[go: up one dir, main page]

JPS60195386A - Shape memory actuator - Google Patents

Shape memory actuator

Info

Publication number
JPS60195386A
JPS60195386A JP59050434A JP5043484A JPS60195386A JP S60195386 A JPS60195386 A JP S60195386A JP 59050434 A JP59050434 A JP 59050434A JP 5043484 A JP5043484 A JP 5043484A JP S60195386 A JPS60195386 A JP S60195386A
Authority
JP
Japan
Prior art keywords
shape memory
layer
alloy
memory alloy
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59050434A
Other languages
Japanese (ja)
Inventor
Kiyoshi Nagatani
永谷 清志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59050434A priority Critical patent/JPS60195386A/en
Publication of JPS60195386A publication Critical patent/JPS60195386A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0614Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using shape memory elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/066Actuator control or monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To eliminate the need for using current adjusting means and simplify construction by forming a layer of electricity insulating body on the surface of a shape memory alloy, and forming a layer of heating resistor on the surface of said electricity insulating body layer, and enabling a resiting value to be maintained constant even when said allow is displaced. CONSTITUTION:As a means of applying heat, a layer of heating resistor 4 is formed through a layer of electricity insulating body 3, on one side surface of a board like shape memory alloy 2. This heating resistor layer 4 is formed with a thin film resistor and is constructed to be bent with respect to the mechanical displacement of the shape memory actuator 1. Even if the shape memory alloy 2 is subjected to plastic deformation by applying external force through a loading spring 5 on the end of the alloy 2 at normal temperatures, it will be restored again to its initial linear state by electrifying and controlling the layer of heating resistor 4 formed on the surface of the alloy 2 by a heating and controlling means 6 containing electric source of heater. Due to this construction, even if the shape memory alloy 2 is displaced accompanying the restoration of its shape, the resistance value for determining the generation of heat for the alloy 2 is constantly maintained, enabling a currnt adjusting means to be eliminated, to simplify construction.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 不発明は形状記憶アクチュエータに関する。[Detailed description of the invention] [Technical field to which the invention pertains] The invention relates to shape memory actuators.

〔技術環境〕[Technological environment]

近年、形状記憶合金の形状記憶効果による熱−力学的エ
ネルギー変換機能を利用した機器の開発が注目されてい
る。
In recent years, the development of devices that utilize the thermo-mechanical energy conversion function due to the shape memory effect of shape memory alloys has been attracting attention.

形状記憶合金として各種の形式のものが知られているが
、代表的なものとして一方同形状記憶合金がある。この
一方向形状記憶合金の形状記憶効果は高温相で記憶した
形状を常温で変化させても、加熱することによシ元の高
温相での形状に戻る現象として知られている。
Various types of shape memory alloys are known, and a typical shape memory alloy is one. The shape memory effect of this unidirectional shape memory alloy is known as a phenomenon in which even if the shape memorized in the high temperature phase is changed at room temperature, the shape returns to the original shape in the high temperature phase upon heating.

〔従来技術〕[Prior art]

従来の形状記憶アクチュエータは形状記憶した形状記憶
合金単体で構成されていた。このような従来の形状記憶
アクチュータは加熱手段とに間接的に加熱する間接駆動
方式のものとを接加熱する直接駆動方式のものとがある
Conventional shape memory actuators are composed of a single shape memory alloy that has shape memory. Such conventional shape memory actuators include those of an indirect drive type in which the actuator is heated indirectly with a heating means, and those of a direct drive type in which the actuator is heated in contact with the heating means.

間接駆動方式による従来の形状記憶アクチュエータは形
状記憶した合金そのものを形状記憶設定温度以上のいわ
ゆる熱雰囲気にさらして元の形状に復帰させる形式であ
る。
A conventional shape-memory actuator using an indirect drive method is a type in which the shape-memory alloy itself is exposed to a so-called thermal atmosphere at a temperature higher than the shape-memory setting temperature to return to its original shape.

それゆえ、この種の形状記憶アクチュエータは形状復帰
に必要な熱を間接的に受ける形式のため。
Therefore, this type of shape memory actuator receives the heat required for shape recovery indirectly.

