JPS60196557A - Dehumidifier - Google Patents
DehumidifierInfo
- Publication number
- JPS60196557A JPS60196557A JP59051860A JP5186084A JPS60196557A JP S60196557 A JPS60196557 A JP S60196557A JP 59051860 A JP59051860 A JP 59051860A JP 5186084 A JP5186084 A JP 5186084A JP S60196557 A JPS60196557 A JP S60196557A
- Authority
- JP
- Japan
- Prior art keywords
- cooler
- rotation speed
- humidity
- temperature
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001035 drying Methods 0.000 claims description 11
- 239000003507 refrigerant Substances 0.000 claims description 11
- 239000002023 wood Substances 0.000 claims description 7
- 238000005057 refrigeration Methods 0.000 claims description 4
- 230000007423 decrease Effects 0.000 description 9
- 238000007791 dehumidification Methods 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/153—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は冷凍サイクルを利用し、主として木材等を乾
燥するために用いる除湿装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a dehumidifying device that utilizes a refrigeration cycle and is used primarily for drying wood and the like.
〔従来技術] 従来の除湿装置は第1図に示すように構成されていた。[Prior art] A conventional dehumidifier was constructed as shown in FIG.
図において、(I)は圧縮機、(21は凝縮器。In the figure, (I) is a compressor, (21 is a condenser).
(3)け絞シ装置を構成するキャピラリーチューブ。(3) A capillary tube that constitutes the squeezing device.
(4)は冷却器で、これらが冷媒配管(5)で順次連通
されて冷凍サイクルが構成されている。(6)は圧縮機
(1)駆動用電動機、(7)は交流電源、(8)は電動
機(61に電力を供給する回路である。(4) is a cooler, and these are sequentially connected through refrigerant piping (5) to constitute a refrigeration cycle. (6) is an electric motor for driving the compressor (1), (7) is an AC power supply, and (8) is a circuit that supplies electric power to the electric motor (61).
このように構成された除湿装置を品物の乾燥に使用した
場合は、乾燥室内が到達湿度に達するのに時間がか\る
欠点があった。例えば木材を乾燥する場合、初期は乾燥
室内の相対湿度が100%近くになるが、最終的には家
具等に使用される木材の含水率を10%程度にすること
が要求される。When a dehumidifying device constructed in this manner is used for drying articles, there is a drawback that it takes time for the inside of the drying chamber to reach the desired humidity. For example, when drying wood, initially the relative humidity in the drying chamber is close to 100%, but ultimately it is required that the moisture content of the wood used for furniture etc. be about 10%.
これを実現するためには乾燥室内をがなり低湿度に保た
なヴればならない。低い到達湿度を実現するには、かな
シ細い、絞り繭嵩砥抗の高いキャピラリーチューブを選
定すればよいが、そうすると冷却器(4)の蒸発温度は
低下するが冷媒循環量も小さくなるので、高湿度時の除
湿能力が低くなり、到達湿度に達するまでに時間がか\
るという欠点が〔発明の概要〕
この発明は上記のような従来のものの欠点を除去するた
めになされたもので、冷却器に流入する空気の湿度と温
度を検出し、この検出湿度及び検出温度の何れかが所定
値以下になると、絞り装置の抵抗及び圧縮機駆動用電動
機の回転数をそれぞれ所定値に増加するようにすること
によって、高湿度時の除湿能力を低下させることなく、
かなりの低湿度への除湿が可能な除湿装置を提供するこ
とを目的としている。To achieve this, it is necessary to keep the humidity inside the drying room extremely low. In order to achieve a low ultimate humidity, it is best to select a capillary tube that is thin and has a high abrasion resistance, but this will lower the evaporation temperature of the cooler (4) but will also reduce the amount of refrigerant circulation. The dehumidifying ability decreases when humidity is high, and it takes time to reach the desired humidity.
[Summary of the Invention] This invention was made in order to eliminate the above-mentioned drawbacks of the conventional system. When either of them becomes less than a predetermined value, the resistance of the expansion device and the rotational speed of the compressor driving motor are increased to the predetermined values, respectively, without reducing the dehumidifying ability at high humidity.
The purpose of the present invention is to provide a dehumidifying device capable of dehumidifying to considerably low humidity.
以下、この発明の一実施例を図について説明する。第2
図は、この発明の一実施例を示す概略構成図で1図にお
いて、(1)は圧縮機、(21け凝縮器。An embodiment of the present invention will be described below with reference to the drawings. Second
The figure is a schematic configuration diagram showing one embodiment of the present invention. In figure 1, (1) is a compressor, (21 condensers).
