[go: up one dir, main page]

JPS60193379A - Formation for low-resistance single crystal region - Google Patents

Formation for low-resistance single crystal region

Info

Publication number
JPS60193379A
JPS60193379A JP59049835A JP4983584A JPS60193379A JP S60193379 A JPS60193379 A JP S60193379A JP 59049835 A JP59049835 A JP 59049835A JP 4983584 A JP4983584 A JP 4983584A JP S60193379 A JPS60193379 A JP S60193379A
Authority
JP
Japan
Prior art keywords
film
silicon
deposited
gate length
nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59049835A
Other languages
Japanese (ja)
Inventor
Hiroshi Kitajima
洋 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59049835A priority Critical patent/JPS60193379A/en
Publication of JPS60193379A publication Critical patent/JPS60193379A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]

Abstract

PURPOSE:To enable to obtain a clean forming method in such a way that the gate length on a mask and the actual gate length coincide with each other by a method wherein an anisotropic etching and a selective-and-epitaxial growth are combined together. CONSTITUTION:An oxide film 2 is formed on the surface of a P type Si substrat 1, and after that, a polycrystalline Si film 3, which is used as a gate, is deposited thereon. After an Si nitriding film 4 was deposited on the polycrystalline Si film 3, the film 4 and the film 3 are performed a patterning. The Si nitriding film 4 is further deposited, the Si nitriding film only deposited on the film 2 is removed, and moreover, the film 2 is removed excluding the film 2 just under the Si film 3. As a result, the film 3 is covered with an Si nitriding film 4'. Regions, from where the silicon film 3 is exposing, are etched using an anisotropic etching solution and grooves 5 are formed. An Si film is made to selectively and epitaxially grow in the regions only of the grooves 5 while an impurity is doped and low resistant single crystal regions 6 are formed. As a result, a trouble of contamination, which easily occurs in the process, doesnot generate and the difference between the gate length on a mask and the actual gate length can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、シリコン基板の所望の個所に微細な低抵抗領
域t−得る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for obtaining a fine low resistance region t- at a desired location on a silicon substrate.

〔従来技術とその問題点〕[Prior art and its problems]

MOB(Metal−Ozide−8gtnicond
sctor ) )ランジスタのソース及びドレイン領
域の形成には拡散あるいはイオン注入が用いられている
。素子が微細化すると多結晶シリコンをゲートとし、自
己整合形でイオン注入を行う方法が主として採用される
MOB(Metal-Ozide-8gtnicond
(sctor)) Diffusion or ion implantation is used to form the source and drain regions of transistors. As devices become smaller, a method of using polycrystalline silicon as a gate and performing ion implantation in a self-aligned manner is mainly adopted.

しかじな6iらこの方法は、マスク上のゲート長に対し
、イオン注入の注入深さ程度の2倍だけ実際のゲート長
が短くなるという欠点や、イオン注入の際に汚染や欠陥
発生の危険があるという欠点を有していた。
However, this method has the disadvantage that the actual gate length is shorter than the gate length on the mask by about twice the implantation depth of ion implantation, and there is a risk of contamination and defect generation during ion implantation. It had the disadvantage of being

〔発明の目的〕[Purpose of the invention]

本発明は、このような従来の欠点を除去せしめてよシフ
リーンでマスク上のゲート長と実際のゲート長とが一致
するような低抵抗単結晶領域形成方法を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming a low-resistance single-crystal region in which the gate length on the mask matches the actual gate length by eliminating such conventional drawbacks.

