JPS60200812A - Production of composite fine powder consisting of silicon nitride and silicon carbide - Google Patents
Production of composite fine powder consisting of silicon nitride and silicon carbideInfo
- Publication number
- JPS60200812A JPS60200812A JP59055172A JP5517284A JPS60200812A JP S60200812 A JPS60200812 A JP S60200812A JP 59055172 A JP59055172 A JP 59055172A JP 5517284 A JP5517284 A JP 5517284A JP S60200812 A JPS60200812 A JP S60200812A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- silicon
- silicon nitride
- silicon carbide
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 27
- 229910052581 Si3N4 Inorganic materials 0.000 title claims abstract description 25
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 23
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims abstract description 23
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 22
- 239000002131 composite material Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 150000003961 organosilicon compounds Chemical class 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 18
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 27
- 239000002245 particle Substances 0.000 abstract description 16
- 229910052736 halogen Inorganic materials 0.000 abstract description 3
- 150000002367 halogens Chemical class 0.000 abstract description 3
- 230000035484 reaction time Effects 0.000 abstract description 3
- 238000009826 distribution Methods 0.000 abstract description 2
- 239000007858 starting material Substances 0.000 abstract description 2
- 239000012808 vapor phase Substances 0.000 abstract 2
- LEIMLDGFXIOXMT-UHFFFAOYSA-N trimethylsilyl cyanide Chemical compound C[Si](C)(C)C#N LEIMLDGFXIOXMT-UHFFFAOYSA-N 0.000 abstract 1
- 238000000034 method Methods 0.000 description 37
- 239000002994 raw material Substances 0.000 description 15
- 229910052710 silicon Inorganic materials 0.000 description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 13
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 12
- 239000010703 silicon Substances 0.000 description 12
- 239000000047 product Substances 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- -1 silicon amide Chemical class 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 235000019270 ammonium chloride Nutrition 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000005121 nitriding Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000011863 silicon-based powder Substances 0.000 description 4
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 150000003377 silicon compounds Chemical class 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000005049 silicon tetrachloride Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000003746 solid phase reaction Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- VNWKTOKETHGBQD-AKLPVKDBSA-N carbane Chemical compound [15CH4] VNWKTOKETHGBQD-AKLPVKDBSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910052575 non-oxide ceramic Inorganic materials 0.000 description 1
- 239000011225 non-oxide ceramic Substances 0.000 description 1
- 229920001558 organosilicon polymer Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は窒化珪素と炭化珪素との複合微粉末の製造方法
に関する発明である。更に詳しくは一般式が7?外S:
t、Ccy)−<但し式中縁は水素、アルキル基、アリ
ル基、フェニル基を示し、n−0〜3゜m =4−nで
ある)で表される有機珪素化合物を気相で反応すること
を特徴とする窒化珪素と炭化珪素との複合微粉末の製造
方法に関する発明である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a fine composite powder of silicon nitride and silicon carbide. For more details, the general formula is 7? Outside S:
t, Ccy)-<wherein the middle edge of the formula represents hydrogen, an alkyl group, an allyl group, or a phenyl group, and n-0 to 3゜m = 4-n) is reacted in a gas phase. This invention relates to a method for producing a composite fine powder of silicon nitride and silicon carbide, characterized in that:
窒化珪素や炭化珪素等の非酸化物系セラミックスはアル
ミナを中心とする酸化物系セラミックスに比べて高温強
度や耐熱衝撃性等の高温特性に優れているので、その製
造方法及びその応用に関する研究が最近盛んに行われて
おり、高温で作動させるガスタービン、ジーゼルエンジ
ン、熱交換器等の耐熱構造材料等の高温材料にその用途
が拓けつつある。Non-oxide ceramics such as silicon nitride and silicon carbide have superior high-temperature properties such as high-temperature strength and thermal shock resistance compared to oxide ceramics, mainly alumina, so research on their manufacturing methods and their applications is ongoing. Recently, it has been widely used, and its application is opening up to high-temperature materials such as heat-resistant structural materials for gas turbines, diesel engines, heat exchangers, etc. that operate at high temperatures.
高温材料としての炭化珪素は高温での耐酸化性や強度特
性及び熱伝導度に優れている。また窒化珪素は耐熱衝撃
性、熱膨張係数、破壊靭性等に優れている。その為に両
者の長所を取り入れた新規材料としての複合セラミック
スの開発が最近進められている。Silicon carbide as a high-temperature material has excellent oxidation resistance, strength properties, and thermal conductivity at high temperatures. Silicon nitride also has excellent thermal shock resistance, thermal expansion coefficient, fracture toughness, and the like. For this reason, the development of composite ceramics as a new material that incorporates the advantages of both has been progressing recently.