(4)は冷却器、(5)は冷媒配管、(61は圧縮機駆
動用電動機、(7)は交流電源、(8)は電力供給回路
であり。(4) is a cooler, (5) is a refrigerant pipe, (61 is an electric motor for driving a compressor, (7) is an AC power supply, and (8) is a power supply circuit.
これらは従来のものと同様である。+91は、バイパス
回路+IQと並列に連がれた第1のキャピラリーチュー
ブ、αDi−iバイパス回路+IGに設けた電磁弁、a
zは第2のキャピラリーチューブで、第1のキャピラリ
ーチューブ(9)と直列に連がれており、これらで抵抗
可変の絞り装fff、a:sを構成している。a4は冷
却器(4)に流入する空気の湿度を検出する湿度センサ
、 (isは冷却器(4)に流入する空気への温度を検
出する温度センサ、 QGは、電動機(61への電力供
給回路(8)に設けられた。整流回路と可変周波数イン
バータ回路とで構成された可変周波数電源回路で。These are the same as conventional ones. +91 is the first capillary tube connected in parallel with the bypass circuit +IQ, a solenoid valve provided in the αDi-i bypass circuit +IG, a
z is a second capillary tube, which is connected in series with the first capillary tube (9), and these constitute a variable resistance diaphragm fff, a:s. a4 is a humidity sensor that detects the humidity of the air flowing into the cooler (4), (is is a temperature sensor that detects the temperature of the air flowing into the cooler (4), QG is a power supply to the electric motor (61) The circuit (8) is a variable frequency power supply circuit composed of a rectifier circuit and a variable frequency inverter circuit.
その電源周波数を増減することによって電動機(6)の
回転数制御装置として作用する。anは、 tg度七セ
ン041.温度センサisの検出信号を入力し、その検
出湿度、検出温度が所定値例えば湿度50%、温度20
℃以下になると電磁弁+IIIを閉じそして町変周波数
電源回111i50Qの周波数を所定値例えば70Hz
に増加させる制御器である。なお、少なくとも凝縮器(
21,冷却器(4)、湿度センサa4I及び温度センサ
(19は、乾燥室内に収納されている。By increasing or decreasing the power frequency, it acts as a rotation speed control device for the electric motor (6). an is tg degree seven cents 041. Input the detection signal of the temperature sensor is, and set the detected humidity and temperature to predetermined values, for example, humidity 50% and temperature 20%.
℃ or below, close the solenoid valve +III and set the frequency of the variable frequency power supply circuit 111i50Q to a predetermined value, for example 70Hz.
This is a controller that increases the Note that at least the condenser (
21, cooler (4), humidity sensor a4I, and temperature sensor (19) are housed in the drying chamber.
次に第2図に示す実施例の動作を説明する。例えば木材
を乾燥する場合に、初期は木材から蒸発した水分によっ
て乾燥室内、即ち冷却器(4(への流入する空気Aの湿
度が100%近い高湿度にあるが温度は外気温度にはソ
等1−〈冬季では20℃以下である。従って、この場合
は制御器aυは、温度センサ(19からの検出温度が2
0℃以下であるため。Next, the operation of the embodiment shown in FIG. 2 will be explained. For example, when drying wood, initially the moisture evaporated from the wood causes the humidity of the air A flowing into the drying room, that is, the cooler (4), to be at a high humidity of nearly 100%, but the temperature is still low compared to the outside air temperature. 1-〈In winter, the temperature is 20℃ or less. Therefore, in this case, the controller aυ is
Because it is below 0℃.
電磁弁(111を閉じ1回路6Gの出力周波数を50H
2から70 Hzに切換える。それで冷媒は第1キヤピ
ラリーチユーブ(9〕と第2のギヤピラリ−チューブo
zを直列に通って冷凍サイクルを流れ、圧縮機駆動電動
機(61の回転数は40%上昇する。このように冷却器
+41への流入空気温度が低い場合、絞り装置03の絞
り抵抗を大きくして蒸発温度を低くシ、冷却器(4)の
表面温度を低下させその表面への結露が促進され除湿が
とどこおりなく行なわれる。一方圧縮機filの回転数
も増加するので冷媒傭瑣gを増加させ、絞り抵抗の増加
による冷媒循J!!4量の減少を補い除湿能力を高める
。なお、蒸発温度が低いので圧縮機U+を増速しても過
負荷となることはない。この運転が続くと、圧縮機+1
1の入力相当分の発熱による除湿装置の加熱効果によっ
て乾燥室の室温が上昇し、20℃を越え、室温の上昇に
つれて木材からの水分蒸発量が増加するので、湿度は1
00%近い高湿度にある。従って、制御器aηは。Close the solenoid valve (111) and set the output frequency of 1 circuit 6G to 50H.
