JPS60195402A - Strain gauge - Google Patents
Strain gaugeInfo
- Publication number
- JPS60195402A JPS60195402A JP5184184A JP5184184A JPS60195402A JP S60195402 A JPS60195402 A JP S60195402A JP 5184184 A JP5184184 A JP 5184184A JP 5184184 A JP5184184 A JP 5184184A JP S60195402 A JPS60195402 A JP S60195402A
- Authority
- JP
- Japan
- Prior art keywords
- film
- strain
- gauge
- coefficient
- strain gauge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Pressure Sensors (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の属する技術分野)
本発明は、電気抵抗の変化からひずみ量を測定するひず
みゲージに関する。DETAILED DESCRIPTION OF THE INVENTION (Technical field to which the invention pertains) The present invention relates to a strain gauge that measures the amount of strain from changes in electrical resistance.
(従来技術とその問題点)
ひずみゲージとしては従来直径10μrrL程度のニク
ロム線、マンガニン線のような電気抵抗線を紙やフェル
トの上にジグザグ状に屈曲させて貼付した線ゲージ、電
流をより多く流すためにはポリイミド、フエステル、フ
ェノール樹脂からなる高分子膜に厚さ数μmの0u−N
i合金を貼り、これを数十μmの幅でジグザグ状にエツ
チングした箔ゲジがある。これらのひずみゲージのゲー
ジ係数は2〜3であり、感度を上げるには種々複雑な工
夫をする必要があって高価になる。また細線、あるいは
薄箔を接着剤などで貼付することから信頼性にも問題が
ある。このほかに金属の代りに半導体チップを用いたも
のもあり、ゲージ係数は10〜50倍に向上するが、半
導体チップはも5く、細いチップを再現性よく貼付する
のは非常に困難である。さらに、ひずみゲージの抵抗変
化はひずみの方向となす角によって変るため、大面積内
での歪分布を測定するときは多数のゲージを所定の方向
に揃えて設置しなければならず、作業に著しい労力を必
要とする。(Prior art and its problems) Conventional strain gauges are wire gauges in which electrical resistance wires such as nichrome wires and manganin wires with a diameter of about 10 μrrL are bent and pasted in a zigzag pattern on paper or felt. In order to flow, 0u-N with a thickness of several μm is coated on a polymer film made of polyimide, phester, and phenol resin.
There is a foil gauge in which i-alloy is pasted and etched in a zigzag pattern with a width of several tens of micrometers. The gauge coefficient of these strain gauges is 2 to 3, and in order to increase the sensitivity various complicated measures must be taken, which makes them expensive. There is also a problem with reliability because thin wires or thin foil are attached using adhesive. In addition, there are products that use semiconductor chips instead of metal, and the gauge factor is improved by 10 to 50 times, but there are only 5 semiconductor chips, and it is extremely difficult to attach thin chips with good reproducibility. . Furthermore, since the resistance change of a strain gauge changes depending on the direction of strain and the angle it makes, when measuring strain distribution within a large area, it is necessary to install a large number of gauges aligned in a predetermined direction. Requires effort.
(発明の目的)
本発明は上述の従来のひずみゲージの欠点を除去し、ゲ
ージ係数が大きく、シかも製作が容易でさらに多数の単
体を方向娑揃えて大面積基板上に形成することもできる
ひずみゲージを提供することを目的とする。(Objective of the Invention) The present invention eliminates the drawbacks of the conventional strain gauges described above, has a large gauge coefficient, is easy to manufacture, and can be formed on a large-area substrate by aligning a large number of strain gauges. The purpose is to provide strain gauges.
(発明の要点)
本発明によるひずみゲージは、可とう性基板上に形成さ
れた非晶質半導体膜よりなることによって上記の目的を
達するもので、非晶質半導体としては気相成長法により
生成された非晶質シリコン(以下α−81と記す)、特
に微結晶化S1膜を用いることが有効である。(Summary of the Invention) The strain gauge according to the present invention achieves the above object by being composed of an amorphous semiconductor film formed on a flexible substrate. It is effective to use amorphous silicon (hereinafter referred to as α-81), particularly a microcrystalline S1 film.
(発明の実施例)
第1図(α)、(A)は本発明の一実施例を示し、ポリ
イミドなどからなり、厚さ40〜120μ搗ノ高分子膜
基板1の上にNi、 Or、ステンレス鋼。(Embodiment of the Invention) FIGS. 1(α) and (A) show an embodiment of the present invention, in which Ni, Or, stainless steel.
T1あるいはNi−0r、 Ml−Or−Au、 Ti
−Al−0u。T1 or Ni-0r, Ml-Or-Au, Ti
-Al-0u.
TI−p、1−N1の積層などからなる金属電極2を電
子ビーム蒸着あるいはスパッタリング蒸着により、例え
ば1 m sの間隔を置いて形成する。このような電極
パターンは蒸着時に高分子膜1の上に金属マスクを置く
か、あるいは全面蒸着後光蝕刻法により形成できる。次
にグロー放電分解法によってα−81膜3が線状、例え
ば0.1 rrbm XI Bmの寸法に形成される。Metal electrodes 2 made of a laminated layer of TI-p, 1-N1, etc. are formed by electron beam evaporation or sputtering evaporation at intervals of, for example, 1 ms. Such an electrode pattern can be formed by placing a metal mask on the polymer film 1 during vapor deposition, or by photolithography after full-surface vapor deposition. Next, the α-81 film 3 is formed in a linear shape, for example, with dimensions of 0.1 rrbm XI Bm, by a glow discharge decomposition method.
α−81膜は水素により10〜30倍に希釈されたシラ
ンガスを用いて、l〜1OTorrの真空中で高周波電
界を加える公知の方法で生成される。α−81膜3をp
型にする場合はジボランガス、n型にする場合はフォス
フインガスをシランガスに添加する。基板温度は150
〜3000に保持されるのがよい。高周波の電力をあげ
ていくと、150〜20OAの大きさの微結晶粒が膜の
中に成長して微結晶化膜が形成される。微結晶化されな
いp型。The α-81 film is produced by a known method using silane gas diluted 10 to 30 times with hydrogen and applying a high frequency electric field in a vacuum of 1 to 1 O Torr. α-81 membrane 3 p
Diborane gas is added to the silane gas to form a mold, and phosphine gas is added to the silane gas to form an n-type. The substrate temperature is 150
It is preferable to keep it at ~3000. As the high frequency power is increased, microcrystalline grains with a size of 150 to 20 OA grow into the film, forming a microcrystalline film. P-type that is not microcrystallized.
3
n型α−81の場合は電気伝導度が10〜10(ΩC痛
)であるが、微結晶化膜の場合は1〜10(ΩCm−)
となる。従って200OAの厚さの微結晶化膜により5
00 kΩの抵抗を得る。シランガス(stHa)の代
りに81F、ガスを用いた場合、水素で約10倍に希釈
することによって伝導度の高い膜が得られるが、この膜
も微結晶構造を有する。3 In the case of n-type α-81, the electrical conductivity is 10 to 10 (ΩCm), but in the case of microcrystalline film, it is 1 to 10 (ΩCm-)
becomes. Therefore, by using a microcrystalline film with a thickness of 200 OA,
Obtain a resistance of 00 kΩ. When 81F gas is used instead of silane gas (stHa), a highly conductive film can be obtained by diluting it approximately 10 times with hydrogen, but this film also has a microcrystalline structure.
α−51113の保護のため、工lキシ、フェノール系
塗料を印刷などの方法でパターン状に塗布し、10μ痛
程度の厚さの遮光性の保護膜4により被覆する。第2図
は別の実施例で、ステンレス鋼などの金属薄板5を用い
、その上にポリイミドなどの絶縁樹脂層6を塗布して基
板としたものである。In order to protect α-51113, a phenolic paint or phenolic paint is applied in a pattern by a method such as printing, and a light-shielding protective film 4 having a thickness of about 10 μm is coated. FIG. 2 shows another embodiment in which a thin metal plate 5 made of stainless steel or the like is used and an insulating resin layer 6 made of polyimide or the like is applied thereon to form a substrate.
これらのひずみゲージは、基板1もしくは5を被測定物
の上に接着剤で貼付して用いる。These strain gauges are used by pasting the substrate 1 or 5 onto the object to be measured with an adhesive.
この薄膜ひずみゲージの特性を第3図(α)〜(C)に
示す。図(α)、(A)はひずみεと抵抗の変化率△R
/Hの関係を示したものである。図(α)はp型S1薄
膜、図(b)はn型S1薄膜の場合で、△R/Rは君に
比例して変化しているが、ゲージ係数をあられすその傾
きはゲージの長さ方向とひずみの方向との間の角度θに
よって異なった値を示している。線31はθ=0 、す
なわちひずみの方向にゲージを配置した場合、線32は
θ=90°、すなわちひずみに対して横方向にゲージを
配置した場合であり、線33はθ=45°の場合である
。第3図(C)にゲージ係数のひずみとなす角度依存を
示し、線34がp型、線35がp型である。The characteristics of this thin film strain gauge are shown in FIGS. 3(α) to (C). Figures (α) and (A) show strain ε and resistance change rate △R
/H relationship. Figure (α) is for a p-type S1 thin film, and Figure (b) is for an n-type S1 thin film, and △R/R changes in proportion to the gauge coefficient. Different values are shown depending on the angle θ between the horizontal direction and the strain direction. Line 31 is for θ = 0, that is, when the gauge is placed in the direction of strain, line 32 is for θ = 90°, that is, when the gauge is placed transverse to the strain, and line 33 is for θ = 45°. This is the case. FIG. 3(C) shows the angular dependence of the gauge coefficient on strain, where the line 34 is the p-type and the line 35 is the p-type.
第4図はひずみゲージの他の実施例の平面図である。こ
の場合は高分子膜の基板1の上に三つの金属電極2が形
成され、互に直角になるようにp型機結晶化α−81膜
7,8が設けられている。α−8i膜7,8の幅、長さ
は同じである。その上を覆う保護膜4は光の遮蔽も行っ
ている。今、α−81膜7の抵抗をR1、α−81膜の
抵抗をR8とし、α−81膜7の長さ方向からみてθの
角度をなすひずみεが加わったとすると、
R,:R,。・k(T)f1+α(θ)ε)R,=R&
0−k(T) (1+α(9♂−θ)ε1と書くことが
できる。ただし、RTo r R80は基準温度におけ
る無ひずみのα−81膜7,8の値、k(T)はその値
の温度特性を示す係数である。R7/R@をめると、
を得る。ただし△R,= R7゜・k(T)α(θε)
、△R,=R++o−k (T)α(90−θ)eであ
る。この結果温度依存性がなくなる量を得る。R10/
R20はひずみのない場合基準温度で測定しておけば、
これは温度依存性のない量であるから温度による誤差を
心配する必要がない。またひずみゲージの抵抗部の大き
さ、形状をほぼ同じにすれば、R70/ R8゜は約1
となる。第5図にp型α−81膜におけるα(θ)−α
(90−θ)の値の角度依存性を示す。第3図(c)と
比較して感度が増幅されていることが判かる。FIG. 4 is a plan view of another embodiment of the strain gauge. In this case, three metal electrodes 2 are formed on a polymer film substrate 1, and p-type machine crystallized α-81 films 7 and 8 are provided at right angles to each other. The width and length of the α-8i films 7 and 8 are the same. The protective film 4 covering it also shields light. Now, assuming that the resistance of the α-81 film 7 is R1, the resistance of the α-81 film is R8, and a strain ε forming an angle θ when viewed from the length direction of the α-81 film 7 is applied, R, :R, .・k(T)f1+α(θ)ε)R,=R&
It can be written as 0-k(T) (1+α(9♂-θ)ε1. However, RTor R80 is the value of the unstrained α-81 films 7 and 8 at the reference temperature, and k(T) is the value. It is a coefficient that indicates the temperature characteristics of
, ΔR,=R++ok (T)α(90−θ)e. As a result, a quantity with no temperature dependence is obtained. R10/
If R20 is measured at the reference temperature when there is no strain,
Since this is a quantity that has no temperature dependence, there is no need to worry about errors due to temperature. Also, if the size and shape of the resistance part of the strain gauge are almost the same, R70/R8° will be approximately 1
becomes. Figure 5 shows α(θ)-α in the p-type α-81 film.
The angle dependence of the value of (90-θ) is shown. It can be seen that the sensitivity is amplified compared to FIG. 3(c).
これにより、ひずみ量およびひずみ方向の検出が可能と
なる。第4図に示すα−81膜7.8のパターニングは
、光蝕刻法により行われるので、正確に形成することは
容易であり、ひずみ測定の精度が向上する。(L−8i
膜7,8は必ずしも直角に形成する必要がないことはい
うまでもないが、データノ解析、計算がやや複雑になる
。This makes it possible to detect the amount of strain and the direction of strain. Since the patterning of the α-81 film 7.8 shown in FIG. 4 is performed by photoetching, it is easy to form it accurately and the accuracy of strain measurement is improved. (L-8i
It goes without saying that the films 7 and 8 do not necessarily need to be formed at right angles, but data analysis and calculations become somewhat complicated.
第6図に示す実施例では、二つの小さい金属電極2と一
つの大きい金属電極21が設けられ、二つの微結晶化α
−81膜9,10が平行に形成されている。膜9はp型
α−81膜、膜10はn型α−81膜である。この場合
、膜9の抵抗を馬、膜−110の、抵抗をRloとする
と、第4図におけると同様にを得る。R90+ ”to
o は膜9,10のある温度でひずみεの加わらない場
合の抵抗である。この量を測定することにより温度依存
性をなくすことができる。In the embodiment shown in FIG. 6, two small metal electrodes 2 and one large metal electrode 21 are provided, and two microcrystallized α
-81 films 9 and 10 are formed in parallel. The film 9 is a p-type α-81 film, and the film 10 is an n-type α-81 film. In this case, assuming that the resistance of the membrane 9 is H and the resistance of the membrane 110 is Rlo, the same as in FIG. 4 is obtained. R90+”to
o is the resistance of the membranes 9 and 10 at a certain temperature when no strain ε is applied. By measuring this amount, temperature dependence can be eliminated.
第7図にαp(θ)−αn(θ)と角度θの関係を示す
。FIG. 7 shows the relationship between αp(θ)-αn(θ) and angle θ.
第8図に示す実施例においては、四つの金属電極2が設
けられ、それらにまたがって正方形の各辺をなすα−8
1膜11.12.13.14 および対角線をなすα−
81薄膜15が形成されている。膜11゜12.13.
14は必ずしも正方形を形成する必要はないが、膜11
,13、膜12.14のそれぞれが平行であることが望
ましい。図示しないが遮光性の保護膜が他の実施例と同
様に被覆している。第9図はこのひずみゲージの動作を
説明する回路図で、電源16から各薄膜抵抗に電流を流
す電圧を与える。薄膜11.12,13,14.15の
抵抗をそれぞれ”l + R2l R3+ R4r R
5とすると、薄膜15の両端にあられれる電圧■は、電
源16の出力電圧をEと分子、分母の双方共それらのう
ちの三つの積であるので■には温度の変動による誤差は
生じない。In the embodiment shown in FIG. 8, four metal electrodes 2 are provided, and the α-8
1 film 11.12.13.14 and the diagonal α-
81 thin film 15 is formed. Membrane 11゜12.13.