この様な窒化珪素や炭化珪素は主として焼結により加工
成形されるが、高密度の焼結体を得る為の重要な因子と
しては、出発原料の組成、純度。Silicon nitride and silicon carbide are mainly processed and formed by sintering, but the composition and purity of the starting materials are important factors in obtaining high-density sintered bodies.
結晶型1粒子i蚤1粒子形状等があげられる。Examples include crystal type 1 particle i flea 1 particle shape.
非酸化系のシリコン系セラミックスは一般に難焼結性で
あり、このため焼結特性が優れた原料粉末としてはサブ
ミクロン級の粒子径を有し、均一なことが特に必要であ
る。Non-oxidizing silicon-based ceramics are generally difficult to sinter, and therefore, raw material powder with excellent sintering properties is particularly required to have submicron-level particle diameters and be uniform.
従来、窒化珪素単品の主な製法としては下記の方法が知
られている。Conventionally, the following methods are known as main methods for producing single silicon nitride products.
(1)金属珪素粉末を窒素またはアンモニアガス中で高
温に加熱して窒化する方法。(1) A method of nitriding metal silicon powder by heating it to a high temperature in nitrogen or ammonia gas.
(2)珪素粉末とカーボンとの混合物を窒素中で高温に
加熱して還元と窒化とを同時に行う方法。(2) A method of simultaneously reducing and nitriding a mixture of silicon powder and carbon by heating it to a high temperature in nitrogen.
(3)常温または低温で四塩化珪素とアンモニアを反応
さ−U、生成したシリコンアミドあるいはシリコンイミ
ドを分離した後窒素またはアンモニア雰囲気中で高温に
加熱するアミドあるいはイミドの熱分解法。(3) An amide or imide thermal decomposition method in which silicon tetrachloride and ammonia are reacted at room temperature or low temperature, the resulting silicon amide or silicon imide is separated, and then heated to a high temperature in a nitrogen or ammonia atmosphere.
(4)四塩化珪素とアンモニアとを高温で気相反応させ
る方法。(4) A method of causing a gas phase reaction between silicon tetrachloride and ammonia at high temperature.
しかし、これらの方法はそれぞれ次の様な解決すべき問
題点を有している。However, each of these methods has the following problems that must be solved.
(11については7現在工業的に用いられている方法で
はあるが、この方法では微細な粉末が得難く。(Regarding No. 7, this method is currently used industrially, but it is difficult to obtain fine powder with this method.
この方法で得た生成物は、これを長時間粉砕する必要が
ある。このため原料Si中に含まれているRe。The product obtained in this way requires grinding for a long time. Therefore, Re contained in the raw material Si.
Ca、 AI、等の不純物が窒化後も残ったり、粉砕過
程で不純物が混入する。Impurities such as Ca, AI, etc. may remain after nitriding, or may be mixed in during the grinding process.
(2)の方法は、原料として充分精製したシリカ粉末及
びカーボン粉末を用いる必要があるばかりでなく、得ら
れる生成物ばα型Si3N4 、β型Si3N4 。In method (2), not only is it necessary to use sufficiently refined silica powder and carbon powder as raw materials, but also the resulting products are α-type Si3N4 and β-type Si3N4.
酸窒化珪素等の混合物であり1粒径及び粒径のバラツキ
を小ざくする事が困難である。It is a mixture of silicon oxynitride, etc., and it is difficult to reduce the variation in particle size and particle size.
(3)の方法には液相法と気相法とがあるが、いずれの
方法もシリコンアミドやシリコンイミドと共に大量の塩
化アンモニウムが副生ずる。このため生成物の分離や熱
分解工程におりる塩化アンモニウムを除去するわずられ
しざや腐食あるいは溶媒使用に依る不純物の混入が起こ
りやすい。Method (3) includes a liquid phase method and a gas phase method, but in both methods, a large amount of ammonium chloride is produced as a by-product along with silicon amide and silicon imide. For this reason, impurities are likely to be mixed in due to corrosion or the use of solvents during product separation and removal of ammonium chloride in the thermal decomposition process.