Switch from 2 to 70 Hz. Therefore, the refrigerant flows through the first capillary reach tube (9) and the second gear tube (9).
z in series and flows through the refrigeration cycle, and the rotation speed of the compressor drive motor (61) increases by 40%.If the temperature of the air flowing into the cooler +41 is low, the throttling resistance of the throttling device 03 is increased. This lowers the evaporation temperature, lowers the surface temperature of the cooler (4), promotes dew condensation on its surface, and dehumidifies the air without stopping.On the other hand, the rotational speed of the compressor fil increases, so the refrigerant consumption increases. This increases the dehumidification capacity by compensating for the decrease in refrigerant circulation due to the increase in throttle resistance and increasing the dehumidifying capacity.In addition, since the evaporation temperature is low, even if the compressor U+ speeds up, it will not become overloaded.This operation Next, compressor +1
The room temperature in the drying room rises to exceed 20℃ due to the heating effect of the dehumidifier due to the heat generated by the input of
The humidity is close to 00%. Therefore, the controller aη is.
各センサ041 a!9からの出力信号に応じて、電磁
弁0υを開き、可変周波数電源回路t1Gの出力周波数
を元の50Hzに下げる。それで絞り装置f13はバイ
パス回路θqによってバイパスされるので、抵抗が下が
り、そして圧縮機(1)の回転数も低下する。このよう
に絞り抵抗が小さくなると冷却器の蒸発温度は上がるが
、室温が上昇しており湿度も高いので露点温度も高く除
湿には支障なく、抵抗の低下による冷媒循環量の増加に
より除湿能力は上昇する。Each sensor 041 a! In response to the output signal from 9, the solenoid valve 0υ is opened and the output frequency of the variable frequency power supply circuit t1G is lowered to the original 50Hz. Therefore, the throttle device f13 is bypassed by the bypass circuit θq, so that the resistance decreases and the rotational speed of the compressor (1) also decreases. When the throttle resistance decreases, the evaporation temperature of the cooler increases, but since the room temperature is rising and the humidity is high, the dew point temperature is high and there is no problem with dehumidification, and the dehumidification capacity decreases due to the increase in refrigerant circulation due to the decrease in resistance Rise.
父、圧縮機(1)の回転数は低下するので冷媒循環量の
増加により圧縮機(1)が過負荷となることはない。Since the rotation speed of the compressor (1) decreases, the compressor (1) will not be overloaded due to an increase in the amount of refrigerant circulation.
この運転によって、木材の乾燥が進んで室内空気の相対
湿度が50チ迄に低下すると、それを湿度センサ041
が検出し制御器aDによって再び電磁弁aυが開′かれ
、電源回路+Iflの出力周波数が増加する。As a result of this operation, when the wood is dried and the relative humidity of the indoor air drops to 50 degrees, the humidity sensor 04
is detected, the solenoid valve aυ is opened again by the controller aD, and the output frequency of the power supply circuit +Ifl increases.
これにより絞り装置(131の絞り抵抗が増し、冷却器
(4)の蒸発温度が下がり、それの表面温度が下がるの
で、湿度低下により露点が低下しても除湿はとどこおり
なく行なわれる。絞り装置0の絞り抵抗の増加により9
本来ならば冷媒循環量が低下するが、電源回路周波数の
増加による圧縮機(1)の回転数上昇でこれを補い低湿
度時の除湿能力を高く保つことができる。This increases the throttling resistance of the throttling device (131), lowers the evaporation temperature of the cooler (4), and lowers its surface temperature, so that dehumidification continues without interruption even if the dew point drops due to a drop in humidity. Throttling device 0 9 due to the increase in drawing resistance of
Normally, the amount of refrigerant circulation would decrease, but this can be compensated for by increasing the rotational speed of the compressor (1) due to an increase in the power supply circuit frequency, and the dehumidifying ability can be maintained high at low humidity.
