[go: up one dir, main page]

JPS60191634A - Device for inspecting quality of regenerated sand for casting - Google Patents

Device for inspecting quality of regenerated sand for casting

Info

Publication number
JPS60191634A
JPS60191634A JP4523884A JP4523884A JPS60191634A JP S60191634 A JPS60191634 A JP S60191634A JP 4523884 A JP4523884 A JP 4523884A JP 4523884 A JP4523884 A JP 4523884A JP S60191634 A JPS60191634 A JP S60191634A
Authority
JP
Japan
Prior art keywords
sand
magnetic
magnetized
recycled
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4523884A
Other languages
Japanese (ja)
Other versions
JPH0360571B2 (en
Inventor
Tetsuo Haraga
原賀 哲男
Koji Kato
加藤 幸二
Kuniaki Mizuno
邦明 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4523884A priority Critical patent/JPS60191634A/en
Publication of JPS60191634A publication Critical patent/JPS60191634A/en
Publication of JPH0360571B2 publication Critical patent/JPH0360571B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/06Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose by sieving or magnetic separating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To decide quickly and exactly the quality of regenerated sand of casting mold by processing the regenerated sand with a magnetic separator, weighing automatically the magnetized sand and non-magnetized sand and detecting the weight ratio thereof. CONSTITUTION:Regenerated sand 2 produced by burning away the binder sticking to the molding sand used for casting by fluidized roasting, etc. is supplied by a screw feeder 4 and a chute 5 to a magnetic separator 6 by which the sand is separated to magnetized sand and non-magnetized sand. The magnetized sand is dropped by a feeder 7 onto a belt conveyor 10 and the non-magnetized sand is dropped by a feeder 8 onto a belt conveyor 14. The weights of the magnetized sand and the non-magnetized sand are measured by load cells 11, 12 and 15, 16 provided to both belt conveyors 10, 14, and the inputted to a controller 17. The controller 17 calculates the ratio between the magnetized sand and the non- magnetized sand, decides the quality of the regenerated sand from the weight ratio thus obtd. and displays the same on a display device 27.

Description

【発明の詳細な説明】 産業上の111用分野 本発明は、鋳物用再生砂に係り、更に詳細には鋳物用再
生砂の品質検査装置に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to recycled foundry sand, and more particularly to a quality inspection apparatus for recycled foundry sand.

従来技術 鋳物製造用の鋳型は、従来より一般に、ケイ砂を主成分
とし必要に応じて少量の結合剤等が添加された鋳物砂に
て形成されている。この場合鋳物砂の有効利用を図るべ
く、鋳物の製造に供された鋳物砂を回収し、かくして回
収されIC鋳物砂に対し流動焙焼等によって結合剤等を
除去覆る再生処理を行い、かくして再生された鋳物砂の
品質を判定し、その判定結果に基づいて再生処理後の鋳
物砂に適当量の新砂や結合剤を添加し、これを鋳物用再
生砂として再使用することが行われている。
BACKGROUND OF THE INVENTION Conventionally, molds for manufacturing castings have generally been made of foundry sand containing silica sand as a main component, to which a small amount of a binder or the like is added as necessary. In this case, in order to effectively utilize the foundry sand, the foundry sand that has been used in the production of castings is recovered, and the thus recovered IC foundry sand is subjected to a regeneration process such as fluidized roasting to remove binders, etc., and is thus recycled. The quality of the recycled foundry sand is judged, and based on the results, an appropriate amount of new sand or binder is added to the recycled foundry sand, and this is reused as recycled foundry sand. .

この場合再生砂の品質の判定は、従来より再生砂の色相
、灼熱減ω、リン酸可溶分量、二酸化ケイN純度、密疫
等を基準に行われている。
In this case, the quality of the reclaimed sand has conventionally been judged based on the hue of the reclaimed sand, ignition loss ω, phosphoric acid soluble content, silicon dioxide N purity, high prevalence, etc.