また、シリコンアミドやシリコンイミドを熱分解して得
られる粉末の粒径や結晶型は、微小粒子にしたり、整っ
た等軸的な粒状粒子とするには限界がある。Furthermore, there are limits to the particle size and crystal type of powder obtained by thermally decomposing silicon amide or silicon imide, making it possible to form fine particles or regular equiaxed granules.
これらの中では(4)の気相法が高品質の物が得られる
と言われている。しかしながら四塩化珪素とアンモニア
の反応が速いため各原料ガス供給管の出口部分でも反応
が起こり、出口部分が閉塞されてしまい区萌の連続運転
が出来なくなるばかりでなくi3)の方法と同様に副生
ずる塩化アンモニウムを除去するわずられしさや、装置
の腐食対策等を講じなければならない。Among these, the gas phase method (4) is said to yield high quality products. However, since the reaction between silicon tetrachloride and ammonia is fast, the reaction also occurs at the outlet of each raw material gas supply pipe, and the outlet is blocked, which not only makes it impossible to continuously operate the kumoe, but also causes side effects similar to method i3). It is difficult to remove the ammonium chloride that is generated, and measures must be taken to prevent corrosion of the equipment.
更には塩化アンモニウムを完全に除去したとしても微量
の塩素は除去し難く、以後の結晶化工程において窒化珪
素が8品化したり、結晶型、が針状になったりして焼結
せしめる際にも悪影響を及ぼずようになる。Furthermore, even if ammonium chloride is completely removed, trace amounts of chlorine are difficult to remove, and in the subsequent crystallization process, silicon nitride may become eight products, or the crystal shape may become needle-like, which may cause problems during sintering. It will no longer have any negative effects.
また、従来炭化珪31単味の主な製法としては下記の方
法が知られている。Furthermore, the following method is known as the main method for producing silicon carbide 31 monomer.
(1)珪石(Si02)とコークス(C)を混合してア
チソン炉で加熱する方法。(1) A method in which silica (Si02) and coke (C) are mixed and heated in an Acheson furnace.
(2)金属珪素粉末と炭素粉末の固相反応法。(2) Solid phase reaction method of metal silicon powder and carbon powder.
(3)シリカ粉末と炭素15)末との固相反応法。(3) Solid phase reaction method between silica powder and carbon-15) powder.
しかし、いずれの方法も原料中に不揮発性の金属不純物
などが含有されているために、これが製品中に濃縮して
蓄積されたり1あるいは粒径のバラツキを小さくするこ
とが困り′鎗である等の欠点があった。However, in both methods, since the raw materials contain non-volatile metal impurities, it is difficult to concentrate and accumulate in the product, and it is difficult to reduce the variation in particle size. There was a drawback.
以上のような製法で得られた窒化珪素や炭化珪素の各単
品の粉末は1通常知られたホットプレス。The individual powders of silicon nitride and silicon carbide obtained by the above-mentioned manufacturing method are prepared using a commonly known hot press.
常圧焼結1反応焼結などの各種の方法で成形、焼結され
るが、前記のような窒化珪素と炭化珪素の両者の長所を
取り入れた複合焼結体の製法も種々検8]されており1
例えば2次のような製法が知られている。Although it is formed and sintered by various methods such as pressureless sintering and one-reaction sintering, various methods for manufacturing composite sintered bodies that incorporate the advantages of both silicon nitride and silicon carbide have been investigated [8]. Tori 1
For example, the following manufacturing method is known.
(1)窒化珪素と炭化珪素粉末を機械的に混合してホン
トプレスなとて成形1焼結する方法。(1) A method in which silicon nitride and silicon carbide powder are mechanically mixed, molded using a real press, and then sintered.
(2)反応焼結的な手法を用いて、あらかしめ炭化珪素
と珪素の混合物を成形後、窒化反応を行わせて窒化珪素
質を生成させたり、窒化珪素と炭素の混合物を成形後、
珪素を浸透させて炭化珪素質を生成させる方法。(2) Using a reaction sintering method, after molding a mixture of silicon carbide and silicon, a nitriding reaction is performed to generate silicon nitride, or after molding a mixture of silicon nitride and carbon,
A method of infiltrating silicon to produce silicon carbide.
(3)有機珪素ポリマーを原料とし、これに珪素粉末を
加えて、直接あるいは熱処理した後成形し、窒化反応を
行わせて、炭化珪素質と窒化珪素質を生成させる方法。(3) A method in which an organic silicon polymer is used as a raw material, silicon powder is added thereto, the polymer is molded directly or after heat treatment, and a nitriding reaction is performed to produce silicon carbide and silicon nitride.