熱り受熱効率が悪いという欠点があった。′f、た、こ
の種の形状記憶アクチュエータは直接駆動制御ができな
いという欠点があり、その応用が駆足された・ 直接駆動方式による従来の形状記憶アクチーエータは前
述した欠点を除去するもので形状記憶した合金KT[接
通電して合金を加熱してM接駆動するものである。すな
わち形状記憶合金が合金固有の電気抵抗を有しているの
で直接通電して電流を流すことにより、形状記憶合金に
熱−力学的エネルギー変換をおこさせ、アクチュエータ
として利用するものである。この形式の形状記憶アクチ
ーエータの形状記憶合金の形状回復力が加熱@A度。
The drawback was that the heat receiving efficiency was poor. 'f, This type of shape memory actuator has the disadvantage that direct drive control is not possible, and its application has been encouraged. Conventional shape memory actuators using a direct drive method eliminate the above-mentioned disadvantages, and shape memory Alloy KT [The alloy is electrically connected to heat the alloy and driven in M contact.] That is, since the shape memory alloy has an electric resistance specific to the alloy, by directly applying current to cause a thermo-mechanical energy conversion in the shape memory alloy, it is used as an actuator. The shape recovery power of the shape memory alloy of this type of shape memory actuator is heated @A degree.

加熱速度に依存して変化することから、形状記憶合金全
通電加熱制御して所足り変位を設定する形状記憶アクチ
ュエータが知られているが、前述した従来の形状記憶ア
クチュエータは駆動制御部が形状記憶合金そのものであ
るため、形状記憶合金の形状回復にともなう変形により
、形状記憶合金の物性値である抵抗値が変化し、アクチ
ュエータに利用してきめこまかい位置の制御をする場合
、変位にともなう形状記憶合金の抵抗値の変化を検知し
形状記憶合金に通!する電流値を調節する手段を必要と
するという欠点があった。
Since the change depends on the heating rate, shape memory actuators are known in which the sufficient displacement is set by fully energized heating control of the shape memory alloy.However, in the conventional shape memory actuator mentioned above, the drive control section uses shape memory. Since it is an alloy itself, the resistance value, which is a physical property of the shape memory alloy, changes due to the deformation that occurs when the shape memory alloy recovers its shape. Detects changes in the resistance value of the shape memory alloy! This method has the drawback of requiring means for adjusting the current value.

〔発明の目的〕[Purpose of the invention]

不発明の目的は形状記憶合金の表面に電気絶縁体層を形
成し、かつ前記電気絶縁体層の表面に抵抗発熱体層を形
成することにより、形状記憶合金が形状回復にともなっ
て変位しても、形状記憶合金の発熱を決足する抵抗値が
一足値で、形状記憶合金の抵抗値の変化全検知し形状記
憶合金に通電する電流値を調節する手段を省略して、構
成を簡素化できる形状記憶アクチーエータを提供するこ
とにある。
The object of the invention is to form an electrical insulator layer on the surface of a shape memory alloy, and to form a resistance heating layer on the surface of the electrical insulator layer, so that the shape memory alloy is displaced as it recovers its shape. Also, the resistance value that determines the heat generation of the shape memory alloy is a single value, and the configuration is simplified by omitting the means to detect all changes in the resistance value of the shape memory alloy and adjust the current value passed through the shape memory alloy. The purpose of the present invention is to provide a shape memory actuator that can

〔発明の構成〕[Structure of the invention]

不発明の形状記憶アクチュエータは、形状記憶合金と、
前記形状記憶合金の表面に形成された電気絶縁体層と、
前記電気馳縁体の表面に形成された抵抗発熱体層とを含
んで構成される。
The uninvented shape memory actuator includes a shape memory alloy,
an electrical insulator layer formed on the surface of the shape memory alloy;
and a resistance heating element layer formed on the surface of the electric chimney body.

〔実施例の説明〕[Explanation of Examples]

次に、不発明の実施例について、図面を参照して詳細に
説明する。
Next, embodiments of the invention will be described in detail with reference to the drawings.

纂1図は不発明の第1の実施例を下す断面図である。Figure 1 is a cross-sectional view of the first embodiment of the present invention.

第1図に示す形状記憶アクチュエータは板状の形状記憶
合金2の片側表面に熱印加手段として電気絶縁体層3を
介して抵抗発熱体層4を形成した抵抗発熱体1曽4は形
状記憶合金2の形状に応じてその表面の一部あるいは全
面に形成される。
The shape memory actuator shown in FIG. 1 is a resistance heating element 1 in which a resistance heating element layer 4 is formed on one surface of a plate-shaped shape memory alloy 2 through an electric insulator layer 3 as a means for applying heat. Depending on the shape of 2, it is formed on a part of the surface or the entire surface.

なお、形状記憶合金2の形状は板状に限らず、アクチュ
エータの使用目的に応じて棒状、パイプ状等の種々の形
状が用いられる。形状記憶合金2の組成として各種のも
のがあるが、具体的には一例とし−rq゛t−N+合金
やeu−Zn−A1合金を初めとするCu基合金等を用
いると良い。
Note that the shape of the shape memory alloy 2 is not limited to a plate shape, and various shapes such as a rod shape and a pipe shape can be used depending on the intended use of the actuator. There are various compositions of the shape memory alloy 2, and specifically, as an example, Cu-based alloys such as -rqt-N+ alloy and eu-Zn-A1 alloy may be used.

電気絶縁体層3の表面に形成する抵抗発熱体層4は薄膜
抵抗体を用いて形成して形状記憶アクチーエータの機械
的な変位に対して屈曲するように形成している。形状記
憶合金2の表面に形成する↑h゛気絶縁体層3と抵抗発
熱体層4は形状記憶合金2にマルテンサイト変態を起こ
して形状を記憶する前に形成しても、形状を記憶設定し
た後に形成してもよい。抵抗発熱体層4の抵抗値は任意
に設定することができる。
The resistance heating element layer 4 formed on the surface of the electric insulator layer 3 is formed using a thin film resistor so as to be bent in response to mechanical displacement of the shape memory actuator. Even if the gas insulating layer 3 and the resistance heating layer 4 formed on the surface of the shape memory alloy 2 are formed before the shape memory alloy 2 undergoes martensitic transformation and memorizes the shape, the shape is memorized and set. It may be formed after The resistance value of the resistance heating element layer 4 can be set arbitrarily.

・第2図は不発明の第2の実施例を示す断面図である。- FIG. 2 is a sectional view showing a second embodiment of the invention.

第2図に示す形状記憶アクチュエータは板状の形状記憶
合金2の表裏両面に電気絶縁体層3を介して抵抗発熱体
層4を形成したもので、詳細な説明は第1図の実施例に
関連した説明と基本的に同じなので省略する。
The shape memory actuator shown in FIG. 2 has a resistance heating layer 4 formed on both the front and back surfaces of a plate-shaped shape memory alloy 2 via an electrical insulating layer 3.Detailed explanation can be found in the embodiment shown in FIG. Since this is basically the same as the related explanation, it will be omitted.

次に、第1図および第2図に示す形状記憶アクチュエー
タの基本動作について詳細に説明する。
Next, the basic operation of the shape memory actuator shown in FIGS. 1 and 2 will be explained in detail.

第3図fat、 (blは直線状の形状、を記憶設定し
た第1図に示す形状記憶アクチュエータを片持ち梁の形
式で支持した後、常温で形状記憶合金2の先端に負荷バ
ネ5によって外力をかけ塑性変形させても、形状記憶合
金2の表面に形成した抵抗発熱体層4に加熱電源を含む
加熱制御手段6で通電制御することによ)再び初期の直
線状の形状に戻る形状記憶アクチーエータの基本動作を
説明するための動作状態図である。
After supporting the shape memory actuator shown in FIG. 1 in the form of a cantilever in which the shape memory actuator shown in FIG. Even if the shape memory alloy 2 is subjected to plastic deformation, the resistance heating layer 4 formed on the surface of the shape memory alloy 2 is energized by the heating control means 6 including a heating power source, so that the shape memory returns to its initial linear shape. FIG. 3 is an operation state diagram for explaining the basic operation of the actuator.

第3図falに示すように直線状の形状記憶アクチーエ
ータを片持ち染の形式で支持し、常温で先端部に負荷バ
ネ5によって外力をかけ、塑性変形させる。負荷バネ5
は染の長さ方向Aに水平に移動できるように案内機II
IJ7に接続されている。この状態では加熱制御手段6
は形状記憶合金2の表面〆 罠形成した抵抗発熱体層4に通電しない。
As shown in FIG. 3, a linear shape memory actuator is supported in a cantilevered manner, and an external force is applied to the tip by a load spring 5 at room temperature to cause plastic deformation. Load spring 5
guide machine II so that it can move horizontally in the length direction A of dyeing.
Connected to IJ7. In this state, the heating control means 6
In this case, no current is applied to the resistance heating element layer 4 formed by trapping the surface of the shape memory alloy 2.

さてこのように人為的に塑性変形させた形状記憶アクチ
ュエータに第3図(b)に示すように抵抗発熱体層4に
加熱電源金倉せ、加熱制御手段6で通電制御すると形状
記憶アクチーエータは@3図(b)に示した高温相での
形状、すなわち直線の形状に回復する。抵抗発熱体層4
0設足抵抗値1kRとし、外部の加熱制御手段6の尾篭
流源の電流値全iとすると12Bによってきまる最高加
熱温度に達する。
Now, as shown in FIG. 3(b), the shape memory actuator that has been artificially plastically deformed is connected to a heating power source Kanakura in the resistance heating layer 4, and the heating control means 6 controls the current supply, so that the shape memory actuator becomes @3. It recovers to the shape of the high temperature phase shown in Figure (b), that is, the straight shape. Resistance heating element layer 4
When the resistance value is 1 kR and the total current value of the tail flow source of the external heating control means 6 is i, the maximum heating temperature determined by 12B is reached.

最高加熱温度を形状記憶合金2の変態温度以上に加熱す
るように加熱−冷却サイクル全加熱制御手段6にて設定
することによシ、形状記憶アクチュエータ1は第3図t
a+と第3図(b)に示す形状を繰り返す、さらに形状
記憶合金2の形状記憶にともなう回復力は加熱温度、加
熱速度に依存して変化することから、第3図(I〕)に
示す加熱制御手段6で通電時間と非通電時間のデユーテ
ィを任意に設定して電流をパルス的に抵抗発熱体層4に
印加すると。
By setting the maximum heating temperature in the heating-cooling cycle total heating control means 6 so as to heat the shape memory alloy 2 to a temperature higher than the transformation temperature, the shape memory actuator 1 is heated as shown in FIG.
The shape shown in Figure 3 (I) repeats the shape shown in a + and Figure 3 (b), and since the recovery force associated with the shape memory of shape memory alloy 2 changes depending on the heating temperature and heating rate, it is shown in Figure 3 (I). When the duty of the energization time and non-energization time is arbitrarily set by the heating control means 6, current is applied to the resistance heating layer 4 in a pulsed manner.

設定電流値と通電加熱サイクルによって決定される最高
加熱温度に依存して、片持ち染の先端の変位を設定する
ことができる。
The displacement of the tip of the cantilever dyeing can be set depending on the set current value and the maximum heating temperature determined by the current heating cycle.

すなわち、不発明の形状記憶アクチュエータの抵抗発熱
体層4に印加する電流の大きさ、電流の印加サイクルを
設定し、形状記憶合金2の最高加熱温度を制御すること
により形状記憶アクチュエータの変位を制御することが
できる。また本発明の形状記憶アクチュエータの形状記
憶合金2を加熱制御するための抵抗発熱体層4の抵抗値
は形状記憶合金2の物性値に依存しないため、きめこま
かい位置の制御をする場合、従来の形状記憶アクチーエ
ータ罠見られたような形状記憶合金の変位にともな5抵
抗値の変化を考慮する必要がない。
That is, the displacement of the shape memory actuator is controlled by setting the magnitude of the current applied to the resistance heating layer 4 of the uninvented shape memory actuator and the current application cycle, and controlling the maximum heating temperature of the shape memory alloy 2. can do. Furthermore, since the resistance value of the resistance heating element layer 4 for controlling the heating of the shape memory alloy 2 of the shape memory actuator of the present invention does not depend on the physical property values of the shape memory alloy 2, when fine-grained position control is performed, the conventional shape There is no need to consider the change in resistance value due to displacement of the shape memory alloy as seen in the memory actuator trap.

すなわち、形状記憶合金の抵抗値の変化を検知する手段
を必要としない。
That is, there is no need for means for detecting changes in the resistance value of the shape memory alloy.

次に、不発明の形状記憶アクチュエータの具体的な応用
例について説明する。
Next, a specific application example of the inventive shape memory actuator will be explained.

第4図は第1図および第2図に示す形状記憶アクチュエ
ータ1′、1“を用いた加算式形状記憶アクチュータの
概念図である。
FIG. 4 is a conceptual diagram of an additive type shape memory actuator using the shape memory actuators 1', 1'' shown in FIGS. 1 and 2.

形状記憶アクチュエータ1′、1“はいずれも直線の状
態を記憶設定しである。今常温にて形状記憶アクチュエ
ータ1/、1//Y、弓状に曲げるように負荷バネ5を
構成して塑性変形させる。
The shape memory actuators 1' and 1'' are both set to memorize a straight line state.Now, at room temperature, the shape memory actuators 1/, 1//Y are configured with the load spring 5 so as to bend into an arcuate shape, and the shape memory actuators 1/, 1//Y are set to be plastic. Transform.

形状記憶アクチュエータ1′の一端部は固定壁8に1足
され、他端部は中間ロッド9によって形状記憶アクチュ
エータi”tc接続されている。さらに形状記憶アクチ
ュエータ1“の片側には先端ロッドlOが接続されてい
る。
One end of the shape memory actuator 1' is connected to the fixed wall 8, and the other end is connected to the shape memory actuator i"tc by an intermediate rod 9. Furthermore, a tip rod lO is connected to one side of the shape memory actuator 1". It is connected.

ガイド11,12はそれぞれ中間ロッド9.先端ロッド
10、を水平方向BK案内するように構成されている。
The guides 11 and 12 each have an intermediate rod 9. It is configured to guide the tip rod 10 in the horizontal direction BK.

さて加熱制御手段6にて形状記憶アクチュエータ1′、
1“の表面に形成された抵抗発熱帯層に通電加熱すると
、形状記憶アクチュエータ1′、1“は元の直線の状態
に復帰する。かくして通電加熱制御手段6の制御によっ
て形状記憶アクチュエータ1“に接続された先端口、ド
10の先端部13を加算的に運動させることができる。
Now, using the heating control means 6, the shape memory actuator 1',
When the resistive heat generating layer formed on the surface of the shape memory actuators 1' and 1'' is heated by electricity, the shape memory actuators 1' and 1'' return to their original straight state. Thus, by controlling the energization heating control means 6, the tip 13 of the tip 10 connected to the shape memory actuator 1'' can be moved additively.

今、加熱制御手段6によって形状記憶アクチュエータ1
′ と形状記憶アクチュエータ1“全同時にあるいはど
ちらか一方だけを選択的に加熱制御すれば先端ロッド1
0の先端部13の変位を変えることができる。したがっ
て形状配憶アクチンータを2個接続した例に限らず、さ
らに多くの形状記憶アクチュエータを中間ロッドによっ
て接続して、加熱制御手段によって選択加熱通電するこ
とによシ、先端ロッドの先端部の変位を任意に設定する
ことができる加算式形状記憶アクチーエータを冥現でき
る。
Now, the shape memory actuator 1 is controlled by the heating control means 6.
' and shape memory actuator 1' If heating is controlled for all at the same time or only one of them, the tip rod 1
The displacement of the tip 13 of the 0 can be changed. Therefore, the displacement of the tip of the tip rod can be controlled not only by connecting two shape memory actuators but also by connecting more shape memory actuators by intermediate rods and selectively heating and energizing them using the heating control means. It is possible to create an additive shape memory actuator that can be set arbitrarily.

以上、不発明の実施例について詳細に説明してきたが、
不発明の実施例に限定されず、本発明の主旨を逸脱しな
い範囲で種々の変形が可能でちゃ、第4図の不発明によ
る形状記憶アクチュエータの応用例に限定されず、種々
の応用が考えられる。
Above, we have explained in detail the embodiments of non-invention.
The present invention is not limited to the embodiments of the present invention, and various modifications can be made without departing from the gist of the present invention. It will be done.

