[go: up one dir, main page]

JPS60200948A - Composite materials for supporting members of heating furnaces - Google Patents

Composite materials for supporting members of heating furnaces

Info

Publication number
JPS60200948A
JPS60200948A JP5445084A JP5445084A JPS60200948A JP S60200948 A JPS60200948 A JP S60200948A JP 5445084 A JP5445084 A JP 5445084A JP 5445084 A JP5445084 A JP 5445084A JP S60200948 A JPS60200948 A JP S60200948A
Authority
JP
Japan
Prior art keywords
composite material
heat
resistant metal
heating furnace
skid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5445084A
Other languages
Japanese (ja)
Inventor
Fuminori Higami
樋上 文範
Yoshiyasu Morita
森田 喜保
Manabu Seguchi
瀬口 学
Katsutoshi Hara
原 勝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5445084A priority Critical patent/JPS60200948A/en
Publication of JPS60200948A publication Critical patent/JPS60200948A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To provide a titled composite material having improved resistance to oxidation, compression, thermal impact, etc. by dispersing uniformly a prescribed ceramic particles having a specific grain size into a matrix consisting of a heat resistant metal. CONSTITUTION:50-90vol% >=1 kinds of ceramics having <=5mm. average grain size are uniformly dispersed and incorporated into the matrix consisting composed of an alloy consisting essentially of Co or Ni or heat-resistant metal or alloy consisting of a stainless steel, etc. The ceramics are selected from Al2O3, 3Al2O3, 2SiO2, ZrO2, SiC2, Si3N4, AlN, TiN, sialon, etc. The composite material having excellent resistance to compressive creep at a high temp., mechanical impact, thermal impact, oxidation, wear, etc. excellent weldability is formed by such compsn. The material is applied for a supporting member of a heating furnace such as skid rail, skid button, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は加熱炉の支持部材用複合材料に関する。[Detailed description of the invention] Industrial applications The present invention relates to a composite material for a support member of a heating furnace.

更に詳しくは、耐熱金属をマトリックスとし、これにセ
ラミック粒子を分散させた複合材料に関する。
More specifically, the present invention relates to a composite material in which a heat-resistant metal is used as a matrix and ceramic particles are dispersed therein.

従来技術 一般に、スラブ等の加熱炉の炉床用レール材例えばスキ
ッドレール、並びにスキッドボタン等の支持部材として
は、種々の特性、例えば耐酸化性、耐圧縮性、耐熱衝撃
性、溶接性、高温長時間安定性、耐機械的衝撃特性等が
要求される。
Prior Art In general, rail materials for heating furnace hearths such as slabs, such as skid rails, and supporting members such as skid buttons, have various properties such as oxidation resistance, compression resistance, thermal shock resistance, weldability, and high temperature. Long-term stability, mechanical shock resistance, etc. are required.

そこで、従来は、このような加熱炉の炉床ではレール4
月として、被加熱物の移動の際に大きな機械的衝撃が加
わる恐れのない場合には耐火物が、一方大きな機械的衝
撃が加わる恐れのある場合には空気または水で冷却した
削熱金属が使用されていた。例えば第1図に示すように
従来の炉床では、炉床レール1が水冷パイプ2上に断熱
材3を介して配置された構成を有しており、レール支持
台4が水冷パイプ2と断熱材3との間に置かれ、被加熱
物5は該炉床レール1」−で加熱されるようになってい
る。
Therefore, in the past, rail 4 was used in the hearth of such a heating furnace.
Refractories are used when there is no risk of large mechanical shocks being applied during the movement of the heated object, while heat-reducing metals cooled with air or water are used when there is a risk of large mechanical shocks being applied. It was used. For example, as shown in FIG. 1, a conventional hearth has a structure in which a hearth rail 1 is placed on a water-cooled pipe 2 via a heat insulator 3, and a rail support 4 is insulated from the water-cooled pipe 2. The object to be heated 5 is placed between the hearth rail 1'' and the hearth rail 1''.

更に、よく知られている押型炉(プッシャー型連続炉)
は小鋼塊からスラブ、ビレットに亘る広範囲の種類、寸
法の被処理物に適用できることから、圧延工場で最も頻
繁に利用されている。このプッシャー型加熱炉において
も、耐火物では被加熱物が移動する際に、レールに機械
的な衝撃力が加わると該耐火物が割れてしまうので、冷
却した耐熱金属が使用されている。
Furthermore, the well-known push type furnace (pusher type continuous furnace)
It is most frequently used in rolling mills because it can be applied to a wide range of types and sizes of workpieces, from small steel ingots to slabs and billets. In this pusher type heating furnace as well, a cooled heat-resistant metal is used because the refractory will crack if a mechanical impact force is applied to the rail when the object to be heated moves.