14 does not necessarily have to form a square, but the membrane 11
, 13 and membranes 12, 14 are preferably parallel. Although not shown, a light-shielding protective film is coated as in the other embodiments. FIG. 9 is a circuit diagram explaining the operation of this strain gauge, in which a voltage is applied from a power source 16 to cause a current to flow through each thin film resistor. The resistances of thin films 11, 12, 13, and 14.15 are respectively "l + R2l R3+ R4r R
5, the voltage (■) that appears across the thin film 15 is the product of the output voltage of the power supply 16 (E) and three of these for both the numerator and denominator, so there is no error in ■ due to temperature fluctuations. .
Rlo l ”201 Rso 1 R40t−R+
+ Rt + Rs l R4の基準温度における無ひ
ずみの時の値とすると、膜1,3と膜2゜4が直角をな
す場合、
R,=R,o(l+α(θ)εj
R3二R30f1+α(θ)ε」
Ftt=F’to (l+α(9011−〇)ε)R,
=R4(、(l+α(90″−〇)ε)となる。ここで
RIR3R2R4: Rlo R3(1(1+ 2α(
θ)ε)−R20R40(1+ 2α(90°−〇)ε
JとなりR7゜R8゜” R2OR40となるように形
成すればR+ Rs Rt R4= 2 Rho Rs
o (α(θ)−α(90’−〇))ε(ol
となるので、”In2 ”In4 はひずみεに比例す
る項となり、電圧Vの測定によって温度の変動に左右さ
れず、精度よくひずみを測定することができる。R8な
いしR3のびずみによる変動は最大でも10分の数%な
ので、分母の各項および分子のR5のそれによる誤差は
問題にならない。電圧■は、増幅器17によって増幅お
よびひずみ値への換算があわせ行われる。Rlo l”201 Rso 1 R40t-R+
+ Rt + Rs l Assuming the value of R4 without strain at the reference temperature, when membranes 1 and 3 and membrane 2゜4 form a right angle, R, = R, o (l + α (θ) εj R32R30f1 + α ( θ)ε” Ftt=F'to (l+α(9011-〇)ε)R,
= R4(, (l+α(90″-〇)ε).Here, RIR3R2R4: Rlo R3(1(1+2α(
θ)ε)−R20R40(1+2α(90°−〇)ε
J and R7゜R8゜" If formed to become R2OR40, R+ Rs Rt R4 = 2 Rho Rs
o (α(θ)-α(90'-〇))ε(ol), so "In2" and "In4" are terms proportional to the strain ε, and the measurement of the voltage V is independent of temperature fluctuations and can be performed with high precision. Strain can be measured.The variation due to distortion in R8 to R3 is at most a few tenths of a percent, so the errors caused by each term in the denominator and R5 in the numerator are not a problem.The voltage ■ is amplified by the amplifier 17. and conversion to strain values is also performed.
抵抗薄膜11と13.12と14は互に平行であるので
、それぞれがひずみに関して同じ変化率で変化する。従
って、電圧Vは変化率の差の形でひずみを増幅した値と
なり、微小ひずみの高精度測定に便利である。薄膜11
,12.13.14 はp型α−81またはn型α−8
1ですべて構成しても、薄膜11と13.12と14を
それぞれ異なった導電形のα−81で構成してもよい。Since the resistive thin films 11 and 13, 12 and 14 are parallel to each other, each changes with the same rate of change in strain. Therefore, the voltage V is a value obtained by amplifying the strain in the form of a difference in rate of change, which is convenient for highly accurate measurement of minute strain. Thin film 11
, 12.13.14 is p-type α-81 or n-type α-8
1, or the thin films 11, 13, 12, and 14 may be made of α-81 of different conductivity types.
