照射
レンズ17と、受光レンズ18と、変位計算機19とか
ら成り、包装体1の表面に照射レンズ17からレーザー
ビームを照射し受光レンズ18で包装体1の表面で反射
した光束を受けており、包装体1に厚み変位が起こると
受光レンズ18の受光位置がずれることを利用し変位計
算機19で変位変化量に換算している。検知装置14は
上容器9に外面に配置され、上容器9には、透明窓17
が照射レンズ13、受光レンズ14の光軸に対し垂直に
なるよう配設されている。又、包装体1をチャンバー1
1内の下容器1oに静置しチャンバー11が密閉になっ
たときこの位置の受光位置を初期位置として変位計算機
19に入力される。The detection device 14 includes a laser beam generator 16, an irradiation lens 17, a light receiving lens 18, and a displacement calculator 19. 1, and when the thickness of the package 1 changes, the light receiving position of the light receiving lens 18 shifts, which is converted into a displacement change amount by a displacement calculator 19. The detection device 14 is arranged on the outer surface of the upper container 9, and the upper container 9 has a transparent window 17.
are arranged perpendicular to the optical axes of the irradiation lens 13 and the light receiving lens 14. Also, the package 1 is placed in the chamber 1.
When the chamber 11 is placed in the lower container 1o in the chamber 1 and the chamber 11 is sealed, the light receiving position at this position is input to the displacement calculator 19 as the initial position.
次に上記実施例の作用について説明する。Next, the operation of the above embodiment will be explained.
図において包装体1をチャンバー11内に静置し減圧装
置13によりチャンバー11内を減圧していくと包装体
1の内部減圧度が維持されていることにより内部減圧度
よりチャンバー11内が低圧になった瞬間に包装体1の
容器2は大きく風船状に膨らみ厚みが変位する。この膨
れ変位は、検知装置14によって検知される。すなわち
容器2が膨れるにつれて照射レンズ17から照射された
レーザービームは容器2上に反射して受光レンズ18に
入射するが前記受光レンズ18での受光位置がずれ、こ
のずれに対応して変位計算機19により再度移動量とし
て変換される。そして、チャンバー11内の圧力が所定
の減圧度になったとき圧力スイッチ12が作動し減圧装
置13を停止させる。In the figure, when the package 1 is left still in the chamber 11 and the pressure inside the chamber 11 is reduced by the pressure reducing device 13, the pressure inside the chamber 11 becomes lower than the internal pressure because the degree of internal vacuum of the package 1 is maintained. At the moment when this occurs, the container 2 of the package 1 expands greatly into a balloon shape and its thickness changes. This bulge displacement is detected by the detection device 14. That is, as the container 2 expands, the laser beam irradiated from the irradiation lens 17 is reflected onto the container 2 and enters the light receiving lens 18, but the light receiving position in the light receiving lens 18 shifts, and the displacement calculator 19 responds to this shift. It is converted again as a movement amount. Then, when the pressure within the chamber 11 reaches a predetermined degree of pressure reduction, the pressure switch 12 is activated to stop the pressure reduction device 13.
このとき、検知装置14で測定している膨れ変化量を同
時に表示部16に入力する。したがって、4咽以上の膨
らみ変化の場合は表示部150ランプが点灯するもので
ある。よって所定の圧力よりも包装体1の内部圧力が高
圧であれば容器2は一定の大きさ以上に大きく膨らむこ
とにより表示部16のランプが点灯し逆に低圧であれば
容器2は表示部16のランプは点灯しない。したがって
、表示部16のランプを読み取ることにより包装体1の
内部圧力が所定の圧力に比べ高いか低いかを判別でき、
真空ブレークや減圧不足の不良品につき合否判定ができ
、断熱性能の良否判定ができるのである。At this time, the amount of change in bulge measured by the detection device 14 is simultaneously input to the display section 16. Therefore, in the case of a bulge change of 4 or more, the display section 150 lamp lights up. Therefore, if the internal pressure of the package 1 is higher than the predetermined pressure, the container 2 will expand beyond a certain size and the lamp on the display section 16 will light up, and on the other hand, if the pressure is low, the container 2 will expand to the display section 16. The lamp does not light up. Therefore, by reading the lamp on the display unit 16, it is possible to determine whether the internal pressure of the package 1 is higher or lower than a predetermined pressure.