しかしながら、この場合、被加熱物の耐熱金属と接して
いる部分が十分に加熱されず、その結果スキッドマーク
とよばれる低温スポットが形成される恐れがある。
However, in this case, the portion of the object to be heated that is in contact with the heat-resistant metal may not be sufficiently heated, resulting in the formation of low-temperature spots called skid marks.

従って、この問題を解決する新たな加熱炉炉床用支持部
材を作製するだめの材料を開発することは当分野におい
て極めて大きな意義を有する。
Therefore, it is of great significance in this field to develop a new material for producing a support member for a heating furnace hearth that solves this problem.

発明の目的 本発明の目的は上記従来法の欠点を解決する新規な加熱
炉支持部材製造用複合材料を提供することにある。また
、該複合材料から造られた加熱炉炉床用支持部材も目的
のひとつである。
OBJECTS OF THE INVENTION An object of the present invention is to provide a novel composite material for manufacturing a heating furnace support member, which overcomes the drawbacks of the above-mentioned conventional methods. A support member for a heating furnace hearth made of the composite material is also an object.

発明の構成 本発明者は前記従来法の現状に鑑みて、加熱炉炉床にお
いて使用する支持部材の作製材料を開発すべく種々検討
、研究した結果、耐熱金属をマトリックスとし、該マト
リックス中に特定のセラミック粒子を所定量均一に分散
させることが前記目的を達成する上で極めて有効である
ことを見だした。本発明はかかる新規な知見に基づくも
のである。
Structure of the Invention In view of the current state of the conventional methods, the present inventor has conducted various studies and researches to develop materials for manufacturing support members used in heating furnace hearths. It has been found that uniformly dispersing a predetermined amount of ceramic particles is extremely effective in achieving the above object. The present invention is based on this new finding.

即し、本発明の加熱炉の支持部利用複合材料は耐熱性金
属または合金のマ) IJツク又と、該マトリックス中
に均一に分散された、平均粒径5+11Tl+以下の少
なくとも1種のセラミックス50〜90容量%とを含む
ことを特徴とする。
That is, the composite material used for the support part of a heating furnace of the present invention comprises a matrix of heat-resistant metals or alloys, and at least one type of ceramic having an average particle size of 5+11Tl+ or less uniformly dispersed in the matrix. ~90% by volume.

本発明に従って、加熱炉の支持部材用材料を前記のよう
な構成とすることにより、これから得られる該支持部材
において従来のスキッドマー9 形成の問題などを有効
に回避できることがわかった。
According to the present invention, it has been found that by making the material for a support member of a heating furnace into the above-described configuration, the problems of conventional skidmer 9 formation can be effectively avoided in the support member obtained from the material.

本発明の複合材料において使用する耐熱金属は耐熱性な
らびに耐酸化性において優れたものであればとくに制限
されないが、Coを主成分とする合金、N1を主成分と
する合金またはステンレス鋼などが好ましく、また、こ
れらを主体としてC「、A1、Sl、Mo等を適量配合
したものも有利に使用できる。
The heat-resistant metal used in the composite material of the present invention is not particularly limited as long as it has excellent heat resistance and oxidation resistance, but alloys mainly composed of Co, alloys mainly composed of N1, stainless steel, etc. are preferable. , Furthermore, those containing these as main components and containing appropriate amounts of C, A1, Sl, Mo, etc. can also be advantageously used.

また、本発明において使用するセラミックスとしテハ、
例えばA9.20 s、3AS!20+ −23i02
、ZrO2などの酸化物系セラミックス、SiC,Ti
Cなどの炭化物系セラミックスあるいは813N7、A
9N、TiNなどの窒化物セラミックス、ザイアロン等
を例示することができる。これらは単独でもしくは2種
以上の組み合わせとして使用することができる。
In addition, the ceramics used in the present invention include
For example, A9.20s, 3AS! 20+ -23i02
, oxide ceramics such as ZrO2, SiC, Ti
Carbide ceramics such as C or 813N7, A
Examples include nitride ceramics such as 9N and TiN, and Xialon. These can be used alone or in combination of two or more.