以上のように、この発明によれば、冷却器に流入する空
気の湿度及び温度を検出するセンサを設け、これらセン
サが検出する湿度及び温度の何れかが所定値以下になる
と、絞り装置の抵抗を大きくすると共に圧縮機の回転数
を増加するようにしたので、低湿度及び高混度時のいず
れの場合も除湿能力が高く、低い到達湿度を実現できる
と共に圧縮機の過負荷が防止され、常に有する能力を充
分に発揮されるという効果を有する。As described above, according to the present invention, a sensor is provided that detects the humidity and temperature of the air flowing into the cooler, and when either the humidity or temperature detected by these sensors falls below a predetermined value, the resistance of the diaphragm device increases. By increasing the number of rotations of the compressor as well as increasing the number of rotations of the compressor, the dehumidification capacity is high both in low humidity and high mixing conditions, making it possible to achieve a low ultimate humidity and prevent overloading of the compressor. It has the effect of allowing you to fully demonstrate your abilities at all times.
第1図は従来の除湿装置の概略構成図、第2図はこの発
明の一実施例を示す概略構成図である。
図において、(1)は圧縮機、(2Iは凝縮器、(4)
は冷却器、(5)は冷媒配管、(61は電#I機、(9
)は第10キヤピラリーチユーブ、(IGはそれのバイ
パス回路。
0υは電磁弁、α2は第2のキャピラリーチューブ。
03は、これら+91 fil (ID [12から構
成される装置a4lは湿度センサ,09は温度センサ,
aGは電動機回転数制御装置として作用する可変周波数
電源回路。
(171は制御器である。
なお、図中同一符号は同一或は相当部分を示す。
代理人 大 岩 増 雄(ほか2名)
第1図
第2図
12 +3′:jFIG. 1 is a schematic diagram of a conventional dehumidifying device, and FIG. 2 is a schematic diagram of an embodiment of the present invention. In the figure, (1) is a compressor, (2I is a condenser, (4)
is the cooler, (5) is the refrigerant pipe, (61 is the electric #I machine, (9 is
) is the 10th capillary reach tube, (IG is its bypass circuit. 0υ is the solenoid valve, α2 is the second capillary tube. 03 is these +91 fil (ID is a temperature sensor,
aG is a variable frequency power supply circuit that acts as a motor rotation speed control device. (171 is a controller. In addition, the same reference numerals in the figures indicate the same or corresponding parts. Agent: Masuo Oiwa (and 2 others) Figure 1 Figure 2 Figure 12 +3':j
Claims (1)
配管で順次連通して冷凍サイクルを構成し。 上記冷却器にて冷却減湿した空気を上記凝縮器によって
昇温させることによって除湿する除湿装置において、上
記冷却器に流入する空気の湿度を検出する湿度センサ、
この冷却器に流入する空気の温度を検出する温度センサ
、上記圧縮機を駆動する電動機の回転数を制御する回転
数制御装置、及び上記湿度センサが検出する湿度と上記
温度センサが検出する温度の何れかが所定値以下になる
と。 上記絞り装置の抵抗を所定値に増加させ、上記回転数制
御装置を、上記電動機回転数が所定値に増加するよう制
御する制御器を備えたことを特徴とする除湿装置。 (2) 上記回転数制御装置は、上記圧縮機駆動用電動
機に可変周波数電圧を供給する可変周波数電源回路であ
り、上記制御器によって、この回路の出力周波数が制御
されるようなされた特許請求の範囲第1項記載の除湿装
置。 (3) 上記絞り装置は、電磁弁によって開閉される並
列バイパス回路をもった第1のキャピラリーチューブと
これに直列に連かれた第2のキャピラリーチューブから
なシ、上記制御器によって上記電磁弁が開閉制御される
ようなされた特許請求の範囲第1項又は第2項記載の除
湿装置。 (4)上記冷却器、凝縮器、湿度センサ及び温度センサ
を乾燥室内に収納して、物品転機用とした特許請求の範
囲第1項、第2項又は第3項記載の除湿装置。 (5)上記物品は木材である特許請求の範囲第4項記載
の除湿装置。[Claims] +I+ A refrigeration cycle is constructed by sequentially communicating a compressor, a condenser, a throttle device, and a cooler through refrigerant piping. In a dehumidifying device that dehumidifies air that has been cooled and dehumidified in the cooler by raising its temperature in the condenser, a humidity sensor that detects the humidity of the air flowing into the cooler;
A temperature sensor that detects the temperature of the air flowing into the cooler, a rotation speed control device that controls the rotation speed of the electric motor that drives the compressor, and a rotation speed control device that controls the humidity detected by the humidity sensor and the temperature detected by the temperature sensor. If any of them becomes less than a predetermined value. A dehumidifying device comprising a controller that increases the resistance of the throttle device to a predetermined value and controls the rotation speed control device so that the motor rotation speed increases to a predetermined value. (2) The rotation speed control device is a variable frequency power supply circuit that supplies a variable frequency voltage to the compressor driving electric motor, and the output frequency of this