It is possible to judge pass/fail for defective products due to vacuum breaks or insufficient decompression, and it is also possible to judge whether the insulation performance is good or bad.
すなわち包装体1の内部減圧度と熱伝導率は密接な関係
があり、発泡パーライト等の充填物3の種類が一定のと
き内部減圧度が所定の圧力にあるかどうかを測定すれば
所定の熱伝導率が得られて・いるかどうかが判定できる
のである。In other words, there is a close relationship between the degree of internal vacuum and thermal conductivity of the package 1, and if the type of filler 3 such as foamed perlite is constant, measuring whether the degree of internal vacuum is at a predetermined pressure will determine the predetermined heat. It is possible to judge whether conductivity is obtained or not.
又、包装体1が針の孔のように小孔な傷付きにより内部
減圧度が大気圧を示し、かつ、傷を介して包装体1の内
外の空気が互いに流通するような場合においてもチャン
バー9を減圧しても充填物3中の空気は容易に包装体1
の外へ排出されず、チャンバー9の内部減圧度に比べ高
圧を示すため真空ブレークや減圧不足と同様に膨らみ変
化を起こす。In addition, even if the package 1 has a small scratch such as a needle hole, and the degree of internal decompression shows atmospheric pressure, and the air inside and outside the package 1 circulates through the scratch, the chamber Even if the pressure in the packing 9 is reduced, the air in the filling 3 can easily be removed from the package 1.
Since the pressure is higher than the degree of vacuum inside the chamber 9 and the pressure is high compared to the degree of vacuum inside the chamber 9, expansion changes occur in the same way as a vacuum break or insufficient vacuum.
例として0.00701gし’m、h ’C(内部圧力
1.0Torr)、及び0.oo8olalL/mh℃
(内部圧力2.0Torr)の包装体1の減圧下での厚
みの膨らみ変位を説明するとそれぞれ内部産力より5%
程度低い圧力でチャンバー内を減圧したときに急に膨ら
む。(第4図に示す。)このときのチャンバー11内の
減圧度と包装体1の熱伝導率の相関(第5図に示す)か
ら包装体1の断熱性能が容易に想定できる。よって所定
の熱伝導率以上の包装体1を不良品とするとこの熱伝導
率に対応した所定の圧力までチャンバー11内を減圧し
検知装置14によって包装体1の膨らみを4鴫以上ある
ことを検知することにより表示部15がランプ照示を行
なうことで不良品であることが判るのである。よって容
易に真空ブレークや減圧不足などの不良品を全数検査す
ることができ、工程品質の確保に寄与することができる
のである。As an example, 0.00701 g'm, h'C (internal pressure 1.0 Torr), and 0. oo8olarL/mh℃
(internal pressure 2.0 Torr) The thickness expansion displacement under reduced pressure of the package 1 is 5% from the internal production capacity.
It suddenly expands when the chamber is decompressed at a relatively low pressure. (As shown in FIG. 4.) The heat insulation performance of the package 1 can be easily estimated from the correlation between the degree of vacuum in the chamber 11 and the thermal conductivity of the package 1 (shown in FIG. 5) at this time. Therefore, if a package 1 with a thermal conductivity higher than a predetermined value is determined to be a defective product, the pressure inside the chamber 11 is reduced to a predetermined pressure corresponding to this thermal conductivity, and the detection device 14 detects that the package 1 has a bulge of 4 or more. As a result, the display section 15 lights up the lamp, and it can be determined that the product is defective. Therefore, it is possible to easily inspect all defective products such as vacuum breaks or insufficient vacuum, which contributes to ensuring process quality.
なお、変位変化量を光学式の検知装置14で検知するた
め、包装体1の容器2の膨らみに対し、荷重等の力学的
な影響を及ぼさないため変位変化量がばらつくことなく
精度・再現性に問題ないものである。又、包装体1の厚
みが一定でなくともチャンバー11を密閉にした時点を
初期位置として入力されるため厚みの異なる包装体1て
も問題なく連続的に使用できるのである。In addition, since the amount of displacement change is detected by the optical detection device 14, there is no mechanical influence such as load on the expansion of the container 2 of the package 1, so the amount of displacement change does not vary and the accuracy and reproducibility are improved. There is no problem with that. Furthermore, even if the thickness of the package 1 is not constant, the time point when the chamber 11 is sealed is input as the initial position, so packages 1 having different thicknesses can be used continuously without any problem.