前記耐熱金属に添加されるセラミックスはいずれも通常
の金属材料よりも高い硬度を有するが、複合材料ならび
に加熱炉用支持部材に本発明の目的とする性能を付与す
るためには、その粒径並びに添加率が極めて重要なファ
クターとなる。即ち、クリープ変形並びに衝撃強度試験
結果によれば、セラミックス分散粒子の平均粒径は5m
m以下であることが必要であり、かつ添加率は50〜b
であることが必要であることがわがっている。
All of the ceramics added to the heat-resistant metal have higher hardness than ordinary metal materials, but in order to impart the performance aimed at by the present invention to the composite material and the supporting member for a heating furnace, the particle size and The addition rate is an extremely important factor. That is, according to the creep deformation and impact strength test results, the average particle size of the ceramic dispersed particles was 5 m.
m or less, and the addition rate is 50 to b
I know that it is necessary.

平均粒径が前記上限部ち5mmを越えるセラミックス分
散粒子を使用した場合には、高周波炉において、セラミ
ックスと耐熱金属とを炉内÷混合し、加熱する場合に、
これら両者の間の熱膨張率差に基つく応力が生じ、その
ためにセラミックスが局部的に損傷を受け、鋼中にクラ
ックが発生し、靭性が劣化する傾向が高い。従って、平
均粒径5mm以下のセラミックスを使用することは本発
明の目的達成のために必須の要件となる。
When using ceramic dispersed particles whose average particle diameter exceeds the upper limit of 5 mm, when the ceramic and the heat-resistant metal are mixed in the furnace and heated in a high-frequency furnace,
Stresses based on the difference in coefficient of thermal expansion between the two occur, which tends to cause local damage to the ceramic, cause cracks to occur in the steel, and deteriorate toughness. Therefore, it is essential to use ceramics with an average grain size of 5 mm or less in order to achieve the object of the present invention.

尚、)■性を向上させるためにはセラミックスの粉粒体
をできるだけ微細化することが好ましいが、鋳造方法を
採用する場合(圧縮成形法では大きなものを得ることは
できない)には、高い成形圧力が必要となり、設備の大
型化を行わなければならない。従って、これらの経済性
を考慮すると、下限を0.01mm程度とすることが好
ましい。
In addition,) ■ In order to improve the properties, it is preferable to make the ceramic powder as fine as possible, but when using the casting method (large pieces cannot be obtained with the compression molding method), it is necessary to Pressure is required, and the equipment must be enlarged. Therefore, considering these economical advantages, it is preferable to set the lower limit to about 0.01 mm.

前記の如く、本発明においては更にセラミックスの添加
量も臨界的であり、セラミックスを上限の90容量%を
越えて添加した場合には衝撃強度が著し、く低下し、一
方50容量%に満だない量で使用した場合には耐クリー
プ変形性が劣化するので、いずれの場合にも本発明の目
的とする優れた加熱炉の支持部材用複合材料並びに加熱
炉々床用支持部材を(Mることかできない。
As mentioned above, in the present invention, the amount of ceramics added is also critical, and if the amount of ceramics added exceeds the upper limit of 90% by volume, the impact strength decreases significantly; If used in too small an amount, the creep deformation resistance will deteriorate. I can't do anything.

本発明の複合材料は例えば高周波炉を使用して製造する
ことができる。この高周波炉を利用する製造方法につい
て以下に簡単に述べる。
The composite material of the present invention can be manufactured using, for example, a high frequency furnace. A manufacturing method using this high frequency furnace will be briefly described below.

まず、本発明で使用する高周波炉は、第2図に概略的に
示したように、外壁10と、これに埋設され螺旋状に巻
かれた中空高周波用コイル11およびその内部の円筒形
耐火るつぼ12を含んでいる。これらは更に非磁性鋼製
の炉体枠(図示せず)等の中に収納される。該中空コイ
ルは、その内部に冷却水を通してコイル自身並びにるつ
ぼ12の冷却保護を行うと共に、高周波電流を流せるよ
うになっている。
First, as schematically shown in FIG. 2, the high-frequency furnace used in the present invention consists of an outer wall 10, a hollow high-frequency coil 11 embedded therein and wound spirally, and a cylindrical refractory crucible inside the outer wall 10. Contains 12. These are further housed in a furnace frame (not shown) made of non-magnetic steel. The hollow coil is designed to cool and protect the coil itself and the crucible 12 by passing cooling water thereinto, and also to allow a high frequency current to flow therein.