色相による品質の判定は簡便ではあるが、かかる判定法
に於ては検査者間に於ける個人誤差、体調等により品質
判定に誤差が生じ、また色相の差が僅かであるため品質
の判定を正確にDつ定石的に行うことが困勤である。ま
た灼熱減量、リン酸可溶分h4、二酸化ケイ素純痕、密
麿等を基準とする品質の判定に於ては、品質の定石化が
可能ではあるが、判定手続が煩雑であり化学的分析に準
じIこ手法であること等により、再生砂の品質を迅速に
判定J゛ることが困難である。
Judging quality by hue is simple, but in this judgment method, errors occur in quality judgment due to individual errors among inspectors, physical condition, etc. Also, since the difference in hue is small, it is difficult to judge quality. It is difficult to do D correctly and systematically. In addition, it is possible to standardize quality in terms of standards such as loss on ignition, phosphoric acid soluble content h4, pure traces of silicon dioxide, and mitsumaro, but the judgment procedure is complicated and requires chemical analysis. Due to this method, it is difficult to quickly judge the quality of recycled sand.

本願発明′8等は従来の鋳物用再生砂の品質判定方法に
於ける上述の如き不具合に鑑み、種々の実験的研究を行
った結果、磁選により分離された磁着砂と非磁着砂の比
率と、!8型に要求される最も重要な性質の一つである
強度との間に線形的な相関関係があり、従って磁着砂と
非磁着砂の比率をめることにより鋳物用再生砂の品質を
検査し判定し得ることを見出した。
In view of the above-mentioned problems in the conventional method for determining the quality of reclaimed foundry sand, the present invention '8 etc. has conducted various experimental studies, and as a result, has developed a method for determining the quality of magnetic sand and non-magnetic sand separated by magnetic separation. With the ratio! There is a linear correlation between strength, which is one of the most important properties required for Type 8, and therefore the quality of recycled foundry sand can be determined by adjusting the ratio of magnetic sand to non-magnetic sand. We have found that it is possible to test and determine the

ブを明の目的 本発明は、本願発明者等が行った実験的(σ]究の結果
見出された」−述の相関関係を利用して、鋳物用再生砂
の品質を定石的に1つ迅速に検査することのできる鋳物
用再生砂の品質検査装置を提供することを目的としてい
る。
Purpose of the present invention The present invention utilizes the correlation described above, which was discovered as a result of an experimental (σ) investigation conducted by the inventors, to determine the quality of recycled sand for foundries in a standard way. It is an object of the present invention to provide a quality inspection device for recycled foundry sand that can quickly inspect the quality.

発明の構成 上述の如き目的は、本発明によれば、鋳物用再生砂の品
質検査装置にして、鋳物用再生砂を磁着砂と非!I@砂
どに分1111する磁選手段と、前記磁選手段により分
離された!1磁着砂重量を測定する第一の重量測定手段
と、前記磁選手段により分離された非Ii着砂の重量を
測定する第二の重量測定手段どを有する鋳物用再生砂の
品質検査装置、及び鋳物用再生砂の品質検査装置にして
、鋳物用再生砂を磁着砂と非磁着砂とに分1illする
磁選手段ど、前記磁選手段により分離されるべき鋳物用
再生砂の重量を測定する第一の重量測定手段と、前記磁
選手段により分離された磁着砂及び非磁着砂の何れか一
方の重量を測定する第二の重量測定手段とを有する鋳物
用再生砂の品質検査装置によって達成される。
DESCRIPTION OF THE INVENTION According to the present invention, the above-mentioned object is to provide a quality inspection device for recycled foundry sand, and to distinguish between recycled foundry sand and non-magnetic sand. Separated by the magnetic separation means and the magnetic separation means! 1. A quality inspection device for recycled foundry sand, comprising a first weight measuring means for measuring the weight of magnetic sand, a second weight measuring means for measuring the weight of non-Ii sand separated by the magnetic separation means, etc. and a quality inspection device for recycled foundry sand, such as a magnetic separation means that divides the recycled foundry sand into magnetic sand and non-magnetic sand, and measures the weight of the recycled foundry sand to be separated by the magnetic separation means. and a second weight measuring means for measuring the weight of either magnetic sand or non-magnetic sand separated by the magnetic separation means. achieved by.

発明の作用及び効果 本発明によれば、上述の何れの構成に於ても第−及び第
二の重量測定手段の測定値より!1&1部と非磁着砂の
比率をめることができるので、磁着砂と非磁着砂の比率
と&lf型の強度との間に線形的な相関関係があること
を利用して鋳物用再生砂の品質を定石的に目つ迅速に検
査り゛ることができ、これにより鋳物用再生砂の品質の
判定を容易に目つ正確に行うことができ、更には品質検
査結果に基づき再生砂に添加されるべき新砂及び粘合剤
の最適u1を正確に予知覆ることがCきる。
Functions and Effects of the Invention According to the present invention, in any of the above-mentioned configurations, the measured values of the first and second weight measuring means! Since the ratio of 1 & 1 part and non-magnetic sand can be determined, the linear correlation between the ratio of magnetic sand and non-magnetic sand and the strength of the &lf type can be used to determine the The quality of recycled sand can be inspected routinely and quickly, making it possible to easily and accurately judge the quality of recycled foundry sand. It is possible to accurately predict the optimum u1 of new sand and adhesive to be added to the sand.