尚実施例においては断熱体パックを例に説明したが、内
部に食品等を封入して減圧したレトルト食品等の減圧の
検査にも利用できる。Although the embodiment has been described using a heat insulator pack as an example, the present invention can also be used to inspect the reduced pressure of retort food, etc., which has been sealed with food or the like inside and has been reduced in pressure.
発明の効果
本発明は上記のような構成であり包装体をチャンバー内
に静置し所定の圧力までチャンバーを減圧し包装体の容
器の膨れ変化量を検知装置にて検知して膨れ変化量の大
きさが一定以上のとき良否判定手段により不良品とする
ので容易に包装体の内部減圧度を検査することができ真
空ブレークや減圧不足を判定することができる。また、
検知装置は光学式であるため包装体の容器の膨れ変化に
対し荷重等の力学的な影響が及ばず精度・再現性に対し
優れたものである。又、包装体の厚みが一定でなくとも
チャンバーを密閉にした時点を初期位置として入力する
ため、厚みの異なる包装体でも問題なく連続的に使用で
きるのである。Effects of the Invention The present invention has the above-mentioned configuration, and the package is placed in a chamber, the chamber is depressurized to a predetermined pressure, and the amount of change in the bulge of the container of the package is detected by a detection device, and the amount of change in bulge is detected. When the size is above a certain level, the product is determined to be defective by the quality determining means, so that the degree of internal vacuum of the package can be easily inspected, and a vacuum break or insufficient vacuum can be determined. Also,
Since the detection device is an optical type, there is no mechanical influence such as load on changes in the swelling of the packaging container, and it has excellent accuracy and reproducibility. Furthermore, even if the thickness of the package is not constant, the time point when the chamber is sealed is input as the initial position, so packages with different thicknesses can be used continuously without any problem.
第1図は包装体の断面図、第2図は従来の検査装置の正
面図、第3図は本発明の一実施例における横幕装置の断
面図、第4図は包装体のチャンバー減圧下の厚み変位量
の変化図、第5図は、包装体の熱伝導率とチャンバー内
の減圧度の関係図を示している。
1・・・・・・包装体、2・・・・・・容器、3・・・
・・・充填物、11・・・・・・チャンバー、13・・
・・・・減圧装置、14・・・・・・検釦装置。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
1B!1
第 2 図
′l
第 3 図Fig. 1 is a sectional view of the package, Fig. 2 is a front view of a conventional inspection device, Fig. 3 is a sectional view of a horizontal banner device in an embodiment of the present invention, and Fig. 4 is a chamber of the package under reduced pressure. FIG. 5 shows a relationship between the thermal conductivity of the package and the degree of vacuum in the chamber. 1... Packaging body, 2... Container, 3...
...Filling, 11...Chamber, 13...