本発明では更に、該るつぼ12の内部にるつは13(A
s!203製)、黒鉛リング14およびるつぼ15(A
s!203製)をこの順序で配置して使用する。被処理
物はるつぼ15内に投入される。また、るつば15の内
径よりもわずかに小さな外径を有するA9!。03製る
つぼ16を介して押さえ用耐火物17を高周波炉上方に
設けて、被処理物を加圧ff1)できるようになってい
る。
In the present invention, the crucible 12 further includes a crucible 13 (A
s! 203), graphite ring 14 and crucible 15 (A
s! 203) are arranged and used in this order. The object to be processed is put into the crucible 15 . Also, A9! has an outer diameter slightly smaller than the inner diameter of the crucible 15! . A holding refractory 17 is provided above the high frequency furnace through a crucible 16 made of 03, so that the object to be processed can be pressurized ff1).

」二記のような高周波炉を使用し、るつぼ15内に耐熱
金属粉末と、所定粒度のセラミ・ツク粒子との混合物を
投入腰加熱する。耐熱金属が溶けた時点で上部から加圧
手段1Gおよび17により加圧し、溶融金属がセラミッ
ク粒子間の間隙をまんべんなく満たずようにする。
Using a high frequency furnace such as the one described in Section 2, a mixture of heat-resistant metal powder and ceramic particles of a predetermined particle size is charged into a crucible 15 and heated. When the heat-resistant metal is melted, pressure is applied from above by pressure means 1G and 17 so that the molten metal evenly fills the gaps between the ceramic particles.

このような本発明の複合材料の形成方法によれば、セラ
ミック粒子と耐熱金属粉末とが混合物の状態で一緒に加
熱されるのでセラミック粒子が急熱されることはなく、
従ってスポーリングを生ずる恐れはない。
According to the method for forming a composite material of the present invention, the ceramic particles and the heat-resistant metal powder are heated together in a mixed state, so the ceramic particles are not heated rapidly.
Therefore, there is no risk of spalling occurring.

また、かくして得られる複合材料を常法に従って成形す
ることにより加熱炉の支持部材、例えばスキッドレール
もしくはスキッドボタンを得ることができる。
Further, by molding the thus obtained composite material according to a conventional method, a support member for a heating furnace, such as a skid rail or a skid button, can be obtained.

発明の効果 かくして、本発明の加熱炉の支持部材用複合材料によれ
ば、その構成をCoを主成分とする合金、N1を主成分
とする合金、ステンレス鋼等の耐熱金属のマトリックス
と、該マトリックス中に均一に分散された50〜90容
量%の平均粒径5mm以下のセラミックス粒子との組合
せとしたことにより、目的とする高温での耐圧縮クリー
プ特性、耐機械的衝撃特性、耐熱衝撃特性、耐酸化特性
、溶接性、耐摩耗性等といった緒特性に優れた製品が得
られ、これを用いることにより、スラブ等の加熱炉炉床
用レール材の前記諸要求特性を満たすことが可能となる
。即ち、このような複合材料で前記支持部材を形成する
ことにより、被加熱物と接触する該支持部材の耐熱温度
を改善し、該被加熱物のスキッドマークの形成を軽減す
ることが可能となる。
Effects of the Invention Thus, according to the composite material for a support member of a heating furnace of the present invention, its composition includes a matrix of a heat-resistant metal such as an alloy containing Co as a main component, an alloy containing N1 as a main component, stainless steel, etc. By combining 50 to 90% by volume of ceramic particles with an average particle size of 5 mm or less uniformly dispersed in the matrix, the desired compression creep resistance, mechanical impact resistance, and thermal shock resistance at high temperatures can be achieved. A product with excellent properties such as oxidation resistance, weldability, and abrasion resistance was obtained, and by using this product, it is possible to meet the above-mentioned required properties of rail materials for heating furnace hearths such as slabs. Become. That is, by forming the support member from such a composite material, it is possible to improve the heat resistance of the support member that comes into contact with the object to be heated, and to reduce the formation of skid marks on the object to be heated. .

更に、このような構成並びに特性を有する加熱炉炉床用
支持部材を使用することにより、熱間圧延時におけるス
ラブの板厚のバラツキを081%以内におさえることが
でき、その結果圧延歩留りを大巾に向上させることが可
能となる。また、本発明のスキッドレール並びにスキッ
ドボタンは下部(水冷スキッドパイプ)への熱伝達量を
少なくすることができるので、大巾な省エネルギーとな
る。
Furthermore, by using a support member for a heating furnace hearth having such a configuration and characteristics, it is possible to suppress variations in the thickness of the slab during hot rolling to within 0.81%, and as a result, the rolling yield can be greatly increased. It becomes possible to improve the width. Furthermore, the skid rail and skid button of the present invention can reduce the amount of heat transferred to the lower part (water-cooled skid pipe), resulting in significant energy savings.

これは前記の如く支持部材(炉床レール)の耐熱温度が
改善されたことから、水冷パイプによる熱の抜取り量を
減じることが可能となることに基づくものである。
This is based on the fact that the heat resistance of the support member (hearth rail) has been improved as described above, making it possible to reduce the amount of heat extracted by the water-cooled pipe.

実施例 以下、本発明を実施例に従って更に具体的に説明するが
、これら実施例は単に本発明を例示するものであって、
何等本発明の範囲を制限しない。
EXAMPLES Hereinafter, the present invention will be explained in more detail according to examples, but these examples are merely illustrative of the present invention, and
This does not limit the scope of the invention in any way.

耐熱金属としてはCoXNi、Cr、 Feなどを添加
した、第1表に示したような組成の各種合金を使用し、
またセラミックスとしてはA父203.3A9.203
・2SiO2、SiCおよびA9Nを使用した。これら
セラミックスの平均粒径並びに添加量は夫々第2表に示
した通りである。
As heat-resistant metals, we use various alloys with the compositions shown in Table 1, to which CoXNi, Cr, Fe, etc. are added.
Also, as ceramics, A father 203.3A9.203
- 2SiO2, SiC and A9N were used. The average particle diameters and amounts added of these ceramics are shown in Table 2.

これら耐熱金属の粉末およびセラミックス粒子を第2表
に示した配合比で混合し、得られる混合物を第2図に示
したような高周波炉に装入した。
These heat-resistant metal powders and ceramic particles were mixed at the compounding ratio shown in Table 2, and the resulting mixture was charged into a high frequency furnace as shown in FIG.

高周波加熱用コイルに電流を流し該混合物の温度を14
50 t−まで徐々に高めて、該混合物中の耐熱金属を
溶融し、次いで成形圧力2kgf/cm2の下で夫々の
複合材料を鋳造した。
A current is passed through a high-frequency heating coil to raise the temperature of the mixture to 14
The temperature was gradually increased to 50 t- to melt the refractory metal in the mixture, and then each composite material was cast under a molding pressure of 2 kgf/cm2.

このような操作を、第2表に示した14種の試料につき
順次行って、夫夕対応する鋳造複合材料を得た。
Such operations were sequentially performed on the 14 types of samples shown in Table 2 to obtain corresponding cast composite materials.

かくして得た、14種の複合材料につき、クリープ変形
量、衝撃強度並びにスキッドマークの発生状況を調べた
。各試験は夫々以下のように実施した。
The amount of creep deformation, impact strength, and occurrence of skid marks were investigated for the 14 types of composite materials thus obtained. Each test was conducted as follows.

l)クリープ変形量 これは、例えばスラブ荷重によるレールの圧縮変形性を
評価するのに有効であり、テストピース(50φ×50
βmm)を1200℃に加熱し、これに負荷(−軸加圧
) 2kgf/mm2を1時間かけ、ソノ時の変形率(
mm /時)として得られる。
l) Creep deformation amount This is effective for evaluating the compressive deformability of the rail due to slab load, for example, and it is
βmm) was heated to 1200℃, a load (-axis pressure) of 2kgf/mm2 was applied for 1 hour, and the deformation rate (
mm/h).

11)衝撃強度 これは、例えばプッシャ一式加熱炉において、スラブが
移動する際にスラブが上昇、落下を生じ、その落下の際
にこれを支持するスキッドレールに衝撃を与えるので、
該レールのこのような衝撃に対する強度を評価するのに
有効であり、テストピース(50φX3(if!mm)
を1200℃に加熱し、これにくさび付きの重り(5k
gf )を落下させ、該テストピースに割れを発生させ
るのに必要とされる衝撃エネルギー(kgf−m)とし
て得られる。
11) Impact strength This is because, for example, in a pusher-equipped heating furnace, when the slab moves, it rises and falls, and when it falls, it gives an impact to the skid rail that supports it.
It is effective to evaluate the strength of the rail against such impact, and a test piece (50φX3 (if! mm)
Heat it to 1200℃ and add a weight with a wedge (5k) to it.
It is obtained as the impact energy (kgf-m) required to cause a crack to occur in the test piece by dropping the test piece.