実施例 本発明にJ、る&J!1物用再牛用再生砂検査MEの実
施例についての説明に先立ち、鋳物用再生砂の磁る砂の
比率と鋳物用再生砂の品質(抗折強度)との間の相関関
係をめるべく行われた試験tこつ(Xで説明Jる。
Examples of the present invention J, Ru & J! Prior to explaining an example of the ME test for recycled sand for single-purpose reuse, we will examine the correlation between the ratio of magnetic sand in recycled sand for foundry use and the quality (flexural strength) of recycled sand for foundry use. Tests that were carried out as planned (explained with X).

先“す゛8秤類の鋳物用再生砂N001〜No、8を用
意しI、:。次いでこれらの再生砂を順次磁力選鉱機(
E菱I!!!鋼様口4株式会′41製の回転マトリック
ス型乾式高勾配型tu3H機)に掛け、磁場の強さを6
000万ウスに設定して各再生砂について磁着砂の比率
(磁着砂及び非!i@砂に対する磁着砂の重量百分ψ)
をめ、また各再生砂について再生砂100部、フェノー
ル樹11ft2.5部、ベキ4ノーメチレンテトラミ2
0.3フ5部、水1.5部、ステアリン酸カルシウム0
.1部の混合比率にて混練を行うことにより樹脂被覆砂
を形成し、それI)の樹脂被覆砂を用いて抗折試験片(
10X 10x 60mm)を形成し1.jxs+i格
に6910に基づいて抗折強度の測定を行った。その測
定結果を下記の表1及び第1図に示す。
Previously, 8 scales of recycled foundry sand No. 8 were prepared.Next, these recycled sands were sequentially passed through a magnetic separator (
E Ryo I! ! ! The strength of the magnetic field was set to 6.
The ratio of magnetic sand for each reclaimed sand (weight percent ψ of magnetic sand to magnetic sand and non-!i@sand) is set to 0,000,000 μs.
and for each recycled sand, 100 parts of recycled sand, 2.5 parts of 11 ft of phenolic tree, and 2
0.3F 5 parts, water 1.5 parts, calcium stearate 0
.. Resin-coated sand was formed by kneading at a mixing ratio of 1 part, and the resin-coated sand of I) was used to prepare a bending test piece (
10x 10x 60mm).1. The bending strength was measured based on 6910 for jxs+i. The measurement results are shown in Table 1 and FIG. 1 below.

表 に磁着砂の比率及び抗折強度 鋳物砂の 磁着砂の比率 抗折強度 種類 (%) 土塊ALL 再生砂NO,165,528,0 ’ NO,262,030,9 “ No、3 62.0 30.0 ” No、4. 95.0 19.0 ” No、5 49.0 4.1.5 ” No、6 49.5. 40.3 9 No、7 47.0 −40.1 ’ No、8 83.5 .25.0 この表1及び第1図より、鋳物用再生砂をフ「ノール樹
脂被覆砂とし該被覆砂にて形成された鋳型の強度と磁選
による磁着砂の比率との間には非常に高い相関関係(相
関係数−0,96)があることが解る。このことから、
鋳物用再生砂を!11選によって磁着砂と非li@砂と
に分離し、分離された磁着砂の比率をめることにより、
極めて簡便にRつ定m的に再生砂の品質を判定すること
ができ、更には所要の鋳型弾痕を確保すべく再生砂に添
加される新砂及び結合剤の適正u1を正確に予知するこ
とができることが解る。
The table shows the ratio of magnetic sand and bending strength.Ratio of magnetic sand to molding sand Breaking strength type (%) Soil clod ALL Recycled sand NO, 165,528,0 ' NO, 262,030, 9 ' No, 3 62 .0 30.0” No, 4. 95.0 19.0 ” No, 5 49.0 4.1.5 ” No, 6 49.5. 40.3 9 No, 7 47.0 -40.1' No, 8 83.5. 25.0 From Table 1 and Figure 1, it can be seen that there is a very large difference between the strength of molds formed with the coated sand and the ratio of magnetic sand obtained by magnetic separation when recycled foundry sand is used as sand coated with phenolic resin. It can be seen that there is a high correlation (correlation coefficient -0.96).From this,
Recycled foundry sand! By separating magnetic sand and non-li@sand through 11 selections and measuring the ratio of separated magnetic sand,
It is possible to very easily judge the quality of recycled sand on a regular basis, and furthermore, it is possible to accurately predict the appropriateness of the new sand and binder to be added to the recycled sand in order to ensure the required mold bullet hole. Understand what you can do.