しかしながら、これらの試みは通常の原料粉末を用いた
のでは9粒径、形状などの粒子特性のほかに混合程度を
十分に制御し、各成分を均一に混合することに限界があ
ること、また機械的粉砕。However, in these attempts, there is a limit to the ability to sufficiently control particle characteristics such as particle size and shape as well as the degree of mixing and uniformly mix each component by using ordinary raw material powder. Mechanical crushing.
混合により不純物が混入しやすいので、好ましし)焼結
体がIQられない欠点がある。また2反応焼結的1な手
法でも多孔質化や、工程、燥作が複雑になったり、ある
いは組成の均一性にも限界があることから好ましい焼結
体が得られない等の欠点がある。This is preferable because impurities are likely to be mixed in by mixing), which has the disadvantage that the sintered body cannot be IQed. In addition, even with a single two-reaction sintering method, there are drawbacks such as increased porosity, complicated processes and drying, and the inability to obtain a desirable sintered body due to limitations in compositional uniformity. .
本発明者等は、高温特性に優れた窒化珪素と炭化珪素の
複合系焼結体を得るべく窒化珪素と炭化珪素の微粉末の
合成法について種々の方法を鋭意研究を行った。The present inventors have conducted extensive research on various methods for synthesizing fine powders of silicon nitride and silicon carbide in order to obtain a composite sintered body of silicon nitride and silicon carbide with excellent high-temperature properties.
その結果、特定の有機珪素化合物を気相で反応せしめる
際の反応条件を′Ai制御して、窒化珪素と炭化珪素と
の複合微粉末を得ることにより、前記の様な高温特性に
優れた焼結体が得られることを見出して本発明を完成す
るに至った。As a result, by controlling the reaction conditions when reacting a specific organosilicon compound in the gas phase to obtain a fine composite powder of silicon nitride and silicon carbide, we were able to obtain a sintered powder with excellent high-temperature properties as described above. The present invention was completed by discovering that solids could be obtained.
即ち2本発明は、ハロゲンを含まず、SiとCN基を含
む有機珪素化合物を気相で反応せしめることを特徴とす
る窒化珪素と炭化珪素の複合微粉末の製法に関するもの
である。That is, the present invention relates to a method for producing a composite fine powder of silicon nitride and silicon carbide, which is characterized by reacting an organic silicon compound that does not contain halogen and contains Si and CN groups in a gas phase.
本発明方法によれば、1ミクロン以下の微粒子オーダー
で窒化珪素と炭化珪素を均一に含む複合微粉末が容易に
得られる。According to the method of the present invention, a fine composite powder containing silicon nitride and silicon carbide uniformly on the order of fine particles of 1 micron or less can be easily obtained.
次に本発明について詳述する。Next, the present invention will be explained in detail.
本発明において、原料として用いるハロゲンを含まず、
SiとCN基を含む有機珪素化合としては1例えば、
Hs SiC7J、 (CH3)JSんC/J、 (
CH3)+ 31(CJ)、a。In the present invention, it does not contain halogen used as a raw material,
Examples of organic silicon compounds containing Si and CN groups include:
Hs SiC7J, (CH3)JSnC/J, (
CH3) + 31 (CJ), a.
(c+4.−cH) CHJ 5i(CA/%、 CC
6Hr)a SbC’1(CbHt−)asQ(C’)
、等テto リ。(c+4.-cH) CHJ 5i (CA/%, CC
6Hr)a SbC'1(CbHt-)asQ(C')
, etc.
一般式R1S尤(C〜)へ(式中Rは水素、アルキル基
、アリル基、フェニル基等の炭化水素類の置換基を示し
、n−0〜3.m=4 nである)で表示される化合物
である。これらの原料は必要に応して2種以上を混合し
て用いてもよく、また炭化水素類を共存させても良い。Represented by the general formula R1S (C~) (in the formula, R represents hydrogen, a substituent of hydrocarbons such as an alkyl group, an allyl group, a phenyl group, and n-0 to 3.m=4 n) It is a compound that is These raw materials may be used as a mixture of two or more types, and hydrocarbons may also be used together.
これらの原料の反応帯への供給は、原料が常温で液体や
固体状の場合、均一な反応を速やかに実施し、所望の複
合粉体を得るために2例えば適当な間接加熱等の手段に
より一旦ガス化させた後に行う事が重要である。When these raw materials are in a liquid or solid state at room temperature, these raw materials are supplied to the reaction zone by means such as appropriate indirect heating in order to quickly carry out a uniform reaction and obtain the desired composite powder. It is important to do this after it has been gasified.
また、実施例で示す様に原料をN11.3. Il、、
N、2゜Ar、 Ile、等の非酸化性ガスに同伴さ
せることにより、原料分圧の調節や供給速度を制御して
行うこともできるのみならず、同伴させるNl+、、
Il、、 N、?、 Ar、Ile、等の非酸化性ガス
の選択やその混合比により生成粉体の組成(SiC、S
i、Ny比)を任意−にコントロールすることが可能で
ある。In addition, as shown in the examples, the raw material was N11.3. Il...
By entraining non-oxidizing gases such as N, 2°Ar, Ile, etc., it is possible not only to adjust the raw material partial pressure and control the supply rate, but also to entrain Nl+,...
Il,, N,? The composition of the produced powder (SiC, S
i, Ny ratio) can be arbitrarily controlled.
例えば5i3N)cの割合を多くしたい場合には、NH
J反応帯におりる原料ガスの分圧及び反応時間は生成物
の粒径や形状及びSTY等により決定されるが 例えば
分圧は0.001〜数atm好ましくは0.01〜0.
5 atmである。For example, if you want to increase the proportion of 5i3N)c, NH
The partial pressure and reaction time of the raw material gas entering the J reaction zone are determined by the particle size, shape, STY, etc. of the product, but for example, the partial pressure is 0.001 to several atm, preferably 0.01 to 0.
5 ATM.
反応時間6.1一般的には120〜0.05secであ
り、好ましくけ60〜0.1 secである。Reaction time 6.1 Generally 120-0.05 sec, preferably 60-0.1 sec.
これらの値より反応分圧が小さかったり2反応肋間か長
くなる場合は2反応装置が不必要に大型化して工業的に
は不利となり、逆にこれらの値より反応分圧が大きかっ
たり1反応時間か短くなる場合は実質的に反応が進行し
ない場合があるので好ましくない。If the reaction partial pressure is smaller than these values or the distance between the two reaction ribs is longer, the two reactors will become unnecessarily large and this will be disadvantageous from an industrial perspective. If the length is too short, the reaction may not substantially proceed, which is not preferable.
また2反応温度は一般的には600〜1600℃の範囲
であり、好ましくは800〜1500℃である。温度が
600℃より低い場合には反応か十分に進行せず珪素の
窒化物及び炭化物の生成率が低く、逆に1600℃を超
える場合には多大のエネルギーを要するので経済的でな
い。Further, the reaction temperature is generally in the range of 600 to 1600°C, preferably 800 to 1500°C. If the temperature is lower than 600°C, the reaction will not proceed sufficiently and the production rate of silicon nitrides and carbides will be low; if the temperature is higher than 1600°C, a large amount of energy will be required, which is not economical.
本反応の具体的な実施手段としては1例えば原料である
有機珪素化合物を予めカス化せしめて必要な場合にはア
ンモニア及び非酸化性ガスであるn、、N2+等と十分
に均一に混合したのち、外部力I■式反応管に導入する
。As a specific means of carrying out this reaction, 1. For example, the organic silicon compound as a raw material is scumified in advance, and if necessary, it is thoroughly and uniformly mixed with ammonia and non-oxidizing gases such as n, N2+, etc. , an external force is introduced into the type I reaction tube.
反応管は空塔あるいは充填塔式の流通型が用いられるが
、ガスの流れが脈動あるいは乱流状にならず、熱的にも
均一性か保たれる様な構造とすることが生成複合微粉末
の均一性に重要である。The reaction tube used is a flow type, such as an empty column or a packed column, but it is important to have a structure that prevents the gas flow from becoming pulsating or turbulent and maintains thermal uniformity. Important for powder uniformity.
珪素の窒化物と炭化物を含む生成ガスは冷却されて捕集
装置へ導入されるが2本発明に用いられる111j集装
置は特に制約はなく3通常用いられている充j芭屓形式
や濾過方式の集塵機、電気柴塵機。The produced gas containing silicon nitrides and carbides is cooled and introduced into the collection device.2 The collector used in the present invention is not particularly limited, and can be used in commonly used charging or filtering formats. Dust collector, electric dust machine.
