JPS60195403A - Distortion distribution sensor - Google Patents
Distortion distribution sensorInfo
- Publication number
- JPS60195403A JPS60195403A JP5184284A JP5184284A JPS60195403A JP S60195403 A JPS60195403 A JP S60195403A JP 5184284 A JP5184284 A JP 5184284A JP 5184284 A JP5184284 A JP 5184284A JP S60195403 A JPS60195403 A JP S60195403A
- Authority
- JP
- Japan
- Prior art keywords
- film
- strain
- conductor
- substrate
- distribution sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 239000004065 semiconductor Substances 0.000 claims abstract description 9
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 8
- 239000004020 conductor Substances 0.000 abstract description 22
- 230000000903 blocking effect Effects 0.000 abstract description 7
- 239000010408 film Substances 0.000 description 27
- 239000011159 matrix material Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 1
- 229910004349 Ti-Al Inorganic materials 0.000 description 1
- -1 Ti-kl-Ou Inorganic materials 0.000 description 1
- 229910004692 Ti—Al Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000001017 electron-beam sputter deposition Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229920005570 flexible polymer Polymers 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Landscapes
- Force Measurement Appropriate To Specific Purposes (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
【発明の詳細な説明】
(従来技術とその問題点)
本発明は多数のひずみゲージを平面上に配置しく1)
てそれらの抵抗変化を走査するひずみ分布センサに関す
る。DETAILED DESCRIPTION OF THE INVENTION (Prior Art and its Problems) The present invention relates to a strain distribution sensor in which a large number of strain gauges are arranged on a plane (1) and the resistance changes thereof are scanned.
(従来技術とその問題点)
各種の物体を取り扱うロボットハンドは、取り扱う物体
の種類に応じて適正な力で把持することが望まれる。そ
のために把持力の面状分布を知る必要がある。そのよう
な分布の測定には、第1図に示すように縦横に格子状に
互に絶縁配置された導線1,2の各交叉点近くに二つの
導線1.2に両端が接続されるひずみゲージ3を配置し
てマトリックスを構成し、導線1,2の端末に設けられ
た端子4,5に順次電圧を印加して各ゲージ3を走査し
、流れる電流値から各ひずみゲージ3の抵抗変化を知っ
てひずみ分布を測定する。例えばひずみゲージ31の抵
抗値を知るためには端子41゜51の間に電圧を印加す
るが、この際他のひずみゲージを通って廻り込む電流を
阻止するために各ゲージ3に直列にブロッキングダイオ
ード6を接続しておかなければならない。さらにまた、
ひずみゲージの抵抗値はゲージの方向とひずみの方向(
2)
となす角度に依存するので、正確なひずみ量の分布を知
るためには各ゲージを所定の方向にそろえて配置しなけ
ればならない。精度のよいひずみ分布を測定するにはで
きるだけ多数のひずみゲージを配置しなければならず、
そのような多数のひずみを正確に方向をそろえて貼布す
るのは極めて困難な作業である。またそれらにそれぞれ
ブロッキングダイオードをひずみ分布に変化を与えない
ように接続するのもまた極めて困難な作業である。(Prior Art and its Problems) It is desirable for a robot hand that handles various objects to grasp the object with an appropriate force depending on the type of object being handled. For this purpose, it is necessary to know the planar distribution of gripping force. To measure such a distribution, as shown in Figure 1, a strain strain is applied in which both ends of the conductor wires 1 and 2 are connected near each intersection of the conductor wires 1 and 2, which are arranged vertically and horizontally in a lattice pattern insulated from each other. Gauges 3 are arranged to form a matrix, voltage is sequentially applied to terminals 4 and 5 provided at the ends of conductors 1 and 2, each gauge 3 is scanned, and the resistance change of each strain gauge 3 is determined from the flowing current value. To measure strain distribution, know the following. For example, in order to know the resistance value of strain gauge 31, a voltage is applied between terminals 41 and 51, but at this time, a blocking diode is connected in series with each gauge 3 to prevent current from circulating through other strain gauges. 6 must be connected. Furthermore,
The resistance value of a strain gauge is determined by the direction of the gauge and the direction of strain (
2) Since it depends on the angle formed, each gauge must be aligned in a predetermined direction in order to obtain an accurate strain distribution. To measure strain distribution with high precision, it is necessary to arrange as many strain gauges as possible.
It is extremely difficult to apply such a large number of strains in precisely aligned directions. It is also extremely difficult to connect blocking diodes to each of these so as not to change the strain distribution.
(発明の目的)
本発明は上述の困難を排除し、それぞれ所定の方向に配
置されてマトリックスを形成する多数のひずみゲージと
それにそれぞれ接続されるブロッキングダイオードを容
易に形成できるひずみ分布センサを提供することを目的
とする。(Object of the Invention) The present invention eliminates the above-mentioned difficulties and provides a strain distribution sensor in which a large number of strain gauges each arranged in a predetermined direction to form a matrix and blocking diodes connected to the strain gauges can be easily formed. The purpose is to
(発明の要点)
本発明によれば、複数のひずみゲージの各々が複数の導
線よりなり互に絶縁された二つの導線群のそれぞれの一
つの導線の間に接続されるひずみ分布センサにおいて、
ひずみゲージが基板上に積層されてpn接合を形成する
異なる導電形の半導体層よりなり、基板に接する層の一
端と基板より最も遠い層のその一端と反対側の端とがそ
れぞれ異なる導線群の導線に接続されていることにより
上記の目的が達成される。(Summary of the Invention) According to the present invention, in a strain distribution sensor in which each of a plurality of strain gauges is connected between one conductor of each of two mutually insulated conductor groups made up of a plurality of conductors,
A strain gauge is made up of semiconductor layers of different conductivity types stacked on a substrate to form a pn junction, and one end of the layer in contact with the substrate, one end of the layer farthest from the substrate, and the opposite end are each made of a group of different conducting wires. The above object is achieved by being connected to the conductor.
(発明の実施例)
第2図は本発明の一実施例を示し、第1図と共通の部分
には同一の符号が付されている。この場合のひずみゲー
ジ9は、第3図に第2図A−A線断面図で示したような
構造を有する。基板7はポリイミドのような可とう性高
分子膜で厚さは40〜120μmである。この上に平行
に複数の金属導線2を形成する。金属導線2はNi、
Or、ステンレス鋼、 Ti またはNi−0rSNi
−Or−Au、 Ti−kl−Ou、 Ti−Al=N
iの積層などからなり、電子ビーム蒸着、スパッタリン
グ蒸着により1000〜5000Aの厚さに形成される
。次に導線2の一部を露出させて絶縁膜8により被覆す
る。この上に一端が導線2に接触するようなp型非晶質
シリコン(以下α−31と記す)膜91を形成する。こ
のα−81膜91はシランガスのグロー放電分解により
形成される。すなわち、水素ガスで10〜30倍に稀釈
したシランガスにジボランガスを添加し、1〜10To
rrの真空中で高周波電界を加えて分解する。(Embodiment of the Invention) FIG. 2 shows an embodiment of the present invention, and parts common to those in FIG. 1 are given the same reference numerals. The strain gauge 9 in this case has a structure as shown in FIG. 3, which is a cross-sectional view taken along the line AA in FIG. The substrate 7 is a flexible polymer film such as polyimide and has a thickness of 40 to 120 μm. A plurality of metal conductive wires 2 are formed in parallel thereon. The metal conductor 2 is made of Ni,
Or, stainless steel, Ti or Ni-0rSNi
-Or-Au, Ti-kl-Ou, Ti-Al=N
It is formed by electron beam evaporation or sputtering evaporation to a thickness of 1000 to 5000 Å. Next, a portion of the conductive wire 2 is exposed and covered with an insulating film 8. A p-type amorphous silicon (hereinafter referred to as α-31) film 91 is formed on this, one end of which is in contact with the conductive wire 2. This α-81 film 91 is formed by glow discharge decomposition of silane gas. That is, diborane gas is added to silane gas diluted 10 to 30 times with hydrogen gas, and 1 to 10 To
It is decomposed by applying a high frequency electric field in a vacuum of rr.
基板温度は150〜300’Oに保持され、膜厚は20
0OAである。高周波の電力を上げていくと、50〜2
0OAの大きさの微結晶粒が膜の中に成長する。The substrate temperature was maintained at 150-300'O, and the film thickness was 20
It is 0OA. When increasing the high frequency power, 50 to 2
Microcrystalline grains with a size of 0OA grow into the film.