(発明の効果)
本発明は、低温気相成長により高分子膜からなる可とう
性基板の上にも形成できるα−EN薄膜ないし微結晶粒
化α−811膜のような非晶質半導体(10)
薄膜からひずみゲージを構成することにより、金属ひず
みゲージの数十倍のゲージ係数を有する高感度のひずみ
ゲージを得ることができる。しかも光蝕刻法を用いた任
意の形状のゲージ抵抗が容易に形成でき、低価格で信頼
°性も非常に高い。また広面積の面内のひずみ分布測定
用に多数のひずみゲージを方向を一致させて配置するマ
トリックスの製作も非常に容易になるなど得られる効果
は極めて大きい。(Effects of the Invention) The present invention provides an amorphous semiconductor film such as an α-EN thin film or a microcrystalline α-811 film that can be formed even on a flexible substrate made of a polymer film by low-temperature vapor phase growth. 10) By constructing a strain gauge from a thin film, a highly sensitive strain gauge having a gauge factor several tens of times higher than that of a metal strain gauge can be obtained. Moreover, a gauge resistor of any shape can be easily formed using a photoetching method, and the cost is low and the reliability is very high. In addition, it has become extremely easy to manufacture a matrix in which a large number of strain gauges are arranged in the same direction for measuring strain distribution in a wide area.
第1図は本発明の一実施例で、図(α)は平面図、図(
b)は図(α)のA−A線断面図、第2図は別の実施例
の第1図(cL)に対応する断面図、第3図は第1.第
2図の実施例の特性を示し、図(α)はp型α−81の
場合の抵抗変化率とひずみ図はその特性の角度依存線図
、第6図はさらに異なる実施例の平面図、第7図はその
特性の角度依存線図、第8図はなお別の実施例の平面図
、第9図はその測定回路図である。
1:高分子膜基板、2.21 :金属電極、5:金属薄
板、6:高分子膜、3. ’7.8.9.10.11゜
12、13.14.15 :α−81薄膜。
、−01X8/8
→θ
第5図
第7M
13
第8図
第9図
=11−Figure 1 shows one embodiment of the present invention, where figure (α) is a plan view and figure (α) is a plan view.
b) is a sectional view taken along the line A-A in figure (α), FIG. 2 is a sectional view corresponding to FIG. 1 (cL) of another embodiment, and FIG. 3 is a sectional view corresponding to FIG. Figure 2 shows the characteristics of the embodiment, Figure (α) shows the resistance change rate and strain diagram for the p-type α-81, which is an angle dependence diagram of the characteristics, and Figure 6 is a plan view of a further different embodiment. , FIG. 7 is an angular dependence diagram of its characteristics, FIG. 8 is a plan view of yet another embodiment, and FIG. 9 is its measurement circuit diagram. 1: Polymer film substrate, 2.21: Metal electrode, 5: Metal thin plate, 6: Polymer film, 3. '7.8.9.10.11゜12, 13.14.15: α-81 thin film. , -01X8/8 →θ Fig. 5 Fig. 7M 13 Fig. 8 Fig. 9 = 11-
Claims (1)
ることを特徴とするひずみゲージ。 2、特許請求の範囲第1項記載のゲージにおいて、非晶
質半導体が非晶質シリコンであることを特徴とするひず
みゲージ。 3)特許請求の範囲第2項記載のゲージにおいて、非晶
質シリコンが微細粒化非晶質シリコンであることを特徴
とするひずみゲージ。 4)特許請求の範囲第1項ないし第3項のいずれかに記
載のゲージにおいて、非晶質半導体膜が同一基板上に平
行に配置されたp型半導体膜およびn型半導体膜である
ことを特徴とするひずみゲージ。[Claims] l) A strain gauge comprising an amorphous semiconductor film formed on a flexible substrate. 2. The strain gauge according to claim 1, wherein the amorphous semiconductor is amorphous silicon. 3) The strain gauge according to claim 2, wherein the amorphous silicon is fine-grained amorphous silicon. 4) In the gauge according to any one of claims 1 to 3, it is provided that the amorphous semiconductor film is a p-type semiconductor film and an n-type semiconductor film arranged in parallel on the same substrate. Characteristic strain gauge.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5184184A JPS60195402A (en) | 1984-03-16 | 1984-03-16 | Strain gauge |
US06/712,609 US4658233A (en) | 1984-03-16 | 1985-03-18 | Strain gauge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5184184A JPS60195402A (en) | 1984-03-16 | 1984-03-16 | Strain gauge |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60195402A true JPS60195402A (en) | 1985-10-03 |