... Pressure reduction device, 14 ... Inspection button device. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
1B! 1 Figure 2 'l Figure 3
Claims (1)
装体を収容するチャンバーと、このチャンバー内を所定
の圧力まで減圧させる減圧装置と、前記チャンバー内に
設けられた包装体の容器の膨れ変化量を光学的に変位変
換する検知装置と、前記検知装置により膨れ変化量の大
きさが一定以上のとき不良品とする良否判定手段とより
なる包装体の減圧度検査装置。A chamber for accommodating a package whose interior is depressurized by filling a flexible container, a decompression device for reducing the pressure in this chamber to a predetermined pressure, and a bulging of the package provided in the chamber. A depressurization degree inspection device for a package, comprising a detection device for optically converting the amount of change into displacement, and a quality determination means for determining the product as defective when the amount of change in bulge is determined by the detection device to be a certain value or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59060014A JPH0799349B2 (en) | 1984-03-27 | 1984-03-27 | Decompression inspection device for packages |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59060014A JPH0799349B2 (en) | 1984-03-27 | 1984-03-27 | Decompression inspection device for packages |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60202341A true JPS60202341A (en) | 1985-10-12 |
JPH0799349B2 JPH0799349B2 (en) | 1995-10-25 |
Family
ID=13129785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59060014A Expired - Lifetime JPH0799349B2 (en) | 1984-03-27 | 1984-03-27 | Decompression inspection device for packages |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0799349B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5249454A (en) * | 1992-01-27 | 1993-10-05 | Kollie Thomas G | Instrument for measurement of vacuum in sealed thin wall packets |
JP2016069058A (en) * | 2014-09-30 | 2016-05-09 | 東洋製罐株式会社 | Leakage detection device of soft packaging container |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101267150B1 (en) * | 2011-04-11 | 2013-05-24 | (주)엘지하우시스 | Apparatus for vacuum pressure check of multistage vacuum insulation panel and measuring method using the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3117441A (en) * | 1961-05-16 | 1964-01-14 | Zimmerman Elmore | Method of and apparatus for determining vacuum conditions in packaging |
US3837215A (en) * | 1973-05-21 | 1974-09-24 | T Massage | Method and apparatus for testing sealed containers |
JPS53125091A (en) * | 1977-04-08 | 1978-11-01 | Oki Electric Ind Co Ltd | Airtightness detector of hard hermetic vessels |
-
1984
- 1984-03-27 JP JP59060014A patent/JPH0799349B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3117441A (en) * | 1961-05-16 | 1964-01-14 | Zimmerman Elmore | Method of and apparatus for determining vacuum conditions in packaging |
US3837215A (en) * | 1973-05-21 | 1974-09-24 | T Massage | Method and apparatus for testing sealed containers |
JPS53125091A (en) * | 1977-04-08 | 1978-11-01 | Oki Electric Ind Co Ltd | Airtightness detector of hard hermetic vessels |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5249454A (en) * | 1992-01-27 | 1993-10-05 | Kollie Thomas G | Instrument for measurement of vacuum in sealed thin wall packets |
US5406831A (en) * | 1992-01-27 | 1995-04-18 | Martin Marietta Energy Systems, Inc. | Instrument for measurement of vacuum in sealed thin wall packets |
JP2016069058A (en) * | 2014-09-30 | 2016-05-09 | 東洋製罐株式会社 | Leakage detection device of soft packaging container |
Also Published As
Publication number | Publication date |
---|---|
JPH0799349B2 (en) | 1995-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR940001875B1 (en) | Method and apparatus for determinating a vacuum degree within a flexible vacuum package | |
US5082366A (en) | Apparatus and method for detecting leaks in packages | |
JP3001820B2 (en) | Container leak test method and apparatus | |
US6167751B1 (en) | Leak analysis | |
US3572096A (en) | Method and apparatus for inspecting sealed packages for leaks | |
US3973249A (en) | Apparatus for detecting leakage from container and method therefor | |
CN1517689A (en) | Method for leak testing of electrochemical components | |
EP0513931B1 (en) | Method and apparatus for testing a filled and closed flexible package for leakage | |
US20030033857A1 (en) | Apparatus and method to detect leaks in sealed packages | |
US3805595A (en) | Apparatus for testing leakage | |
JPS60202341A (en) | Pressure-reduction-degree checking device of packed body | |
JPH01316626A (en) | Method for inspecting sealing performance of plastic container | |
JPH0579940A (en) | Measuring method for degree of vacuum of vacuum packing body | |
JPH05142075A (en) | Pressure inspection method for vacuum heat insulation panel | |
JPS60210748A (en) | Apparatus for inspecting vacuum degree of package | |
US3352146A (en) | Method and means for testing the gas permeability and closure leakage of containers | |
CN216483792U (en) | A gas tightness detection device for wrapping bag | |
JPS60202342A (en) | Pressure-reduction-degree checking device of packed body | |
JPH0153733B2 (en) | ||
JPS60202340A (en) | Pressure-reduction-degree checking device of packed body | |
EP1052493A2 (en) | Container seal inspection method | |
JPH0159533B2 (en) | ||
JP2004012306A (en) | Device and method for inspecting package for degree of vacuum | |
JP2949685B2 (en) | Leak test method for closed synthetic resin containers | |
JPH0562287B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |