[go: up one dir, main page]

JPS60196648A - Photometric apparatus - Google Patents

Photometric apparatus

Info

Publication number
JPS60196648A
JPS60196648A JP5398184A JP5398184A JPS60196648A JP S60196648 A JPS60196648 A JP S60196648A JP 5398184 A JP5398184 A JP 5398184A JP 5398184 A JP5398184 A JP 5398184A JP S60196648 A JPS60196648 A JP S60196648A
Authority
JP
Japan
Prior art keywords
signal
sample
specimen
light beam
sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5398184A
Other languages
Japanese (ja)
Inventor
Takeshi Eguchi
健 江口
Yukio Nishimura
征生 西村
Masahiro Haruta
春田 昌宏
Hiroshi Matsuda
宏 松田
Yutaka Hirai
裕 平井
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5398184A priority Critical patent/JPS60196648A/en
Priority to US06/712,026 priority patent/US4705403A/en
Publication of JPS60196648A publication Critical patent/JPS60196648A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1738Optionally different kinds of measurements; Method being valid for different kinds of measurement
    • G01N2021/174Optionally different kinds of measurements; Method being valid for different kinds of measurement either absorption-reflection or emission-fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1757Time modulation of light being essential to the method of light modification, e.g. using single detector
    • G01N2021/1759Jittering, dithering, optical path modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers
    • G01N21/5911Densitometers of the scanning type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to take out a photometric result at every arbitrary minute region on a specimen, by straightly moving a laser beam spot on the specimen and outputting a signal at a predetermined photometric position while integrating the same. CONSTITUTION:The laser beam from a beam source 1 is condensed to a specimen 4 and secondary beam transmitted therethrough is sent to a spectroscope 2. A specimen cell 3 is vibrated at a constant cycle by a vibration control unit 5 and the locus at the laser beam spot position on the specimen 4 forms a line. A photometric position determination means 12 generates a sampling trigger pulse (c) in synchronous relation to the control signal of the vibration control unit 5 and a sampling gate 14 passes a photocurrent signal (e) for a definite time. The photocurrent signal (e) passed through the sampling gate 14 at every sampling time receives the discrimination between a specimen signal (g) and a reference signal (f) by a discriminator circuit 15 and both signals are respectively sent to integrator circuits 16, 17 to receive integration and amplification.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、試料の透過光、反射光、燐光又は発光等の状
態を測定することによって、当該試料の物性、表面状態
、組成状態等を検出するための測光装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention detects the physical properties, surface state, composition state, etc. of a sample by measuring the state of transmitted light, reflected light, phosphorescence, luminescence, etc. of the sample. This invention relates to a photometric device for use in photometry.

[発明の利用分野] 本発明は、例えば合成樹脂フィルム等の均一性や物性の
評価にも利用できるが、特に1例えば混合単分子膜やヘ
テロ累積膜等の超薄膜の均一性や物性等の評価に利用す
るときに有益なものである。
[Field of Application of the Invention] The present invention can be used, for example, to evaluate the uniformity and physical properties of synthetic resin films, etc.; This is useful when used for evaluation.

[発明の背景及び問題点] 最近、従来のエレクトロニクスを超える新技術をめざし
、個々の分子や少数の分子の集合に電子素子の機能を持
たせた分子エレクトロニクスやバイオチップなどの提案
がなされた。このような新動向のなかで、高秩序の層状
分子集合体を組織する技術として、単分子累積法が関心
をひくようになっている。単分子累積法は水面上に形成
した単分子膜を固体表面に1枚ずつ重ねて超薄膜を作る
方法で、成分や構造の設計のできる膜系である。
[Background of the Invention and Problems] Recently, with the aim of creating new technologies that go beyond conventional electronics, proposals have been made for molecular electronics and biochips in which individual molecules or a collection of a small number of molecules have the function of an electronic device. Amid these new trends, the single-molecule accumulation method is attracting attention as a technique for organizing highly ordered layered molecular assemblies. The monomolecular accumulation method is a method of creating ultra-thin films by stacking monomolecular films formed on water surfaces one by one on solid surfaces, and is a film system that allows for the design of components and structure.

このような累積膜中の色素の吸収スペクトルの評価では
、極く微小な透過率の変化を測定しなければならないた
め、特別な測光装置が使用されている。
In order to evaluate the absorption spectrum of the dye in such a cumulative film, a special photometric device is used because extremely minute changes in transmittance must be measured.

第1図は従来の測光装置を示す説明図で、光源lから分
光器2を介して、試料セル3に保持された試料4に光ビ
ームを照射すると共に、振動制御ユニット5で試料4を
光ビームに対して直交方向に振動させつつ透過光を光電
子増幅ユニット6で受け、これに基づく光電流を試料の
振動周期と同位相に積分するものである。尚、7はPS
D (フェイズ センステイブ ディテクター)、8は
レコーダー、9は波長設定器である。
FIG. 1 is an explanatory diagram showing a conventional photometry device, in which a light beam is irradiated from a light source 1 to a sample 4 held in a sample cell 3 via a spectrometer 2, and a vibration control unit 5 is used to irradiate the sample 4 with light. The transmitted light is received by the photoelectron amplification unit 6 while being vibrated in a direction perpendicular to the beam, and the photocurrent based on this is integrated in the same phase as the vibration period of the sample. In addition, 7 is PS
D (phase sense detector), 8 is a recorder, and 9 is a wavelength setting device.

しかしながら、1−記従来の測光装置では、試料上で光
ビームスポットが移動された範囲における試料の平均的
物性等が評価できるのみで、試料の微小領域毎における
、例えば特異的な色素分布や色素の凝集状態等について
比較評価することができない欠点がある。微小領域毎の
測定を行う場合、特に単分子膜等を対象とした測光にお
いては、極めて微少な変化まで測定できなければ意味が
なく、単に微小領域についての信号を増幅しただけでは
ノイズの影響によって微小な変化まで正確に測定できな
い問題がある。また、微小領域毎の評価を得ようとする
場合、光ビームは細いほど好ましいといえるが、分光器
を通った光はプリズムの通過等によって光束が広がるの
で十分に細い光ビームに収束させにくいという問題もあ
る。
However, with the conventional photometry device described in 1-1, it is only possible to evaluate the average physical properties of the sample in the range in which the light beam spot is moved on the sample, and it is not possible to evaluate the average physical properties of the sample in the range in which the light beam spot is moved on the sample. There is a drawback that it is not possible to compare and evaluate the state of aggregation, etc. When measuring each minute area, especially in photometry for monomolecular films, it is meaningless unless you can measure extremely small changes, and if you simply amplify the signal for a minute area, it will be affected by noise. There is a problem in that even minute changes cannot be accurately measured. In addition, when trying to obtain evaluations for each microscopic area, it is said that the thinner the light beam is, the better; however, the light beam that passes through the spectroscope is spread by passing through a prism, etc., so it is difficult to converge it into a sufficiently narrow light beam. There are also problems.

一方、例えばQi分子−累積D、では、多元成分からな
る混合単分子膜や異なる組成の単分子膜を組み合せ累積
したベテロ累積nり等の構造設計が可能であるが、該k
fi薄膜面内での微小領域に関した不均一性についての
評価は、その物性評価における重要な一要素技術となっ
ている。例えば、長鎖アルキルノ、(を置換されたメロ
シアニン色素と長鎖アルキルカルボン#(アラキシン酸
等)の混合単分子膜では、メロシアニンの千ツマ−やタ
イマーさらにはJ−会合体などの存在が知られており、
これらの分布状態により膜特性が異なる。したがってこ
れらの成分がどのような分布状態をとっているか、さら
にlI、!圧によって分布状態がどのように変化するか
等、膜の物性評価上興味ある問題である。しかし、前述
のように、従来の測光装置ではこのような評価ができな
いために研究の妨げとなっているのが現状である。
On the other hand, for example, in Qi molecule-cumulative D, it is possible to design a structure such as a mixed monolayer consisting of multi-component components or a beta-accumulative layer in which monolayers of different compositions are combined and accumulated.
Evaluation of non-uniformity in a micro region within the plane of a fi thin film has become an important elemental technology in evaluating its physical properties. For example, in a mixed monomolecular film of a long-chain alkyl- or (-substituted merocyanine dye) and a long-chain alkyl carbon # (araxic acid, etc.), it is known that merocyanine merocyanines, timers, and J-aggregates exist. and
The film properties differ depending on the state of distribution of these. Therefore, what kind of distribution state these components have, and also lI,! How the distribution changes depending on pressure is an interesting problem in evaluating the physical properties of membranes. However, as mentioned above, research is currently hindered because conventional photometric devices cannot perform such evaluations.

[発明の目的] 本発明は、試料上の任意の微小領域毎における測光結果
を取出せるようにすると共にこの微小領域間の正確な比
較評価ができるようにすることを目的とする。
[Object of the Invention] An object of the present invention is to make it possible to obtain photometry results for each arbitrary microregion on a sample, and to enable accurate comparative evaluation between the microregions.

[発明の概要] 本発明は、試料への光ビームの照射を分光器を介在させ
ることなく行うことにより光ビームを十分細くできるよ
うにする一方、試料上の光ビームスポットを移動させる
と共に、試料」二のJllIll前を定められるように
し、この測光位置における信号を積算して測光結果とし
て出力させることができるようにした測光装置である。
[Summary of the Invention] The present invention makes it possible to make the light beam sufficiently narrow by irradiating the sample with the light beam without intervening a spectrometer, while also moving the light beam spot on the sample. This is a photometry device that is capable of determining the position before the photometry position, integrating the signals at this photometry position, and outputting the result as a photometry result.

[発明の構成及び作用] 本発明の構成」二の特徴点は、試料に照射される光ビー
ムの光源と、試料」二の光ビームスポットの軌跡が線を
形成するよう当該光ビームスポットを移動させる移動手
段と、少なくとも二次光を分光して測光する測光手段と
、試料上の測光位置を定める測光位置決め手段とを有す
る測光装置とした点にある。
[Structure and operation of the invention] The feature of the second structure of the present invention is that the light source of the light beam irradiated to the sample and the light beam spot of the sample 2 are moved so that the locus of the light beam spot forms a line. The present invention is a photometric apparatus having a moving means for moving the sample, a photometric means for spectrally measuring at least secondary light, and a photometric positioning means for determining a photometric position on a sample.

本発明における光源は、例えば白色光等であって、可視
光線、赤外線又は紫外線を含むものであれば良く、また
分光器は一般に使用されているものと同様である。測光
手段とは、二次光より所望のI11光結果を導き出す手
段をいう。移動手段としては、光ビームと試料の位置関
係を相対的にずらすことのできるものであれば良く、試
寥4を移動させるもの、光ビームを移動させるもの、ま
たは両者の併用等いずれでもよい。本発明において、二
次光とは、試料からの透過光、反射光、燐光又は発光の
ことをいう。
The light source in the present invention may be, for example, white light or the like, as long as it includes visible light, infrared rays, or ultraviolet rays, and the spectroscope may be the same as those commonly used. The photometric means means a means for deriving a desired I11 light result from the secondary light. The moving means may be any means as long as it can relatively shift the positional relationship between the light beam and the sample, such as one for moving the test sample 4, one for moving the light beam, or a combination of both. In the present invention, secondary light refers to transmitted light, reflected light, phosphorescence, or luminescence from a sample.

allllll法め手段は、光ビームスポットの試料上
移動に伴って変化しつつ連続して受光される二次光に基
づいて出される信号を、光ビームスポットの任意に定め
られる微小移動範囲のものに区切って選択的に取出させ
るべく作用するものである。従って1本発明では、光ビ
ームスポットの試#l上線状移動による探索と、この測
定位置決め手段とによって、探索ライン上であれば任意
の微小領域毎における測定結果が、探索周期回数だけ積
算したものとして得られるものである。また、光ビーム
は分光器を介せずに試料に照射されるので十分細いもの
とすることができ、測光結果を極めて小さな微小領域毎
に取出せるものである。尚、本発明の装置は光源側と受
光側の位置調節により、透過光、反射光、燐光又は発光
のいずれの二次光を受光して411光するものともでき
るものである。
The allllll method converts the signal output based on the continuously received secondary light, which changes as the light beam spot moves on the sample, into a signal within an arbitrarily determined minute movement range of the light beam spot. It functions to separate and selectively take out. Therefore, in the present invention, by performing a search by moving the light beam spot in a linear manner on the sample #l and using this measurement positioning means, the measurement results for each arbitrary minute area on the search line are accumulated by the number of search cycles. This is obtained as follows. In addition, since the light beam is irradiated onto the sample without passing through a spectrometer, it can be made sufficiently narrow, and photometry results can be extracted for each extremely small area. By adjusting the positions of the light source side and the light receiving side, the device of the present invention can receive any secondary light such as transmitted light, reflected light, phosphorescence, or emitted light and generate 411 light.

[実施例] 第2図は本発明の一実施例を示す説明図で、光源lから
出射された光ビームはレンズ系lOで試料セル3並びに
試料セル3に保持された試料4上へ集光され、それを透
過した二次光はIIfびレンズ系11を通って分光器2
へと送られる。試料セル3は、移動手段である振動制御
ユニ1.ト5によって一定周期で振動し、これによって
試料4−にの光ビームスポット位置の軌跡は線を形成す
ることになる。分光器2へと送られた二次光は、分光さ
れた後に光電子増幅ユニフト6へ送られ、受光された光
信号は光電流信号すに変換される。また、試木[4は試
料セル3の一ヒ半分に保持されていて、光ビームスポッ
トは、試料セル3の」二下方向の振動によって試料セル
3の試料4保持面から非保持面に亘って移動される。従
って、」−記光電流信号すには、試料4の保持面を透過
した二次光に基づく試料信号と、試料4の非保持面を透
過した二次光に)1(づ〈参照信号とが含まれているも
のである。
[Embodiment] FIG. 2 is an explanatory diagram showing an embodiment of the present invention, in which a light beam emitted from a light source 1 is focused by a lens system 10 onto a sample cell 3 and a sample 4 held in the sample cell 3. The secondary light that has passed through it passes through the lens system 11 and the spectrometer 2.
sent to. The sample cell 3 is moved by a vibration control unit 1. The light beam spot 5 vibrates at a constant period, so that the locus of the light beam spot position on the sample 4- forms a line. The secondary light sent to the spectrometer 2 is spectrally separated and then sent to the photoelectron amplification unit 6, where the received optical signal is converted into a photocurrent signal. In addition, the test wood [4] is held in one half of the sample cell 3, and the light beam spot is spread from the sample 4-holding surface of the sample cell 3 to the non-sample-holding surface by the downward vibration of the sample cell 3. will be moved. Therefore, in order to obtain the photocurrent signal, there is a sample signal based on the secondary light transmitted through the holding surface of the sample 4, and a reference signal based on the secondary light transmitted through the non-held surface of the sample 4. is included.

試料セル3の振動周期aとこの振動と同位相に現われる
二次光による光電流信号すを各々第3図(a)及び(b
)に示す。(a)が試料セル3の振動周期a、(b)が
光電流信号すを示すもので、第3図におけるtは時間、
■は電圧である。
The vibration period a of the sample cell 3 and the photocurrent signal due to the secondary light appearing in the same phase as this vibration are shown in Figures 3(a) and (b), respectively.
). (a) shows the vibration period a of the sample cell 3, (b) shows the photocurrent signal, and t in Fig. 3 is time;
■ is the voltage.

従来は」二記光電流信号すを同位相に全領域積分してい
るが、本発明では振動制御ユニ、ント5の制御信号に同
期してサンプリングトリガーパルスCを発生するサンプ
リングトリガーユニ・ン)12を測光位置決め手段とし
て用いる。発生するサンプリングトリガーパルスCのタ
イミングを第3図(C)に示す。サンプリングトリガー
パルスCは、遅延回路13で任意に定められる一定時間
でI (遅延時間)だけ遅延された後サンプリング時間
)14へ送られる。サンプリングゲート14は、このサ
ンプリングトリガーパルスCにより発生する。第3図(
d)に示されるサンプリングパルスdにより一定時間で
2 (サンプリング時間)開放され、その間だけ、光電
子増幅ユニット6からの光電流信号すがfjS3図(e
)のような光電流信号eとしてサンプリングゲート14
を通過して増幅される。
Conventionally, the two photocurrent signals are integrated over the entire area in the same phase, but in the present invention, a sampling trigger unit that generates the sampling trigger pulse C in synchronization with the control signal of the vibration control unit 5 is used. 12 is used as photometric positioning means. The timing of the generated sampling trigger pulse C is shown in FIG. 3(C). The sampling trigger pulse C is delayed by I (delay time) at an arbitrarily determined fixed time in the delay circuit 13 and then sent to the sampling time) 14. The sampling gate 14 is generated by this sampling trigger pulse C. Figure 3 (
The photocurrent signal from the photoelectron amplification unit 6 is opened for a certain period of time by the sampling pulse d shown in d), and only during that time, the photocurrent signal from the photoelectron amplification unit 6 is
) as a photocurrent signal e at the sampling gate 14
is passed through and amplified.

このようにして、サンプリング時間で2毎にサンプリン
グゲート14を通過した光電流信号eは、jt別回路1
5により試料信号gと参照信号fとに5r別された後、
各々4Jr分回路I6,17に送られて積分増幅される
。ところで、光電気信号eは、試料セル3又は試料4の
特定微小領域毎に取出され、かつ試本゛lセル3の振動
によって複数回取出されるので、同一微小領域の光電気
信号eを複数回積算することができる。そして、最後に
演算回路1日で、例えば透過率や吸光度等、所望のデー
ター信号Iに変換された後、測光結果として記録計8に
出力されるものである。尚、測光結果の出力光は、記録
計8でなくともモニターテレビ等であっても良く、また
測光結果の表示も二次元表示、三次元表示等種々の形態
をとることができる。また、参照信号fは試料セル3が
介在していることによる影響をデーター信号■から除去
するために必要なものであるが、測光の種類によっては
必ずしも必要なものではない。
In this way, the photocurrent signal e passing through the sampling gate 14 every 2 sampling times is sent to the jt separate circuit 1.
After the sample signal g and the reference signal f are divided into the sample signal g and the reference signal f by 5r,
Each signal is sent to 4Jr circuits I6 and 17, where it is integrated and amplified. By the way, the photoelectric signal e is taken out for each specific minute region of the sample cell 3 or the sample 4, and is taken out multiple times due to the vibration of the sample cell 3, so the photoelectric signal e of the same minute region is It is possible to accumulate times. Finally, the signal is converted into a desired data signal I, such as transmittance or absorbance, by an arithmetic circuit in one day, and then outputted to the recorder 8 as a photometric result. Note that the output light of the photometry results may be output from a monitor television or the like instead of the recorder 8, and the photometry results can be displayed in various forms such as two-dimensional display or three-dimensional display. Further, the reference signal f is necessary to remove the influence of the presence of the sample cell 3 from the data signal (2), but it is not necessarily necessary depending on the type of photometry.

本実施例に係る装置は上述のように、l)光ビームを試
料セル3及び試料4」二に集光させ、微小領域のスペク
トル測定をおこなえるようにしたこと、2)試料セル3
の振動にともなう光ビームスポアトの位置変化をトリガ
ーパルスCのR延時間τ1に対応させ、3)更にその遅
延時間τ1を変化させることによって、異なった微小領
域でのスペクトルを積算した信号から評価できるように
したことに特徴を有しているものである。
As mentioned above, the apparatus according to this embodiment has the following features: 1) The light beam is focused on the sample cell 3 and the sample 4, and the spectrum can be measured in a minute area; 2) The sample cell 3
3) By making the change in the position of the optical beam spot due to the vibration of the light beam correspond to the R delay time τ1 of the trigger pulse C, and by further changing the delay time τ1, it is possible to evaluate the spectra in different minute regions from the integrated signal. It is characterized by the fact that it is

光ビームスポットの直径は、光ビームが分光器2を介せ
ずに試料4に照射されるので、lpm程度にまで絞るこ
とも容易で、これによって測光し評価すべき微小領域を
十分小さなものとすることができる。本実施例のように
、試料セル3を振動させて光ビームスポットを移動させ
る場合、その振動の振幅は1〜30mm程度の範囲とす
れば、無理なく振動がOf能となるので好ましい。また
、サンプリング時間で2は、試料セル3の振動周期Tと
光ビームスポットの大きさによって決定されるが、一般
的にはで2zT/100が適当である。
Since the light beam is irradiated onto the sample 4 without passing through the spectrometer 2, the diameter of the light beam spot can be easily narrowed down to about lpm, which allows the microscopic area to be photometered and evaluated to be sufficiently small. can do. When the light beam spot is moved by vibrating the sample cell 3 as in this embodiment, it is preferable that the amplitude of the vibration be in the range of about 1 to 30 mm because the vibration can be easily turned off. Further, the sampling time of 2 is determined by the vibration period T of the sample cell 3 and the size of the light beam spot, but generally 2zT/100 is appropriate.

一本実施例における移動手段は、試料セル3を振動させ
る構成の装置であるが、試料セル3は固定し、光ビーム
の方を何かの方法によって試料4」―を移動させる形式
の装置も可能である。例えば回転ミラーの使用等が考え
られる。この場合の動作原理も実施例と全く同様である
。この様な変更により、試料4への電場・磁場等の印加
による薄膜の物性評価や試料温度の17199等を行う
場合に多くの利点がある。さらに試料セル3又は光ビー
ムの移動により形成される試料上光ビームスポットの移
動軌跡は線(−次元)的であるが、両者を併用し、一方
の一次元的な相対移動に直交する移動成分を他方により
与えることによって、容易に光ビームスポットの軌跡を
面(二次元)的とすることができる。例えば、一方の振
動周期を他方に比べて十分短くとれば、スポットの軌跡
は試料面全体を覆うことが可能となる。
The moving means in this embodiment is a device configured to vibrate the sample cell 3, but it is also possible to use a device in which the sample cell 3 is fixed and the sample 4 is moved using some method using a light beam. It is possible. For example, it is possible to use a rotating mirror. The operating principle in this case is also exactly the same as in the embodiment. Such a change has many advantages when evaluating the physical properties of a thin film by applying an electric field, a magnetic field, etc. to the sample 4, and when measuring the sample temperature. Furthermore, although the movement trajectory of the light beam spot on the sample formed by the movement of the sample cell 3 or the light beam is linear (-dimensional), by using both together, a movement component orthogonal to the one-dimensional relative movement of one side is used. By giving the other side, the locus of the light beam spot can be easily made planar (two-dimensional). For example, if the vibration period of one is made sufficiently shorter than the other, the locus of the spot can cover the entire sample surface.

またさらに本実施例において、独立に変化させうる変数
は、分光器2の波長又は波数と遅延時間−で、であり、
これら2変数を独立にスキャンできなければならない。
Furthermore, in this embodiment, the variables that can be changed independently are the wavelength or wave number of the spectrometer 2 and the delay time.
It must be possible to scan these two variables independently.

本実施例では、遅延時間で1を1点1点マニュアルに設
定することを基本としてその動作を述べた。しかしスペ
クトル波長を固定して遅延時間で1を自動でスキャンす
るシステl\を付加することも可能である。またさらに
、サンプリングトリガーパルスCから任意に決定される
時系列でサンプリングゲート14を開放し、通過した九
′iシ流信号eをその時系列にしたがって弁別増幅する
ようなマルチチャンネル方式のシステムも本実施例の変
形として可能となる。これについてfIS4図で説明す
る。
In this embodiment, the operation has been described on the basis of manually setting each delay time to 1. However, it is also possible to add a system that automatically scans 1 with a fixed spectral wavelength and a delay time. Furthermore, the present implementation also includes a multi-channel system in which the sampling gate 14 is opened in a time series arbitrarily determined from the sampling trigger pulse C, and the passed 9'i flow signal e is differentially amplified in accordance with the time series. This is possible as a variation of the example. This will be explained using the fIS4 diagram.

第4図(a)におけるdl・・・dnはサンプリングパ
ルスで、このサンプリングパルスはdlからdnまでサ
ンプリングトリガーパルスCから任意に決定される時系
列で順次第4図(b)に示されるアンド回路G1”Gr
+へと供給される。そして、各サンプリングパルスd!
〜dn供給時に光電流信号すがアンド回路G、〜Gnを
通ってttSl〜fJSnチャンネル回路に送られ、こ
れによって微小領域毎の測光結果が出力されるものであ
る。この場合、−回の測定で多数の微小領域のスペクト
ルが容易にJ11定できることになり、測定の迅速化が
はかられる。そのようなシステムでは、アナログ増幅よ
りデジタル増幅の方がよく、ホトンヵウテング方式、コ
ンピュータの採用等種々の変形例が可能である。
dl...dn in FIG. 4(a) are sampling pulses, and the sampling pulses are sequentially arranged in time series arbitrarily determined from the sampling trigger pulse C from dl to dn, and the AND circuit shown in FIG. 4(b) is used. G1”Gr
+ is supplied. And each sampling pulse d!
When ~dn is supplied, the photocurrent signal is sent to the ttSl~fJSn channel circuits through the AND circuits G and ~Gn, thereby outputting the photometry results for each minute area. In this case, the spectra of a large number of minute regions can be easily determined in one measurement, thereby speeding up the measurement. In such a system, digital amplification is better than analog amplification, and various modifications such as photon scouting and the use of computers are possible.

またさらに本実施例において、入射光と分光器2を試料
4に対して回し側に配置することによって、微小領域の
反射率測定用測光装置として応用可能である。
Furthermore, in this embodiment, by arranging the incident light and the spectrometer 2 on the rotating side with respect to the sample 4, it can be applied as a photometric device for measuring reflectance in a minute area.

[発明の効果] 以上説明したように、本発明の効果は、従来使用されて
いた測光装置の改良により、薄膜、特に、単分子膜又は
単分子累積膜の数ル菖微小領域におけるスペクトルシナ
価ができると共に任意の微小領域毎に測光できるので、
相対位置の変化にともなうスペクトル変化、すなわち色
素分布の不均一性等の評価が可能なことにある。特に、
特定微小領域からの信号を積算して測光結果を得ること
ができ、積算によって微小な変化を拡大できるので、巾
に1回の信号を増幅させる場合のように、ノイズによっ
て不正確なものとなる心配がない。
[Effect of the Invention] As explained above, the effect of the present invention is to improve the spectral synergy in the micro region of a thin film, especially a monomolecular film or a monomolecular cumulative film, by improving the conventionally used photometric device. As well as being able to measure light in any minute area,
The advantage is that it is possible to evaluate spectral changes due to changes in relative position, ie, non-uniformity of dye distribution. especially,
Photometry results can be obtained by integrating signals from a specific minute area, and minute changes can be magnified by integration, so noise can cause inaccuracies, as would be the case when a single signal is amplified once in width. No worries.

したがって、特に混合単分子膜やヘテロ累積膜等の応用
性の高い薄膜の均一性や物性の評価、さらに均一な薄1
1!Jを作製できる材料や成膜技術の改良等の波及効果
がある。また、光ビームが分光器を通らずに試料に照射
されるのでその径を絞りゃすく、Jll光すべき微小領
域を十分小さなものとしやすく、上記評価の精度を高め
やすいものである。
Therefore, it is especially important to evaluate the uniformity and physical properties of thin films with high applicability, such as mixed monomolecular films and heterogeneous cumulative films, and to improve the uniformity of thin films.
1! There will be ripple effects such as improvements in materials and film-forming techniques that can be used to make J. Furthermore, since the light beam is irradiated onto the sample without passing through a spectroscope, the diameter of the light beam can be narrowed down, making it easy to make the minute area to be illuminated sufficiently small, and making it easier to improve the accuracy of the above evaluation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の測光装置の説明図、第2図は本発明に係
る測光装置の一実施例を示す説明図、第3図はその各信
号のタイミング図、第4図は測光位置決め手段の他の実
施例を示す説明図である。 1:光源、2二分光器、3:試料セル、4:試料、5:
振動制御ユニット、 6:光電子増幅ユニット、7:PSD、8ニレコーダー
、9:波長設定器、 10、+1:レンズ系、 12:サンプリングトリガーユニット、13:遅延回路
、14:サンプリングゲート。 +5:弁別回路、IG’、+7:積分回路、18:演算
回路。 出願人 キャノン株式会社 代理人 豊 1)善 雄 第1図 第2図 第4図
FIG. 1 is an explanatory diagram of a conventional photometric device, FIG. 2 is an explanatory diagram showing an embodiment of the photometric device according to the present invention, FIG. 3 is a timing diagram of each signal, and FIG. 4 is an explanatory diagram of a photometric positioning means. It is an explanatory view showing other examples. 1: Light source, 2 Spectroscope, 3: Sample cell, 4: Sample, 5:
Vibration control unit, 6: Photoelectronic amplification unit, 7: PSD, 8 recorders, 9: Wavelength setter, 10, +1: Lens system, 12: Sampling trigger unit, 13: Delay circuit, 14: Sampling gate. +5: Discriminator circuit, IG', +7: Integrating circuit, 18: Arithmetic circuit. Applicant Canon Co., Ltd. Agent Yutaka 1) Yoshio Figure 1 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1)試料に照射される光ビームの光源と、試料上の光ビ
ームスポンドの軌跡が線を形成するように当該光ビーム
スポットを移動させる移動手段と、少なくとも二次光を
分光して測光する測光手段と、試ネ1」−の測光位置を
定める測光位置決め手段とを有することを特徴とする測
光装置。
1) A light source for a light beam that is irradiated onto a sample, a moving means for moving the light beam spot so that the locus of the light beam on the sample forms a line, and photometry that spectrally spectra and photometers at least secondary light. 1. A photometric device comprising: a photometric positioning device for determining a photometric position of a sample 1.
JP5398184A 1984-03-21 1984-03-21 Photometric apparatus Pending JPS60196648A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5398184A JPS60196648A (en) 1984-03-21 1984-03-21 Photometric apparatus
US06/712,026 US4705403A (en) 1984-03-21 1985-03-15 Apparatus and method for measuring a photometric characteristic of a sample portion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5398184A JPS60196648A (en) 1984-03-21 1984-03-21 Photometric apparatus

Publications (1)

Publication Number Publication Date
JPS60196648A true JPS60196648A (en) 1985-10-05

Family

ID=12957798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5398184A Pending JPS60196648A (en) 1984-03-21 1984-03-21 Photometric apparatus

Country Status (1)

Country Link
JP (1) JPS60196648A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5018866A (en) * 1989-09-12 1991-05-28 Packard Instrument Company Method and apparatus for performing high sensitivity fluorescence measurements

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5018866A (en) * 1989-09-12 1991-05-28 Packard Instrument Company Method and apparatus for performing high sensitivity fluorescence measurements

Similar Documents

Publication Publication Date Title
Schachman et al. Ultracentrifuge studies with absorption optics. IV. Molecular weight determinations at the microgram level
JP3579321B2 (en) Two-dimensional imaging surface plasmon resonance measurement apparatus and measurement method
US20180045651A1 (en) Raman spectrometer
KR100203345B1 (en) Simultaneous multiple angle/multiple wavelength ellipsometer and method
CN103688156A (en) Measurement of critical dimension
KR100393522B1 (en) Device and method for measuring film thickness, making use of improved fast fourier transformation
KR20100064612A (en) Spectroscopic ellipsometer
CN108519335A (en) A Spectroscopic Ellipsometry Device and Method Based on Elastic Optical Modulation
JP2000065536A (en) Method and instrument for measuring film thickness and optical constant
FR2685962A1 (en) INFRARED ELLIPSOMETER.
JPS6329210B2 (en)
US5185645A (en) Measurement method for the determination of low levels of optical absorption
CN101246122B (en) Ellipsometry imaging method and device adopting rotating compensator integration sampling
JPS60196648A (en) Photometric apparatus
JPS62266439A (en) Spectral temporary optical analyzer
KR102194321B1 (en) Continuously measurable spectroscopic ellipsometer
KR20220120588A (en) Combined OCD and Optical Reflection Modulation Method and System
US3481671A (en) Apparatus and method for obtaining optical rotatory dispersion measurements
JPS60196647A (en) Photometric apparatus
JPS60196650A (en) Photometric apparatus
JPS60196646A (en) Photometric method
US4705403A (en) Apparatus and method for measuring a photometric characteristic of a sample portion
JPH05231939A (en) Step scan Fourier transform infrared spectrometer
WO2023109603A1 (en) Method and system for spectroscopic determination of sample, and flow cytometer
JPS60196649A (en) Photometric apparatus