〔発明の効果〕〔Effect of the invention〕

本発明の形状記憶アクチュエータは形状記憶合全自体に
通電する代りに、形状記憶合金の表面に電気絶縁体層を
介して、抵抗発熱体層を追加することにより、抵抗発熱
体層に通電できるため、形状記憶合金が変位しても抵抗
値を一定に維持できるため、形状記憶合金の抵抗値の変
化を検知し。
In the shape memory actuator of the present invention, instead of applying electricity to the shape memory alloy itself, by adding a resistance heating element layer to the surface of the shape memory alloy via an electrical insulator layer, it is possible to apply electricity to the resistance heating element layer. Since the resistance value can be maintained constant even if the shape memory alloy is displaced, changes in the resistance value of the shape memory alloy can be detected.

形状記憶合金に通電する電流値を調節するための電fi
!!i節手段を省略することができるので、構成を簡素
化できるという効果がある。
Electric fi for adjusting the current value passed through the shape memory alloy
! ! Since the i-clause means can be omitted, there is an effect that the configuration can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不発明の@1の冥施例全示す断面図、第2図は
不発明の第2の実施例を示す断面図、第3図tab (
blは第1図に示す形状記憶アクチュエータの動作を説
明するための動作状態図、第4図は第1図および第2図
にます形状記憶アクチーエータの一応用例を示す概念図
である。 1.1’、1“・・・・・形状記憶アクチュエータ。 2・・・・・・形状記憶合金、3・・・・電気絶縁体層
、4・・・・・抵抗発熱体層、5・・・・・負荷バネ%
 6・・・・・・加熱制御手段、7 ・・・案内機構、
8・・・・・・固定壁、9・・・・・・中間ロッド、1
0・・・・・先端ロッド、11.12・・・・・・・・
・ガイド、13・・・・・先端部、A・・・・榮の長さ
方向、B・・・・・・水平方向。
Fig. 1 is a cross-sectional view showing the complete embodiment of uninvented @1, Fig. 2 is a sectional view showing the second embodiment of uninvented, Fig. 3 tab (
bl is an operation state diagram for explaining the operation of the shape memory actuator shown in FIG. 1, and FIG. 4 is a conceptual diagram showing an example of application of the shape memory actuator shown in FIGS. 1 and 2. 1.1', 1"...shape memory actuator. 2...shape memory alloy, 3...electric insulator layer, 4...resistance heating element layer, 5... ...Load spring%
6... Heating control means, 7... Guide mechanism,
8...Fixed wall, 9...Intermediate rod, 1
0...Tip rod, 11.12...
・Guide, 13... Tip, A... Length direction of Sakae, B... Horizontal direction.

Claims (1)

【特許請求の範囲】[Claims] 形状記憶合金と、前記形状記憶合金の表面に形成された
電気絶縁体層と、前記電気絶縁体層の表面に形成された
抵抗発熱体層と金含むことを特徴とする形状記憶アクチ
ュエータ。
A shape memory actuator comprising a shape memory alloy, an electric insulator layer formed on the surface of the shape memory alloy, a resistance heating layer formed on the surface of the electric insulator layer, and gold.
JP59050434A 1984-03-16 1984-03-16 Shape memory actuator Pending JPS60195386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59050434A JPS60195386A (en) 1984-03-16 1984-03-16 Shape memory actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59050434A JPS60195386A (en) 1984-03-16 1984-03-16 Shape memory actuator

Publications (1)

Publication Number Publication Date
JPS60195386A true JPS60195386A (en) 1985-10-03

Family

ID=12858754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59050434A Pending JPS60195386A (en) 1984-03-16 1984-03-16 Shape memory actuator

Country Status (1)