circuit is controlled by the controller. A dehumidifying device according to scope 1. (3) The throttle device includes a first capillary tube having a parallel bypass circuit opened and closed by a solenoid valve and a second capillary tube connected in series with the first capillary tube, and the solenoid valve is controlled by the controller. A dehumidifying device according to claim 1 or 2, wherein the dehumidifying device is controlled to open and close. (4) The dehumidifying device according to claim 1, 2, or 3, wherein the cooler, condenser, humidity sensor, and temperature sensor are housed in a drying chamber, and is used as an article changing machine. (5) The dehumidifying device according to claim 4, wherein the article is wood.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59051860A JPS60196557A (en) | 1984-03-16 | 1984-03-16 | Dehumidifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59051860A JPS60196557A (en) | 1984-03-16 | 1984-03-16 | Dehumidifier |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60196557A true JPS60196557A (en) | 1985-10-05 |
Family
ID=12898617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59051860A Pending JPS60196557A (en) | 1984-03-16 | 1984-03-16 | Dehumidifier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60196557A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03255861A (en) * | 1990-03-07 | 1991-11-14 | Matsushita Electric Ind Co Ltd | Air conditioner |
JPH07283573A (en) * | 1994-04-12 | 1995-10-27 | Nec Corp | Shield |
JP2011247522A (en) * | 2010-05-28 | 2011-12-08 | Mitsubishi Electric Corp | Refrigerating cycle device, refrigerator using refrigerating cycle device, low temperature device and air conditioner |
JP2012181013A (en) * | 2012-06-20 | 2012-09-20 | Mitsubishi Electric Corp | Refrigerating cycle device and refrigerator using the same, cryogenic apparatus, and air conditioner |
-
1984
- 1984-03-16 JP JP59051860A patent/JPS60196557A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03255861A (en) * | 1990-03-07 | 1991-11-14 | Matsushita Electric Ind Co Ltd | Air conditioner |
JPH07283573A (en) * | 1994-04-12 | 1995-10-27 | Nec Corp | Shield |
JP2011247522A (en) * | 2010-05-28 | 2011-12-08 | Mitsubishi Electric Corp | Refrigerating cycle device, refrigerator using refrigerating cycle device, low temperature device and air conditioner |
JP2012181013A (en) * | 2012-06-20 | 2012-09-20 | Mitsubishi Electric Corp | Refrigerating cycle device and refrigerator using the same, cryogenic apparatus, and air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3187770B2 (en) | Humidity control thermostat and humidity control method for air conditioning system | |
US6427454B1 (en) | Air conditioner and controller for active dehumidification while using ambient air to prevent overcooling | |
KR930002769A (en) | Air conditioner | |
US6089464A (en) | Thermal dynamic balancer | |
JPS60196557A (en) | Dehumidifier | |
JP4612001B2 (en) | Air conditioner | |
JPS602505Y2 (en) | air conditioner | |
JP3235882B2 (en) | Air conditioner | |
JP2004132572A (en) | Air conditioner | |
JP3222779B2 (en) | Humidifier | |
JP3993616B2 (en) | Air conditioner | |
JPS60196556A (en) | Dehumidifier | |
JP3404968B2 (en) | Air conditioner | |
JPS5946437A (en) | Temperature and humidity control method for air conditioner | |
JPH02118356A (en) | Air conditioner with air cleaner | |
JPS6017609Y2 (en) | Air conditioner dehumidifier | |
JP2767964B2 (en) | Air conditioner | |
JPS5924132A (en) | air conditioner | |
JPS6291786A (en) | Heat pump type drier | |
JPH09145196A (en) | Air conditioner operation control method | |
JPS63210575A (en) | Air conditioner | |
JPH07332794A (en) | Multiroom type air-conditioning system | |
JPH0256570B2 (en) | ||
JPH0522757Y2 (en) | ||
JPS6033454A (en) | Dehumidifying operation method of air conditioner |