微結晶化しないp型、n型膜−81の電気伝導度は10
〜10 (Ωcm)であるが、微結晶化した場合は1〜
10(ΩCta) である。ついでノンドープα−8i
膜92、n型膜−8i膜93をそれぞれ0.511%、
数百人の厚さに形成する。このような積層α−81膜は
光蝕刻法により任意の形状にパターニングできる。つい
でこの積層α−81膜9の他端に金属導線1を接触させ
る。図示しないがこの上をさらに保護膜で被覆する。α
−81膜9の寸法はすべて同じに形成され、幅Q、1m
m、長さlyxmの場合、金属導線1,2の間の抵抗は
約500にΩで、ノンドープ膜92.n型α−81膜9
3を設けないときも同じであった。このような構造にお
いてp型膜−81膜91より成るゲージ抵抗と、p型膜
91、ノンドープ膜92、n型膜93より形成されるp
in接合よりなるブロッキングダイオードとが直列接続
されるので、第1図と同様なマ) IJラックス構成さ
れ、電極4,5組合せ走、査して測定することにより面
内のひずみ分布を知ることができる。The electrical conductivity of the p-type and n-type films-81 that do not become microcrystalline is 10.
~10 (Ωcm), but in the case of microcrystallization, it is 1~
10 (ΩCta). Next, non-doped α-8i
The film 92 and the n-type film-8i film 93 were each 0.511%,
Form to a thickness of several hundred people. Such a laminated α-81 film can be patterned into any desired shape by photolithography. Then, the metal conductive wire 1 is brought into contact with the other end of the laminated α-81 film 9. Although not shown, this is further covered with a protective film. α
-81 The dimensions of the membrane 9 are all formed the same, width Q, 1 m
m and the length lyxm, the resistance between the metal conductive wires 1 and 2 is about 500Ω, and the non-doped film 92. n-type α-81 membrane 9
The same thing happened when 3 was not provided. In such a structure, there is a gauge resistor made of p-type film 81 and film 91, and a p-type film made of p-type film 91, non-doped film 92, and n-type film 93.
Since a blocking diode consisting of an in-junction is connected in series, it has an IJ rack configuration similar to that shown in Fig. 1, and by scanning and measuring the combination of electrodes 4 and 5, the in-plane strain distribution can be determined. can.
第4図は、一対のひずみゲージを互に直角に配置してマ
トリックス状に構成した例を示す。この場合は導線2の
ほかに端子11を有する複数の導線10が形成されてお
り、α−81膜よりなる導線1と2の間のひずみゲージ
9と直角に位置してひずみゲージ12が存在する。第5
図は第4図のB−B線で切断した断面図で、第3図と共
通の部分には同一の符号が付されている。導線2.10
が基板7の上に形成され、絶縁膜8を介してp型膜−8
1膜91、ノンドープ膜92,111型a−sj膜93
が形成される。第6図は等両回路で、pin接合から形
成されるブロッキングダイオード61゜62により、各
ひずみゲージ9,12を分離して走査測定することがで
きる。この場合は、ひずみゲージ9.12の抵抗値の比
からひずみ角度の検出も可能である。なお、半導体薄膜
は非晶質に限定されず、結晶質半導体薄膜でもよい。FIG. 4 shows an example in which a pair of strain gauges are arranged at right angles to each other to form a matrix. In this case, in addition to the conductor wire 2, a plurality of conductor wires 10 having terminals 11 are formed, and a strain gauge 12 is located at right angles to the strain gauge 9 between the conductor wires 1 and 2 made of α-81 film. . Fifth
The figure is a cross-sectional view taken along the line B--B in FIG. 4, and parts common to those in FIG. 3 are given the same reference numerals. Conductor 2.10
is formed on the substrate 7, and a p-type film -8 is formed on the substrate 7 through the insulating film 8.
1 film 91, non-doped film 92, 111 type a-sj film 93
is formed. FIG. 6 shows an equal circuit, in which each strain gauge 9, 12 can be separated and scanned for measurement by blocking diodes 61 and 62 formed from pin junctions. In this case, it is also possible to detect the strain angle from the ratio of the resistance values of the strain gauges 9.12. Note that the semiconductor thin film is not limited to amorphous, and may be a crystalline semiconductor thin film.