111)スキッドマークの発生状況 スキッドマークの発生により、圧延時に板厚のバラツキ
が生じる。これを板厚25mmのスラブにつき処理後の
板厚を測定し、相対的な板厚のバラツキ量(%)で示し
た。
111) Occurrence of skid marks Due to the occurrence of skid marks, variations in plate thickness occur during rolling. The plate thickness after treatment was measured for a slab with a plate thickness of 25 mm, and the thickness was expressed as a relative variation (%) in plate thickness.

第4表:耐熱金属成分の組成 第2表 第2表に示された試験結果から明らかな如く、本発明に
よる複合材料製の加熱炉用支持部材は従来のものと比較
して各種物性において優れている。
Table 4: Composition of heat-resistant metal components Table 2 As is clear from the test results shown in Table 2, the support member for a heating furnace made of a composite material according to the present invention is superior in various physical properties compared to conventional ones. ing.

一般に、この種の用途に適した材料としてはクリープ変
形量において0.05以下であることが必要であり、ま
たtk撃強度は50Jf−m以上であることが必要とさ
れる。
Generally, a material suitable for this type of use needs to have a creep deformation of 0.05 or less, and a tk impact strength of 50 Jf-m or more.

クリープ変形量および衝撃強度について前記試験結果を
みると、本発明の複合材料(実験1〜9)はすべて上記
要件をみたしており、即ち高くとも0.03のクリープ
変形量および少なくとも86kg1mの衝撃強度を有し
ているので加熱炉用支持部材として使用するのに極めて
有用であることがわかる。
Looking at the test results for creep deformation and impact strength, the composite materials of the present invention (Experiments 1 to 9) all meet the above requirements, that is, a creep deformation of at most 0.03 and an impact strength of at least 86 kg/m. It can be seen that because of its strength, it is extremely useful for use as a support member for a heating furnace.

一方、比較例(実験10〜12)並びに従来法(実験1
3.14)ではいずれも、前記2つの要件の一方は満足
するが、他方において不満足であり、結果としてスキッ
ドマータの発生が本発明のものよりも著しく、加熱炉用
支持部材の材料として使用するには不十分であることが
わかる。
On the other hand, comparative examples (Experiments 10 to 12) and conventional method (Experiment 1
In 3.14), one of the above two requirements is satisfied, but the other is unsatisfied, and as a result, the generation of skid mater is more significant than that of the present invention, and it cannot be used as a material for a support member for a heating furnace. It turns out that this is insufficient.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の炉床レールの構成を説明するための断面
図であり、 第2図は本発明の複合材料を製造するために使用される
高周波炉を説明するための断面図である。 (主な参照番号) 1・・・炉床レール、2・・・水冷パイプ、3・・・断
熱材、4・・・レール支持台、5・・・被加熱物、10
・・・外壁、′、1・・・高周波用コイル、12.13
.15.16・・・るつぼ、14・・・黒鉛リング、1
7・・・押え用耐火物、 特許出願人 住友金属工業株式会社 代理人 弁理士新居正彦
FIG. 1 is a sectional view for explaining the configuration of a conventional hearth rail, and FIG. 2 is a sectional view for explaining a high frequency furnace used for manufacturing the composite material of the present invention. (Main reference numbers) 1... Hearth rail, 2... Water cooling pipe, 3... Insulating material, 4... Rail support stand, 5... Heated object, 10
...Outer wall,',1...High frequency coil, 12.13
.. 15.16... Crucible, 14... Graphite ring, 1
7... Refractory for presser foot, Patent applicant: Sumitomo Metal Industries Co., Ltd. Agent: Masahiko Arai, patent attorney

Claims (5)