次に上述の如き相関関係を利用して鋳物用再生砂の品質
の検査を行うよう構成された本発明による品質検査装置
の実施例についで説明する。
Next, an embodiment of a quality inspection apparatus according to the present invention, which is configured to inspect the quality of recycled foundry sand using the above-mentioned correlation, will be described.

第2図は本発明による品質検査装置の一つの実施例を示
′?概略構成図、第3図は第2図に示された実施例に組
込まれた制御四路のブロック線図である。これらの図に
於て、1は品質を検査されるべき鋳物用再生砂2を貯容
づるホッパを示している。小ツバ1内に貯容された再生
砂2はモータ3により回転駆動されるスクリJフィーダ
4によりシュート5を経て磁選機6゛へ実質的に一定の
流層にて供給されるようになっている。rIt1選機6
の下方には該磁選機により分離された磁着砂及び非磁着
砂の重量をそれぞれ連続的に測定する舊1間フィーダ7
及び8が設けられている。計量フィーダ7はモータ9に
より駆動されるベルトコンベア1゜と、該ベルトコンベ
アの駆動プーリ及び従動プーリの間にてそれらに近接し
た位置に設けられ図には示されていないアイドルローラ
に作用する垂直方向の荷重を検出することによりベルト
コンベア10上のIi磁着砂重量を測定する一対の0−
ドセル11及び12とを有している。同様に計量フィー
ダ8はモータ13により駆動されるベルトコンベア14
と、該ベルトコンベアの駆動ブーり及び従動プーリの間
にてそれらに近接した位置に設けられ図には示されてい
ないアイドルローラに作用する垂直方向の荷重を検出す
ることによりベルトコンベア14−Lの非磁着砂の重量
を測定する一対のロードセル15及び16とを有してい
る。
FIG. 2 shows one embodiment of the quality inspection device according to the present invention. 3 is a block diagram of the four control paths incorporated in the embodiment shown in FIG. 2. In these figures, reference numeral 1 indicates a hopper that stores recycled foundry sand 2 to be inspected for quality. The reclaimed sand 2 stored in the small brim 1 is supplied in a substantially constant flow layer to the magnetic separator 6 through a chute 5 by a scraper J feeder 4 which is rotationally driven by a motor 3. . rIt1 selection machine 6
Below is a feeder 7 for continuously measuring the weight of magnetic sand and non-magnetic sand separated by the magnetic separator.
and 8 are provided. The weighing feeder 7 is provided between a belt conveyor 1° driven by a motor 9 and a driving pulley and a driven pulley of the belt conveyor in a position close to them, and is a vertical feeder that acts on an idle roller (not shown in the figure). A pair of 0-
11 and 12. Similarly, the weighing feeder 8 is connected to a belt conveyor 14 driven by a motor 13.
The belt conveyor 14-L is detected by detecting the vertical load acting on an idle roller (not shown in the figure), which is located between and close to the driving bobbin and driven pulley of the belt conveyor. It has a pair of load cells 15 and 16 for measuring the weight of non-magnetic sand.