Family
ID=12898078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5184184A Pending JPS60195402A (en) | 1984-03-16 | 1984-03-16 | Strain gauge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60195402A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6251765U (en) * | 1985-09-18 | 1987-03-31 | ||
JPS63245962A (en) * | 1987-03-31 | 1988-10-13 | Kanegafuchi Chem Ind Co Ltd | Strain sensor |
WO1989012912A1 (en) * | 1988-06-15 | 1989-12-28 | Kabushiki Kaisha Komatsu Seisakusho | Stress conversion device and its production method |
US4937550A (en) * | 1987-03-31 | 1990-06-26 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Strain sensor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58139475A (en) * | 1982-02-15 | 1983-08-18 | Anritsu Corp | Strain gauge |
-
1984
- 1984-03-16 JP JP5184184A patent/JPS60195402A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58139475A (en) * | 1982-02-15 | 1983-08-18 | Anritsu Corp | Strain gauge |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6251765U (en) * | 1985-09-18 | 1987-03-31 | ||
JPS63245962A (en) * | 1987-03-31 | 1988-10-13 | Kanegafuchi Chem Ind Co Ltd | Strain sensor |
US4937550A (en) * | 1987-03-31 | 1990-06-26 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Strain sensor |
WO1992005585A1 (en) * | 1987-03-31 | 1992-04-02 | Yoshihisa Tawada | Distortion sensor |
WO1989012912A1 (en) * | 1988-06-15 | 1989-12-28 | Kabushiki Kaisha Komatsu Seisakusho | Stress conversion device and its production method |
EP0372092A1 (en) * | 1988-06-15 | 1990-06-13 | Kabushiki Kaisha Komatsu Seisakusho | Stress conversion device and its production method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4331035A (en) | Geometric balance adjustment of thin film strain gage sensors | |
US4658233A (en) | Strain gauge | |
JP3058417B1 (en) | Electric resistance sensor for measuring corrosion rate, method of manufacturing the same, and method of measuring corrosion rate using the same | |
KR840002283B1 (en) | Silicone pressure transducer | |
US4299130A (en) | Thin film strain gage apparatus with unstrained temperature compensation resistances | |
US5167158A (en) | Semiconductor film pressure sensor and method of manufacturing same | |
US6470742B1 (en) | Flow sensor | |
WO1989003517A1 (en) | Heat flux gauge | |
CN114414123B (en) | Strain sensor chip on special-shaped metal substrate and in-situ preparation method thereof | |
JP3367230B2 (en) | Position detection device | |
KR20090081195A (en) | Pressure measuring sensor equipped with a metal pressure diaphragm and manufacturing method of the pressure measuring sensor | |
JPS60195402A (en) | Strain gauge | |
EP0407587A1 (en) | Pressure sensor | |
JPH06130088A (en) | Current sensor | |
JPS6410109B2 (en) | ||
EP0602606B1 (en) | Method of manufacturing strain sensors | |
JPS5842941A (en) | Load cell | |
JPS62185102A (en) | Strain gage with thin discontinuous metallic layer | |
CN211178305U (en) | Thin film strain gauge for elastomer strain measurement | |
WO2014091932A1 (en) | Airflow sensor | |
JP3500924B2 (en) | Manufacturing method of semiconductor sensor | |
GB2174241A (en) | Transducer devices | |
US3621435A (en) | Transducer beam with back-to-back related deposited film type strain gages | |
JPH0617837B2 (en) | Distributed pressure sensor | |
JP2712206B2 (en) | Current detector |