〔発明の構成〕[Structure of the invention]

本発明は微細なMDS )ランジスタ形成に際し、異方
性エツチングと選択エピタキシャル成長とを組合わせる
ことによって、従来法の有する欠点のないソース及びド
レイン領域を得るもので、シリコン基板表面に非晶質絶
縁膜で被覆δれた領域とシリコンが露出した領域とを設
け、異方性エツチング溶液を用いて前記のシリコンが露
出した領域のシリコンをエツチングして溝を形成し、不
純物をドーピングしながら前記溝の領域のみにシリコン
膜を成長させることを特徴とする低抵抗単結晶領域形成
方法である。
The present invention combines anisotropic etching and selective epitaxial growth to form fine MDS transistors, thereby obtaining source and drain regions without the drawbacks of conventional methods. A region covered with δ and a region where silicon is exposed are provided, and the silicon in the exposed region is etched using an anisotropic etching solution to form a groove, and while doping impurities, the groove is etched. This is a low resistance single crystal region forming method characterized by growing a silicon film only in the region.

〔構成の詳細な説明〕[Detailed explanation of the configuration]

以下、実施例を用いて本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail using Examples.

〔実施例〕〔Example〕

第1図(G)〜(d)は本発明の実施例の工程を順に示
す図である。図中(α)は(100)方位のp型シリコ
ン基板10表面を酸化して薄い酸化シリコン膜2を形成
した後、その上にゲートとなる多結晶シリコン膜3を不
純物ドーピングを行いながら堆積し、更に薄い窒化シリ
コン膜4を堆積した後、窒化シリコン膜4及び多結晶シ
リコン膜3をバターニングした状態を示している。多結
晶シリコン膜3へのドーピングは堆積後イオン注入を用
いてもかまわない。図中(6)は(α)の工程の後薄い
窒化シリコン膜4を更に堆積し、反応性イオンエツチン
グによって酸化膜2上の窒化シリコン膜だけを除去し、
更に酸化シリコン膜2をフッ酸で除去した状態を示して
いる゛。多結晶シリコン膜3は窒化シリコン膜4′で覆
われる。最後に除去した酸化シリコン膜4はイオンエツ
チングによる汚染を防止するためにはきわめて有効であ
つfc e (C)はヒドラジンを用いて(b)の工程でシリコンが
露出している領域をエツチングして溝5を形成した状態
である。エツチング溶液はヒドラジンに限るものではな
いが、(111)面が出やすいために溝5の側面と基板
表面とは54.7度の角度を示す。(菊はドーピングを
行いながら選択エピタキシャル成長を行った後の状態を
示す。原料ガスとしては、5illsC1* 、HCI
 、PI(sを用い低抵抗単結晶領域6をほぼ最初の基
板表面と同程度になるまで成長した。
FIGS. 1(G) to 1(d) are diagrams sequentially showing the steps of an embodiment of the present invention. In the figure (α), after oxidizing the surface of a p-type silicon substrate 10 in the (100) orientation to form a thin silicon oxide film 2, a polycrystalline silicon film 3 that will become a gate is deposited on it while doping with impurities. , after depositing a thinner silicon nitride film 4, the silicon nitride film 4 and polycrystalline silicon film 3 are patterned. The polycrystalline silicon film 3 may be doped by ion implantation after deposition. In the figure (6), after the step (α), a thin silicon nitride film 4 is further deposited, and only the silicon nitride film on the oxide film 2 is removed by reactive ion etching.
Furthermore, the state in which the silicon oxide film 2 has been removed with hydrofluoric acid is shown. Polycrystalline silicon film 3 is covered with silicon nitride film 4'. The silicon oxide film 4 removed last is extremely effective in preventing contamination due to ion etching, and fc e (C) uses hydrazine to etch the exposed silicon region in step (b). This is a state in which grooves 5 have been formed. The etching solution is not limited to hydrazine, but since the (111) plane is likely to appear, the side surface of the groove 5 and the substrate surface form an angle of 54.7 degrees. (The chrysanthemum indicates the state after performing selective epitaxial growth while performing doping.The raw material gases include 5illsC1*, HCI
, PI(s) was used to grow the low resistance single crystal region 6 to almost the same level as the initial substrate surface.

(カの工程の後は低抵抗単結晶領域60表面を酸化して
薄い酸化シリコン膜を形成した後、化学的気相析出法に
よって酸化シリコン膜を堆積してパツシヘーション膜ト
シ、ソの後ゲート、ソース、〜 ドレイン領域に穴あけを行い、配線とのコンタクトをと
って完了する。
(After the step F, the surface of the low resistance single crystal region 60 is oxidized to form a thin silicon oxide film, and then a silicon oxide film is deposited by chemical vapor deposition to form a passivation film. Complete by drilling holes in the source and drain regions and making contact with the wiring.

〔発明の効果〕〔Effect of the invention〕

本発明の結果の一例を示すと、基板シリコンのエツチン
グ深さ及び成長厚さ〜0.2μmの場合に、成長温度9
50℃で減圧化で成長し、原料ガス1cPfI、/5i
HiClp+ −0,015、HCl/SiルCノ、〜
4を用いたときにシート抵抗は2000/L]であつj
c、マスク上のチャンネル長と実際のチャンネル長との
差は片側で〜0.03μmであり、イオン注入を用いた
場合の値〜0.2μmより大幅に減少した。
To show an example of the results of the present invention, when the etching depth of the substrate silicon and the growth thickness are ~0.2 μm, the growth temperature is 9.
Growth is carried out under reduced pressure at 50°C, and the raw material gas is 1cPfI, /5i.
HiClp+ -0,015, HCl/SiruCノ, ~
4, the sheet resistance is 2000/L] and j
c, the difference between the channel length on the mask and the actual channel length was ~0.03 μm on one side, significantly reduced from the value ~0.2 μm using ion implantation.

以上詳細に述べた通り、本発明によればたとえばドライ
・プロセス中に受けやすい汚染の問題がなく、クリーン
なプロセスで行うことが可能となシ、マスク上と実際と
のゲート長の差が従来に較べ小さい低抵抗単結晶領域形
成方法を得ることができる効果を有するものである。
As described in detail above, according to the present invention, for example, there is no problem of contamination that is likely to occur during the dry process, and a clean process can be performed. This method has the effect of providing a method for forming a low resistance single crystal region that is smaller than that of the previous method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(cL)〜(d)は不発ψ」の実施例の工程を工
程順に示す断面図である。 (・・・1mシリコン基板、2・・・薄い酸化シリコン
膜、3・・・多結晶シリコン膜、4・・・窒化シリコン
膜、5・・・エツチングで形成されfc溝、6・・・n
型の低抵抗第1図 (α)
FIGS. 1(cL) to 1(d) are cross-sectional views showing the steps of the example of "non-explosion ψ" in order of process. (...1m silicon substrate, 2... thin silicon oxide film, 3... polycrystalline silicon film, 4... silicon nitride film, 5... fc groove formed by etching, 6... n
Low resistance of mold Figure 1 (α)

Claims (1)

【特許請求の範囲】[Claims] (1ンシリコン基板表面に非晶質絶縁膜で被覆された領
域とシリコンが露出した領域とを設け、異方性エツチン
グ溶液を用いて前記のシリコンが露出した領域のシリコ
ンをエツチングして溝を形成し、不純物をドーピングし
ながら前記濤の領域のみにシリコン膜を成長させること
を特徴とする低抵抗単結晶領域形成方法。
(A region covered with an amorphous insulating film and a region where silicon is exposed are provided on the surface of a silicon substrate, and the silicon in the exposed silicon region is etched using an anisotropic etching solution to form a groove. 1. A method for forming a low-resistance single-crystal region, the method comprising growing a silicon film only in the region of the trough while doping with impurities.
JP59049835A 1984-03-15 1984-03-15 Formation for low-resistance single crystal region Pending JPS60193379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59049835A JPS60193379A (en) 1984-03-15 1984-03-15 Formation for low-resistance single crystal region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59049835A JPS60193379A (en) 1984-03-15 1984-03-15 Formation for low-resistance single crystal region

Publications (1)

Publication Number Publication Date
JPS60193379A true JPS60193379A (en) 1985-10-01

Family

ID=12842137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59049835A Pending JPS60193379A (en) 1984-03-15 1984-03-15 Formation for low-resistance single crystal region

Country Status (1)

Country Link
JP (1) JPS60193379A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153863A (en) * 1986-12-18 1988-06-27 Fujitsu Ltd Manufacturing method of semiconductor device
KR100406537B1 (en) * 2001-12-03 2003-11-20 주식회사 하이닉스반도체 Method for fabricating semiconductor device
JP2006013082A (en) * 2004-06-24 2006-01-12 Fujitsu Ltd Semiconductor device, manufacturing method thereof, and evaluation method of semiconductor device
JP2006060222A (en) * 2004-08-20 2006-03-02 Samsung Electronics Co Ltd Transistor and manufacturing method thereof
JP2006060188A (en) * 2004-08-20 2006-03-02 Samsung Electronics Co Ltd Transistor and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153863A (en) * 1986-12-18 1988-06-27 Fujitsu Ltd Manufacturing method of semiconductor device
KR100406537B1 (en) * 2001-12-03 2003-11-20 주식회사 하이닉스반도체 Method for fabricating semiconductor device
JP2006013082A (en) * 2004-06-24 2006-01-12 Fujitsu Ltd Semiconductor device, manufacturing method thereof, and evaluation method of semiconductor device
US7989299B2 (en) 2004-06-24 2011-08-02 Fujitsu Semiconductor Limited Semiconductor device, method of manufacturing the same, and method of evaluating semiconductor device
US9093529B2 (en) 2004-06-24 2015-07-28 Fujitsu Semiconductor Limited Semiconductor device, method of manufacturing the same, and method of evaluating semiconductor device
US9437737B2 (en) 2004-06-24 2016-09-06 Fujitsu Semiconductor Limited Semiconductor device, method of manufacturing the same, and method of evaluating semiconductor device
US9825171B2 (en) 2004-06-24 2017-11-21 Fujitsu Semiconductor Limited Semiconductor device, method of manufacturing the same, and method of evaluating semiconductor device
JP2006060222A (en) * 2004-08-20 2006-03-02 Samsung Electronics Co Ltd Transistor and manufacturing method thereof
JP2006060188A (en) * 2004-08-20 2006-03-02 Samsung Electronics Co Ltd Transistor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2615390B2 (en) Method of manufacturing silicon carbide field effect transistor
JPH09115921A (en) Semiconductor device and manufacturing method thereof
JPH02192127A (en) Method for manufacturing self-aligned MESFET with T-shaped gate shape
JPS60193379A (en) Formation for low-resistance single crystal region
JPS6158879A (en) Preparation of silicon thin film crystal
US5895248A (en) Manufacture of a semiconductor device with selectively deposited semiconductor zone
JPH0473296B2 (en)
JPH0523056B2 (en)
JP2658847B2 (en) Method for manufacturing semiconductor device
JPS60193324A (en) Manufacture of semiconductor substrate
JP2000100931A (en) Semiconductor device and manufacturing method thereof
JPS5968949A (en) Manufacture of semiconductor device
JP2527016B2 (en) Method for manufacturing semiconductor film
JPS5893252A (en) Semiconductor device and manufacture thereof
JPH02184076A (en) Manufacture of thin film transistor
JP2005085777A (en) Semiconductor fine structure manufacturing method and semiconductor device
JPH02181918A (en) Manufacture of semiconductor device
JPH0669024B2 (en) Method for manufacturing semiconductor device
JP4011690B2 (en) Manufacturing method of semiconductor device
JP2685448B2 (en) Method for manufacturing semiconductor device
JPH0330293B2 (en)
JPH05175121A (en) Manufacture of soi substrate and semiconductor device
JPH06296016A (en) Semiconductor device
KR100268901B1 (en) Method for forming field region of semiconductor device
JPS58168260A (en) Semiconductor integrated circuit device and manufacture thereof