【特許請求の範囲】[Claims] (1)耐熱性金属または合金のマ) IJソックス、該
マトリックス中に均一に分散された、平均粒径5mm以
下の少なくとも1種のセラミックス50〜90容量%と
を含むことを特徴とする加熱炉の支持部材用複合材料。
(1) A heat-resistant metal or alloy matrix) IJ sock, a heating furnace characterized by containing 50 to 90 volume % of at least one type of ceramic having an average particle size of 5 mm or less uniformly dispersed in the matrix. Composite materials for support members.
(2)前記耐熱性金属または合金がCoを主成分とする
合金、Niを主成分とする合金およびステンレス鋼から
なる群から選ばれることを特徴とする特許請求の範囲第
1項記載の複合材料。
(2) The composite material according to claim 1, wherein the heat-resistant metal or alloy is selected from the group consisting of Co-based alloy, Ni-based alloy, and stainless steel. .
(3)該耐熱性金属または合金が更にCr5All、’
 Si、Moをも含有することを特徴とする特許請求の
範囲第2項記載の複合材料。
(3) The heat-resistant metal or alloy further includes Cr5All,'
The composite material according to claim 2, characterized in that it also contains Si and Mo.
(4)前記セラミックスがAl1203.3A9203
 ・ 2S+ 02 、 ZrO2、5IC2、513
N、 、A父N、TiN、サイアロンからなる群から選
ばれることを特徴とする特許請求の範囲第1〜3項記載
のいずれか1項に記載の複合材料。
(4) The ceramic is Al1203.3A9203
・2S+ 02, ZrO2, 5IC2, 513
4. The composite material according to claim 1, wherein the composite material is selected from the group consisting of N, TiN, SiAlON.
(5)前記支持部材がスキッドレールまたはスキッドボ
タンであることを特徴とする特許請求の範囲第1〜4項
のいずれかに記載の複合材料。
(5) The composite material according to any one of claims 1 to 4, wherein the support member is a skid rail or a skid button.
JP5445084A 1984-03-23 1984-03-23 Composite materials for supporting members of heating furnaces Pending JPS60200948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5445084A JPS60200948A (en) 1984-03-23 1984-03-23 Composite materials for supporting members of heating furnaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5445084A JPS60200948A (en) 1984-03-23 1984-03-23 Composite materials for supporting members of heating furnaces

Publications (1)

Publication Number Publication Date
JPS60200948A true JPS60200948A (en) 1985-10-11

Family

ID=12971030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5445084A Pending JPS60200948A (en) 1984-03-23 1984-03-23 Composite materials for supporting members of heating furnaces

Country Status (1)

Country Link
JP (1) JPS60200948A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146216A (en) * 1985-12-18 1987-06-30 Sumitomo Metal Ind Ltd skidded
JPS62250116A (en) * 1986-04-23 1987-10-31 Kawasaki Steel Corp Skid button for walking beam furnace
JPS6350414A (en) * 1986-08-18 1988-03-03 Kawasaki Steel Corp Skid beam for walking beam type heating furnace
JPS6350415A (en) * 1986-08-18 1988-03-03 Kawasaki Steel Corp Skid beam for walking beam type heating furnace
JPS63157827A (en) * 1986-12-20 1988-06-30 Sumitomo Metal Ind Ltd Heat-resistant alloy for hearth parts
JPS63186760U (en) * 1987-05-21 1988-11-30
JPH01176022A (en) * 1987-12-29 1989-07-12 Kubota Ltd Metallic hearth material for steel heating furnace
JPH01255643A (en) * 1988-04-01 1989-10-12 Nippon Steel Corp Composite material for supporting member for material to be heated in heating furnace
US4923764A (en) * 1986-09-02 1990-05-08 Seikosha Co., Ltd Article of black silver color
US4947924A (en) * 1987-04-10 1990-08-14 Sumitomo Metal Industries, Ltd. Metal-ceramic composite and method of producing the same
US5154984A (en) * 1986-10-09 1992-10-13 Sumitomo Metal Industries, Ltd. Metal-ceramic composite
WO2004104251A1 (en) * 2003-05-20 2004-12-02 Exxonmobil Research And Engineering Company Advanced erosion resistant oxide cermets
CN100372959C (en) * 2003-05-20 2008-03-05 埃克森美孚研究工程公司 Advanced erosion resistant oxide cermets
US7544228B2 (en) 2003-05-20 2009-06-09 Exxonmobil Research And Engineering Company Large particle size and bimodal advanced erosion resistant oxide cermets