磁選1116はその磁場の強さを示ず信号を制御装置1
7へ出力するようになっており、ロードセル11及び1
2、[1−ドセル15及び16はそれぞれベルトコンベ
ア10及び14により搬送される磁着砂及び非!磁着砂
の各瞬間に於ける重量を示す信号を制御I装置17へ出
力するようになっている9第3図に示されている如く、
制御装置17はマイク【]コンビコータ18を含んでお
り、マイクロコンピュータ18は入力ポー1〜装置19
と、ランダムアクセスメモリ(RAM>20と、リード
オンリメ上り(ROM)21と、中央処理ユニット(C
P(J)22と、出力ボート−装置23とを右J−る一
般的なものであり、磁選機6よりその内部の磁場の強さ
に関する情報を、ロードセル11及び12よりベルトコ
ンベア10により搬送される磁勃砂の各瞬間の重量に関
する情報を、ロードセル15及び16よりベルトコンベ
ア14により搬送されるJl:磁着砂の各瞬間に於ける
重量に関する情報を各々入力ボート装置19に与えられ
、これらの情報をRAM20及びCPU22に取込み、
ROM21に記憶されたプログラム及びデータに基づい
て出力ボート装置23より駆動回路24〜26を経て表
示装置27、新砂供給系28、樹脂供給系29へそれぞ
れ制御信号を出力するようになっている。
The magnetic selector 1116 does not indicate the strength of its magnetic field and sends a signal to the controller 1.
It is designed to output to load cells 11 and 1.
2, [1-Docels 15 and 16 are magnetic sand and non-! As shown in FIG. 3, a signal indicating the weight of the magnetic sand at each moment is outputted to the control I device 17.
The control device 17 includes a microphone [] combination coater 18, and the microcomputer 18 controls the input port 1 to the device 19.
, random access memory (RAM>20, read-only memory (ROM) 21, and central processing unit (C
It is a general type in which the P(J) 22 and the output boat device 23 are connected to the right, and information regarding the strength of the internal magnetic field is conveyed from the magnetic separator 6 by the belt conveyor 10 from the load cells 11 and 12. The load cells 15 and 16 provide information regarding the weight of the magnetic sand at each moment, and information regarding the weight of the magnetic sand at each moment conveyed by the belt conveyor 14 to the input boat device 19. Take this information into the RAM 20 and CPU 22,
Based on the program and data stored in the ROM 21, the output boat device 23 outputs control signals to the display device 27, the new sand supply system 28, and the resin supply system 29 through drive circuits 24 to 26, respectively.

マイクロコンピュータ18は所定時間毎(例えば0.5
秒毎)にそのCPU22内に於て、0−ドセル11及び
12により検出された磁着砂の重量の測定値×1及び×
2よりその平均値×−(×1+x、、)/2を斡出し、
またロードセル13及び14により測定された非!磁着
砂の重量の測定値■1及σy2よりその平均値v−(y
冒+y2〉/2を算出し、それらの平均値を順次RAM
20に記憶させつつその合計値z =x +yを算出し
、更に平均値X及び合計値lより磁着砂及び非磁着砂に
対する磁着砂の重量比率R−X’/Zを演粋し、その演
算結果に基づく出力信号を駆動n路24へ出力するよう
になっており、これにより表示装置27は所定時間毎に
11@砂及び非磁着砂に対する磁着砂の重量百分率の値
を表゛示するようになっている。
The microcomputer 18 operates at predetermined intervals (for example, 0.5
Within the CPU 22 (every second), the measured values of the weight of the magnetic sand detected by the 0-docels 11 and 12 x1 and x
From 2, calculate the average value ×−(×1+x,,)/2,
Also, the non-! From the measured weight of magnetic sand ■1 and σy2, the average value v-(y
+y2〉/2 is calculated, and their average values are sequentially stored in RAM.
20, calculate the total value z = x + y, and further derive the weight ratio R-X'/Z of magnetic sand to magnetic sand and non-magnetic sand from the average value X and total value l. , an output signal based on the calculation result is outputted to the drive n path 24, whereby the display device 27 displays the value of the weight percentage of magnetic sand with respect to sand and non-magnetic sand at predetermined time intervals. It is as shown below.

また図示の実施例に於ては、マイクロコンピュータ18
のROM21は比率Rと磁選機6の磁場の強さとを変数
とする二次元マツプとして比率Rど磁場の強さとに応じ
た最適の新砂及び樹脂添加量を予め記憶しており、マイ
クロコンピュータ18はCPU22により算出された化
率Rど磁選機6より入力される磁場の強さとに基づいて
その二つのlr制御変数に応じた新砂及び樹脂の添加m
のデータ値をROM21より読出し、該データ値を出カ
ポ−1へ装置23及び駆動回路25及び26を経てそれ
ぞれ新砂供給系28及び樹脂供給系29へ出力Jるよう
になっている。
Further, in the illustrated embodiment, the microcomputer 18
The ROM 21 stores in advance the optimum amount of new sand and resin to be added according to the ratio R and the magnetic field strength of the magnetic separator 6 as a two-dimensional map with the ratio R and the magnetic field strength of the magnetic separator 6 as variables, and the microcomputer 18 Addition of new sand and resin according to the two lr control variables based on the conversion rate R calculated by the CPU 22 and the strength of the magnetic field input from the magnetic separator 6.
The data value is read from the ROM 21, and the data value is outputted to the output capacitor 1 via the device 23 and drive circuits 25 and 26 to the new sand supply system 28 and resin supply system 29, respectively.