ザイク1」ン等を適宜用いることができるが、生成ガス
中に腐食性ガスの塩化水素や500’c以下に冷却され
ると固体となって析出する塩化アンモニウムなとが含ま
れていないため、従来の様な高級材質を用いたり、塩化
アンモニラを除去するための処理装置を必要としないの
で経済的な捕集方式を選択できる。Zyc 1'' etc. can be used as appropriate, but since the generated gas does not contain hydrogen chloride, which is a corrosive gas, or ammonium chloride, which becomes solid and precipitates when cooled to below 500 °C, Since it does not require the use of high-grade materials or processing equipment to remove ammonium chloride, an economical collection method can be selected.
(りられた複合微粉末は図面の写真が示す様にいずれも
1ミクロン以下の粒径を持つものであり。(As the photographs in the drawings show, the resulting composite fine powders all have a particle size of 1 micron or less.
しかも均一な粒度分布を持つものである。Moreover, it has a uniform particle size distribution.
以下に本発明を実施例によって更に詳しく説明するか1
本発明はこれらの実施例に限定されるものではない。The present invention will be explained in more detail with reference to examples below.
The present invention is not limited to these examples.
実施例1〜5
電気か中に設置された内径25闘、長さ700龍の1部
6純度アルミナ質反応管と反応前出]コ部に取りつけた
反応生成物捕集器とからなる装置を用い所定の反応温度
に保持した。Examples 1 to 5 A device consisting of a 1 part 6 purity alumina reaction tube with an inner diameter of 25mm and a length of 700mm installed in an electric oven and a reaction product collector attached to the reaction part was prepared. The reaction temperature was maintained at the specified temperature.
シアン基を含む有機珪素化合物をガス化させたのち、ア
ンモニアや非酸化性ガスであるN2またはI+、ガスと
あらかじめ良く混合し1反応前人「1部から吹込み反応
さ−lた。After the organosilicon compound containing a cyan group was gasified, it was thoroughly mixed with ammonia and a non-oxidizing gas such as N2 or I+ gas, and a reaction was carried out by blowing from 1 part of the compound into a pre-reaction mixture.
捕集器に捕集された微粉末は、いずれも1ミクロン以下
の粒子径を有し且つ等軸状の均一な微粒子であった。実
施例1て(Aられた捕集微粒子の走査電子顕微鏡写真を
図上に示した。All of the fine powders collected in the collector were equiaxed, uniform fine particles with a particle size of 1 micron or less. A scanning electron micrograph of the collected fine particles obtained in Example 1 (A) is shown on the figure.
句
次にこの生成物を不活性雰囲気下で高純度アルミナ管に
充填して、アルコン雰囲気下、1500°C(、こ加熱
されている電気炉IPで2時間熱処理を行っカニ。反応
条件と得られた粉末の分析結果を表1にしめしたが、い
ずれもX線的に、β−3iCとα−Si。Next, this product was packed into a high-purity alumina tube under an inert atmosphere, and heat-treated for 2 hours in an electric furnace IP heated at 1500°C (1500°C) under an alcon atmosphere. The analysis results of the powder obtained are shown in Table 1, and both were found to be β-3iC and α-Si by X-ray.
近成分だけてあった。また、螢光X線分析で不純物を測
定したとごろ、!’e、八l、へa、K の含有量はそ
れぞれ10 p p m以下及びC1の含有率4J:
1100pp以下−Cあった・
表 1There were only nearby ingredients. Also, impurities were measured using fluorescent X-ray analysis! The contents of 'e, 8l, a, and K are each 10 ppm or less, and the content of C1 is 4J:
1100pp or less -C Table 1
図面は本発明の実施例1の方法で得られた複合i”+’
k 13)末の走査顕微鏡写真を示す。
qみ許出願人
ユ差瓦斯化学株式会
代表者 長野和古
手続補正書(自発)
昭和59年7月30日
特許庁長官殿
1、事件の表示 用組
昭和59年特許願第55172号
2、発明の名称
窒化珪素と炭化珪素と、の複合微粉末の製造方法3、補
正する者
事件との関係 特許出願人
住所 東京都千代田区丸の内二丁目5番2号明細書
5、補正の内容The drawing shows the composite i"+' obtained by the method of Example 1 of the present invention.