第7図は本発明によるひずみ分布センサの応用例を示し
、ロボットハンドの腕部13は、手の部分14.15を
支え、さらに手の部分14.15の開閉を行う駆動部分
を有している。手の部分14.15の間にクッション1
6を備えている。ひずみ分布センサ17は手の内側、外
側等必要な個所に貼付される。このロボットハンドが、
例えばコツプを挾んで持ち上げようとするとき、反力に
よって手の部分14.15にひずみが生ずる。このひず
みをセンサ17で読みとり、許容範囲の力をコツプに加
えてコツプが割れないように持ち上げることができる。FIG. 7 shows an application example of the strain distribution sensor according to the present invention, in which the arm portion 13 of the robot hand supports the hand portion 14.15 and further has a driving portion for opening and closing the hand portion 14.15. There is. Cushion 1 between hand parts 14 and 15
It is equipped with 6. The strain distribution sensor 17 is attached to a necessary location such as the inside or outside of the hand. This robot hand
For example, when trying to pick up a cup, the reaction force causes strain in the hand portions 14 and 15. This strain is read by the sensor 17, and a permissible force is applied to the tip to lift the tip without breaking it.
この場合ロボットハンドの手の内の一点でなく、面内の
ひずみを測定することにより、コツプに加わる力を正し
く評価することができる。In this case, by measuring the strain within the plane of the robot hand rather than at a single point within the hand, the force applied to the tip can be accurately evaluated.
(発明の効果)
本発明はマトリックスを構成するひずみゲージをpn接
合を有する積層半導体薄膜により形成したもので、これ
により同時にゲージに直列接続のブロッキングダイオー
ドを内蔵させることができ、走査によって面内のひずみ
分布の測定が可能であ゛・る。しかも半導体薄膜は任意
の形状にパターニングできるので、多数の所定の方向に
配置されたひずみゲージを容易に形成でき、また導線と
の接続も簡単なので、低価格で製作可能である。このよ
うなひずみ分布センサを用いることにより、方向を揃え
たひずみゲージを必要な面に任意の寸法で装着でき、圧
覚などのセンサとして利用できるので、ロボットハンド
の感覚をより人に近づけることなどを可能とする。(Effects of the Invention) In the present invention, the strain gauge constituting the matrix is formed of a laminated semiconductor thin film having a pn junction.This allows the gauge to have a built-in blocking diode connected in series at the same time. It is possible to measure strain distribution. Furthermore, since the semiconductor thin film can be patterned into any shape, it is possible to easily form a large number of strain gauges arranged in a predetermined direction, and since the connection with conductive wires is easy, it can be manufactured at low cost. By using such a strain distribution sensor, strain gauges aligned in the same direction can be mounted on the required surface in any size, and can be used as pressure sensors, etc., making it possible to bring the sensation of a robot hand closer to that of a human. possible.
第1図はひずみ分布センサの図式的平面図、第2図は本
発明の一実施例の図式的平面図、第3図はそのA −A
’線断面図、第4図は別の実施例の図式的平面図、第5
図はそのB−E線断面図、第6図は第5図の等価回路図
、第7図は本発明によるひずみ分布センサの応用例を示
す斜視図である。
’i、2,10:導線、9.12+ひずみゲージ、91
:p耐α−81膜、92:ノンドープα−81膜、93
:n耐α−81膜。
第1 図
θ融嶋
第5図
162
r / ////// ////+ 9□ −γFIG. 1 is a schematic plan view of a strain distribution sensor, FIG. 2 is a schematic plan view of an embodiment of the present invention, and FIG. 3 is a schematic plan view of the strain distribution sensor.