上述の如く構成された品質検査装置は以下の如く作動す
る。即ちスクリコフィーダ4によりホッパ1J:リシ]
−ト5を軽て磁II)t6へ再生砂2が実質的に一定の
流醋にて供給され、その再生砂が一定の磁場の強さに設
定された磁選機により連続的にIi着砂と非磁着砂とに
分離されてそれぞれR1吊フィーダ7及び8へ供給され
、ロードセル11.12及びロードヒル15.16によ
り各瞬間の磁着砂及び非磁着砂の重量が測定され、それ
らの測定値及び磁選機の磁場の強さの信号に基づき制御
装置17のマイク0]ンビコータ18によりIk%i砂
及び非磁着砂に対する磁着砂の重量比率が算出され、該
重量比率に基づき表示装置27に磁着砂及び非!磁着砂
に対する磁着砂の重量百分率が再生砂の品質検査結果と
して表示され、また前記重量比率に基づき所要の鋳型強
麿を確保するに必要十分な最適量の新砂及び樹脂が再生
砂に添加されるよう、新砂供給系28及び樹脂、供給系
29へ制御信号が出力される。
The quality inspection apparatus configured as described above operates as follows. In other words, the hopper 1J is fed by the Scrico feeder 4.
- Recycled sand 2 is supplied to t6 at a substantially constant flow, and the recycled sand is continuously deposited into Ii by a magnetic separator set at a constant magnetic field strength. The weights of the magnetic sand and non-magnetic sand are measured at each instant by the load cell 11.12 and the load hill 15.16. The weight ratio of magnetic sand to Ik%i sand and non-magnetic sand is calculated by the microcoater 18 of the control device 17 based on the measured value and the signal of the magnetic field strength of the magnetic separator, and is displayed based on the weight ratio. Magnetic sand and non-magnetic sand in the device 27! The weight percentage of the magnetic sand to the magnetic sand is displayed as the quality test result of the recycled sand, and based on the weight ratio, an optimal amount of new sand and resin necessary and sufficient to ensure the required mold strength is added to the recycled sand. A control signal is output to the new sand supply system 28 and the resin supply system 29 so that

第4図は本発明による鋳物用再生砂の品質検査装置の他
の一つの実施例を示す第2図と同様の概略構成図である
。尚この第4図に於て第2図に示された部材と実質的に
同一の部材には同一の符号が付されている。
FIG. 4 is a schematic configuration diagram similar to FIG. 2 showing another embodiment of the quality inspection apparatus for recycled foundry sand according to the present invention. In FIG. 4, members that are substantially the same as those shown in FIG. 2 are designated by the same reference numerals.

この実施例に於てはベルトコンベア14にはロードセル
は設けられていないが、シュート5と磁選機6との間に
跨1間フィーダ30が配置されている。計醋フィーダ3
0はモータ31に、」:り駆動され一喘にてシュート5
より受けた再生砂を搬送して他端よりシュート5aを経
で磁選機6へ装入するベルトコンベア32と、該ベルト
コンベアの駆動プーリ及び従動プーリの間にてそれらに
近接して配置され図には示されていないアイドルローラ
に作用する垂直方向の荷■を検出することによりベルト
コンベア32上の再生砂のIfを測定する一対のD−ド
レル33及び371とをイiしている。
In this embodiment, the belt conveyor 14 is not provided with a load cell, but a straddling feeder 30 is disposed between the chute 5 and the magnetic separator 6. Measuring feeder 3
0 is driven by the motor 31 and shoots 5 in one breath.
A belt conveyor 32 transports recycled sand received from the sand and charges it into the magnetic separator 6 from the other end via a chute 5a, and a belt conveyor 32 which is disposed close to the driving pulley and driven pulley of the belt conveyor. A pair of D-drels 33 and 371 are used to measure the If of reclaimed sand on the belt conveyor 32 by detecting a vertical load acting on an idle roller (not shown).