A scanning micrograph of the end of k13) is shown. q Applicant Yusashi Gas Kagaku Co., Ltd. Representative Nagano Kazuko procedural amendment (spontaneous) July 30, 1980 Commissioner of the Japan Patent Office 1 Indication of the case 1988 Patent Application No. 55172 2, Title of the invention: Process for producing a composite fine powder of silicon nitride and silicon carbide 3; Relationship with the case of the person making the amendment Patent applicant address: 2-5-2 Marunouchi, Chiyoda-ku, Tokyo Specification 5; Contents of the amendment
Claims (1)
アルキル基、アリル基、フェニル基を示し。 n=o〜3.m =4−nである)で表される有機珪素
化合物を気相で反応することを特徴とする窒化珪素と炭
化珪素との複合微粉末の製造方法[Claims] Is the general formula 7? ,, 5 (cuLt (in the formula, R is hydrogen,
Indicates an alkyl group, an allyl group, and a phenyl group. n=o~3. A method for producing a composite fine powder of silicon nitride and silicon carbide, characterized by reacting an organosilicon compound represented by m = 4-n in a gas phase.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59055172A JPS60200812A (en) | 1984-03-22 | 1984-03-22 | Production of composite fine powder consisting of silicon nitride and silicon carbide |
US06/712,036 US4594330A (en) | 1984-03-22 | 1985-03-15 | Fine amorphous powder and process for preparing fine powdery mixture of silicon nitride and silicon carbide |
DE19853510264 DE3510264A1 (en) | 1984-03-22 | 1985-03-21 | AMORPHOUS FINE-PART POWDER AND METHOD FOR PRODUCING A FINE-PART POWDER MIXTURE FROM SILICON NITRIDE AND SILICIUM CARBIDE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59055172A JPS60200812A (en) | 1984-03-22 | 1984-03-22 | Production of composite fine powder consisting of silicon nitride and silicon carbide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60200812A true JPS60200812A (en) | 1985-10-11 |
Family
ID=12991303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59055172A Pending JPS60200812A (en) | 1984-03-22 | 1984-03-22 | Production of composite fine powder consisting of silicon nitride and silicon carbide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60200812A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62288107A (en) * | 1986-05-24 | 1987-12-15 | バイエル・アクチエンゲゼルシヤフト | Sinterable si3n4 powder and manufacture |
-
1984
- 1984-03-22 JP JP59055172A patent/JPS60200812A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62288107A (en) * | 1986-05-24 | 1987-12-15 | バイエル・アクチエンゲゼルシヤフト | Sinterable si3n4 powder and manufacture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4387079A (en) | Method of manufacturing high-purity silicon nitride powder | |
US4619905A (en) | Process for the synthesis of silicon nitride | |
US4613490A (en) | Process for preparing silicon nitride, silicon carbide or fine powdery mixture thereof | |
US4346068A (en) | Process for preparing high-purity α-type silicon nitride | |
Cho et al. | Synthesis of nitrogen ceramic povvders by carbothermal reduction and nitridation Part 1 Silicon nitride | |
JPS61191506A (en) | Manufacturing method of high α-type silicon nitride powder | |
JPS62241812A (en) | Manufacture of silicon nitride | |
JPS6111886B2 (en) | ||
EP0206795B1 (en) | Method of producing silicon nitride powders | |
JPS60200812A (en) | Production of composite fine powder consisting of silicon nitride and silicon carbide | |
JPS5930645B2 (en) | Manufacturing method of high purity α-type silicon nitride | |
JPS60200813A (en) | Production of composite fine powder consisting of silicon nitride and silicon carbide | |
JPS6111885B2 (en) | ||
Iwamoto et al. | Si3N4–TiN–Y2O3 ceramics derived from chemically modified perhydropolysilazane | |
JPS60235707A (en) | Production of fine complex powder | |
JPS60200814A (en) | Production of composite fine powder consisting of silicon nitride and silicon carbide | |
JPS61127606A (en) | Preparation of silicon nitride or silicon carbide | |
JPS61247608A (en) | Preparation of mixture of fine powder of silicon nitride with silicon carbide | |
JPH0445443B2 (en) | ||
JPS61295213A (en) | Production of silicon nitride | |
JPS59174506A (en) | Manufacture of new powdered silicon nitride | |
JPS6117407A (en) | Method for manufacturing silicon nitride powder | |
JPH0535683B2 (en) | ||
JPS6259049B2 (en) | ||
JPS63230508A (en) | Production of silicon nitride-silicon carbide mixed fine powder of silicon nitride fine powder |