Figure 4 is a schematic plan view of another embodiment; Figure 5 is a line sectional view;
6 is an equivalent circuit diagram of FIG. 5, and FIG. 7 is a perspective view showing an application example of the strain distribution sensor according to the present invention. 'i, 2, 10: Conductor, 9.12 + strain gauge, 91
: p-resistant α-81 film, 92: non-doped α-81 film, 93
: n-resistant α-81 film. Figure 1 θ Yuushima Figure 5 162 r / ////// ////+ 9□ -γ
Claims (1)
に絶縁された二つの導線群のそれぞれの一つの導線の間
に接続されるものにおいて、ひずみケージが基板上に積
層されてpn接合を形成する異なる導電形の半導体層よ
りなり、基板に接する層の一端と基板より最も遠い層の
前記一端と反対側の端とがそれぞれ異なる導線群の導線
に接続されたことを特徴とするひずみ分布センサ。 2、特許請求の範囲第1項記載のセンサにおいて、半導
体層が非晶質シリコンよりなることを特徴とするひずみ
分布センサ。 3)特許請求の範囲第2項記載のセンサにおいて、半導
体層が微結晶化された非晶質シリコンよりなることを特
徴とするひずみ分布センサ。[Claims] 1) Each of the plurality of strain cages is made up of a plurality of conducting wires and is connected between one conducting wire of each of two mutually insulated conducting wire groups, in which the strain cage is mounted on a substrate. Consisting of semiconductor layers of different conductivity types that are stacked to form a pn junction, one end of the layer in contact with the substrate and the end opposite to the one end of the layer furthest from the substrate are respectively connected to conductive wires of different conductive wire groups. A strain distribution sensor featuring: 2. A strain distribution sensor according to claim 1, wherein the semiconductor layer is made of amorphous silicon. 3) A strain distribution sensor according to claim 2, wherein the semiconductor layer is made of microcrystalline amorphous silicon.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5184284A JPS60195403A (en) | 1984-03-16 | 1984-03-16 | Distortion distribution sensor |
US06/712,609 US4658233A (en) | 1984-03-16 | 1985-03-18 | Strain gauge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5184284A JPS60195403A (en) | 1984-03-16 | 1984-03-16 | Distortion distribution sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60195403A true JPS60195403A (en) | 1985-10-03 |
Family
ID=12898104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5184284A Pending JPS60195403A (en) | 1984-03-16 | 1984-03-16 | Distortion distribution sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60195403A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01242901A (en) * | 1988-03-25 | 1989-09-27 | Ishida Scales Mfg Co Ltd | Strain gauge structure for load detection |
WO2019151533A1 (en) * | 2018-02-05 | 2019-08-08 | 国立研究開発法人産業技術総合研究所 | Pressure distribution sensor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS554548A (en) * | 1978-06-26 | 1980-01-14 | Agency Of Ind Science & Technol | Baresthesia sensor |
JPS58139475A (en) * | 1982-02-15 | 1983-08-18 | Anritsu Corp | Strain gauge |
-
1984
- 1984-03-16 JP JP5184284A patent/JPS60195403A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS554548A (en) * | 1978-06-26 | 1980-01-14 | Agency Of Ind Science & Technol | Baresthesia sensor |
JPS58139475A (en) * | 1982-02-15 | 1983-08-18 | Anritsu Corp | Strain gauge |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01242901A (en) * | 1988-03-25 | 1989-09-27 | Ishida Scales Mfg Co Ltd | Strain gauge structure for load detection |
WO2019151533A1 (en) * | 2018-02-05 | 2019-08-08 | 国立研究開発法人産業技術総合研究所 | Pressure distribution sensor |
JP2019135458A (en) * | 2018-02-05 | 2019-08-15 | 国立研究開発法人産業技術総合研究所 | Pressure distribution sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4658233A (en) | Strain gauge | |
US5014224A (en) | Tactile sensor | |
CN109883315A (en) | A double-sided resistive strain sensor and strain measurement method | |
CN106225959A (en) | A kind of fexible film heat flow transducer and preparation method thereof | |
US11972988B2 (en) | Solar cell and photovoltaic module | |
JP2024028323A (en) | Method for measuring electrical properties of test specimen and multilayer test specimen | |
CN109883316A (en) | A resistive strain sensor and strain measurement method | |
CN100494933C (en) | Contact pressure sensor and manufacturing method thereof | |
US4025941A (en) | Hall element | |
JPS60195403A (en) | Distortion distribution sensor | |
US4422063A (en) | Semiconductor strain gauge | |
US3123788A (en) | Piezoresistive gage | |
CN109341909A (en) | A multifunctional flexible stress sensor | |
CN112563405B (en) | Pressure sensor unit, multi-dimensional pressure sensor and method for manufacturing the same | |
CN107490337A (en) | Strain detector and its manufacture method | |
KR102560056B1 (en) | Strain gauge and strain measurement assembly | |
JPS63266325A (en) | Force detector | |
JPH07113664B2 (en) | Superconducting magnetic field distribution measuring device | |
Oe et al. | 10 MΩ quantum Hall array device | |
JPH0564863B2 (en) | ||
CN108592779B (en) | A combined curvature sensor based on piezoelectric film | |
JPH0617837B2 (en) | Distributed pressure sensor | |
RU223725U1 (en) | MOISTURE SENSOR | |
JPH0239104B2 (en) | ||
JP2803796B2 (en) | Load sensor |