Country Link
JP (1) JPS60195386A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118171U (en) * 1989-03-08 1990-09-21
JP2005504939A (en) * 2001-10-06 2005-02-17 メドス・エスアー How to set up and operate multi-stable and adjustable micro-valves
US6892538B2 (en) * 2001-11-13 2005-05-17 Hyundai Motor Company Apparatus for controlling exhaust attack angle for a variable turbine
EP1243792A3 (en) * 2001-03-24 2005-10-19 Conti Temic microelectronic GmbH Actuator, especially as part of an actuating drive for an imaging device
EP1630416A1 (en) * 2004-08-20 2006-03-01 Palo Alto Research Center Incorporated Shape memory material device and method for manufacturing
JP2006329146A (en) * 2005-05-30 2006-12-07 Konica Minolta Holdings Inc Driving device
WO2010110122A1 (en) * 2009-03-25 2010-09-30 コニカミノルタオプト株式会社 Actuator, drive device, and imaging device
KR101404628B1 (en) * 2013-05-29 2014-06-11 김선종 flexilbe electronic device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104781A (en) * 1983-11-10 1985-06-10 Yasuo Ikeda actuator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104781A (en) * 1983-11-10 1985-06-10 Yasuo Ikeda actuator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118171U (en) * 1989-03-08 1990-09-21
EP1243792A3 (en) * 2001-03-24 2005-10-19 Conti Temic microelectronic GmbH Actuator, especially as part of an actuating drive for an imaging device
JP2005504939A (en) * 2001-10-06 2005-02-17 メドス・エスアー How to set up and operate multi-stable and adjustable micro-valves
US6892538B2 (en) * 2001-11-13 2005-05-17 Hyundai Motor Company Apparatus for controlling exhaust attack angle for a variable turbine
EP1630416B1 (en) * 2004-08-20 2018-11-21 Palo Alto Research Center Incorporated Shape memory material device and method for manufacturing
EP1630416A1 (en) * 2004-08-20 2006-03-01 Palo Alto Research Center Incorporated Shape memory material device and method for manufacturing
US7372348B2 (en) 2004-08-20 2008-05-13 Palo Alto Research Center Incorporated Stressed material and shape memory material MEMS devices and methods for manufacturing
US7687108B2 (en) 2004-08-20 2010-03-30 Palo Alto Research Center Incorporated Methods for manufacturing stressed material and shape memory material MEMS devices
JP2006329146A (en) * 2005-05-30 2006-12-07 Konica Minolta Holdings Inc Driving device
WO2010110122A1 (en) * 2009-03-25 2010-09-30 コニカミノルタオプト株式会社 Actuator, drive device, and imaging device
JP5348241B2 (en) * 2009-03-25 2013-11-20 コニカミノルタ株式会社 Actuator, drive device, and imaging device
US8421908B2 (en) 2009-03-25 2013-04-16 Konica Minolta Opto, Inc. Actuator, drive device, and imaging device
KR101404628B1 (en) * 2013-05-29 2014-06-11 김선종 flexilbe electronic device
WO2014193167A1 (en) * 2013-05-29 2014-12-04 Hwang Chang-Soon Bendable electronic device
US9877379B2 (en) 2013-05-29 2018-01-23 Chang-soon Hwang Bendable electronic device
EP3439443A1 (en) * 2013-05-29 2019-02-06 Chang-Soon Hwang Flexible electronic device

Similar Documents

Publication Publication Date Title
US3725835A (en) Memory material actuator devices
EP0145204A1 (en) Bistable shape memory effect electrothermal transducers
JP2002130114A (en) Actuator device
JPS60195386A (en) Shape memory actuator
JP2017534790A (en) Thermal actuator device
JPH01262373A (en) Shape memory actuator
Luo et al. A shape memory alloy actuator using Peltier modules and R-phase transition
US2250946A (en) Heat and pressure control system
JPS5910789A (en) Actuator using shape memory alloy
JPH01118739A (en) Characteristic measuring instrument for coil spring of shape memory alloy
CN111496799B (en) Method for accurately controlling shape memory alloy composite soft driver
US2434574A (en) Heating system
JP2943298B2 (en) Shape memory alloy device of continuous temperature memory type
JPH0768941B2 (en) Actuator
JPS61150678A (en) Electrical signal mechanical quantity conversion element and its usage method
JPH0660628B2 (en) Thermo-mechanical energy converter
JPH06101626A (en) Actuator having heat control mechanism
JPS5875486A (en) Electric to dynamic energy converter
JPS60177159A (en) Shape memory element
JPS59110980A (en) Control valve
US12146477B2 (en) Bidirectional, linear and binary, segmented antagonistic servomechanism-based shape memory alloy (SMA) actuator
JPS59110979A (en) Control valve
JPS5910613A (en) Pile having increased frictional resistance by using shape-memory alloy
JPH06101625A (en) Actuator
JPS59121266A (en) Control valve