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100943A (en) * 1975-01-31 1976-09-06 Union Carbide Corp HIFUKUSOSEIBUTSU
JPS5541296A (en) * 1978-09-12 1980-03-24 Osterman Inter Leasing Preparation of multilayer cardboard and its device
JPS5543064A (en) * 1978-07-01 1980-03-26 Basf Ag Novel sulfamic acid halogenide and its manufacture
JPS57171563A (en) * 1981-04-15 1982-10-22 Komatsu Ltd Abrasion resistant material
JPS59107058A (en) * 1982-12-09 1984-06-21 Kubota Ltd Heat-resistant ceramic material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100943A (en) * 1975-01-31 1976-09-06 Union Carbide Corp HIFUKUSOSEIBUTSU
JPS5543064A (en) * 1978-07-01 1980-03-26 Basf Ag Novel sulfamic acid halogenide and its manufacture
JPS5541296A (en) * 1978-09-12 1980-03-24 Osterman Inter Leasing Preparation of multilayer cardboard and its device
JPS57171563A (en) * 1981-04-15 1982-10-22 Komatsu Ltd Abrasion resistant material
JPS59107058A (en) * 1982-12-09 1984-06-21 Kubota Ltd Heat-resistant ceramic material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146216A (en) * 1985-12-18 1987-06-30 Sumitomo Metal Ind Ltd skidded
JPS62250116A (en) * 1986-04-23 1987-10-31 Kawasaki Steel Corp Skid button for walking beam furnace
JPS6350414A (en) * 1986-08-18 1988-03-03 Kawasaki Steel Corp Skid beam for walking beam type heating furnace
JPS6350415A (en) * 1986-08-18 1988-03-03 Kawasaki Steel Corp Skid beam for walking beam type heating furnace
US4923764A (en) * 1986-09-02 1990-05-08 Seikosha Co., Ltd Article of black silver color
US5154984A (en) * 1986-10-09 1992-10-13 Sumitomo Metal Industries, Ltd. Metal-ceramic composite
JPS63157827A (en) * 1986-12-20 1988-06-30 Sumitomo Metal Ind Ltd Heat-resistant alloy for hearth parts
US4947924A (en) * 1987-04-10 1990-08-14 Sumitomo Metal Industries, Ltd. Metal-ceramic composite and method of producing the same
JPS63186760U (en) * 1987-05-21 1988-11-30
JPH01176022A (en) * 1987-12-29 1989-07-12 Kubota Ltd Metallic hearth material for steel heating furnace
JPH01255643A (en) * 1988-04-01 1989-10-12 Nippon Steel Corp Composite material for supporting member for material to be heated in heating furnace
WO2004104251A1 (en) * 2003-05-20 2004-12-02 Exxonmobil Research And Engineering Company Advanced erosion resistant oxide cermets
US7153338B2 (en) 2003-05-20 2006-12-26 Exxonmobil Research And Engineering Company Advanced erosion resistant oxide cermets
CN100372959C (en) * 2003-05-20 2008-03-05 埃克森美孚研究工程公司 Advanced erosion resistant oxide cermets
US7544228B2 (en) 2003-05-20 2009-06-09 Exxonmobil Research And Engineering Company Large particle size and bimodal advanced erosion resistant oxide cermets

Similar Documents

Publication Publication Date Title
JPS60200948A (en) Composite materials for supporting members of heating furnaces
CN113957313A (en) Heat-resistant cushion block with ultra-long service life for steel rolling heating furnace and preparation method thereof
US4927791A (en) Chromium carbide sintered body
US5120683A (en) Mullite/yttria stabilized zirconia/boron nitride composites
JPH1149568A (en) Graphite-silicon carbide crucible for nonferrous molten metal and its production
JPH031369B2 (en)
US5134098A (en) Method of producing mullite/yttria stabilized zirconia/boron nitride composites
CN113444950B (en) Chromium-based high-nitrogen alloy cushion block for silicon steel high-temperature heating furnace and preparation method thereof
JPH04301049A (en) Heat-resistant alloy for supporting surface members of heated steel materials in heating furnaces
JPH01255643A (en) Composite material for supporting member for material to be heated in heating furnace
US5226980A (en) Skid rail alloy
JPS5919073B2 (en) Method for manufacturing sintered compacts
JPH04301048A (en) Heat-resistant alloy for supporting surface members of heated steel materials in heating furnaces
JP2772305B2 (en) Mullite / boron nitride composite break ring and method of manufacturing ceramic composite
JPS59107970A (en) Heat resistant ceramic material
JPS60145953A (en) Member for supporting surface of heated material in heating furnace
JPS589882A (en) Super hard heat-resistant ceramics and manufacture
JPH04301047A (en) Heat-resistant alloy for supporting surface members of heated steel materials in heating furnaces
JPH01149919A (en) Guide rail for heating furnace
CA2035618A1 (en) Skid rail alloy
JPH09241727A (en) Skid button
JPH0664962A (en) Refractory lining for kiln
JPS5833193B2 (en) Skid rail heat resistant stand
JPS63389B2 (en)
JPS631384B2 (en)