ロードセル33及び34はロードセル11.12及びロ
ードセル15及び16と同様、ベルトコンベア32によ
り搬送される再生砂の重量を示す信号を制御装置17へ
出力η−るようになっている。
Like the load cells 11, 12 and 15 and 16, the load cells 33 and 34 are designed to output a signal indicating the weight of the reclaimed sand conveyed by the belt conveyor 32 to the control device 17.

尚この実施例に於ける制御装置17は第3図に示された
11制御装置と同一であって良いが、この場合に(ま第
3図に於て[]−ドセル15及び16はロードセル33
及び34に置換えられる。
The control device 17 in this embodiment may be the same as the control device 11 shown in FIG.
and 34.

この実施例による品質検査i置に於ては、0PU22に
よりロードヒル33及び34よりの測定値Zl及び12
に基づき再生砂の重量の平均値l= (Zl +22 
>/2が算出され、その平均値2と−F述の実施例の場
合の如く算出された磁着砂の重量の平均値Xとより磁着
砂及び非磁着砂に対する磁着砂の重量比率R’=X/Z
が算出され、その値に基づき磁着砂及び非磁着砂に対す
る磁着砂の重量百分率が表示装置27に表示され、また
前記値に基づき新砂供給系28及び樹脂供給系2つへそ
れぞれ新砂添加量及び樹脂添加量の最適値を示す制御信
号が出力される。
In the quality inspection according to this embodiment, the measured values Zl and 12 from the road hills 33 and 34 are measured by the 0PU22.
Based on the average value of the weight of reclaimed sand l = (Zl +22
>/2 is calculated, and the weight of magnetic sand with respect to magnetic sand and non-magnetic sand is calculated from the average value 2 and the average value X of the weight of magnetic sand calculated as in the example described in -F. Ratio R'=X/Z
is calculated, and based on that value, the weight percentage of magnetic sand to magnetic sand and non-magnetic sand is displayed on the display device 27, and based on the value, new sand is added to the new sand supply system 28 and the two resin supply systems, respectively. A control signal indicating the optimum value of the amount and the amount of resin added is output.

尚上述の何れの実施例に於ても、鋳物用再生砂の品質が
連続的に検査され、鋳物用再生砂に対し添加される新砂
及び樹脂の量が連続的に1IilJ御されるようになっ
ているが、本発明による品質検査装置はバッチ式に作動
するよう構成されても良い。
In any of the above-mentioned embodiments, the quality of the recycled foundry sand is continuously inspected, and the amounts of new sand and resin added to the recycled foundry sand are continuously controlled. However, the quality inspection device according to the present invention may also be configured to operate in batch mode.

例えば各モータ又は各ベルトコンベアのそれぞれの何れ
かのプーリの回転速度を検出づることによって対応する
ベルトコンベアの砂搬送速tηを検出するセンサを設け
、それらのセンサの測定値と日−ドセル11及び12.
15及び16.33及び34による測定1「1との積を
演算し、その値を時間の関数として積分することにより
磁着砂の総重邑×1非磁着砂の総重量Y、再生砂の総重
量Zを算出し、比率RをR−X/ (X十Y、)又はR
−×/Zとして算出するよう構成されても良い。
For example, a sensor is provided to detect the sand conveying speed tη of the corresponding belt conveyor by detecting the rotational speed of one of the pulleys of each motor or each belt conveyor, and the measured values of these sensors and the date cell 11 and 12.
15 and 16. Measurement according to 33 and 34 1 "By calculating the product with 1 and integrating the value as a function of time, total weight of magnetic sand x 1 total weight of non-magnetic sand Y, recycled sand Calculate the total weight Z of
It may be configured to calculate as -x/Z.

以上に於ては本発明を特定の実施例について詳細に説明
したが、本発明はかかる実施例に限定されるものではな
く、本発明の範囲内にて種々の実施例が可能であること
は当業者にとって明らかであろう。例えば磁着砂と非磁
着砂の比率は、磁着砂及び非磁着砂に対する非磁着砂の
比、磁着砂に対4゛る非磁着砂の比、又は非磁着砂に対
する磁着砂の比であっても良い。
Although the present invention has been described in detail with respect to specific embodiments above, the present invention is not limited to such embodiments, and it is understood that various embodiments are possible within the scope of the present invention. It will be clear to those skilled in the art. For example, the ratio of magnetic sand to non-magnetic sand is the ratio of non-magnetic sand to magnetic sand and non-magnetic sand, the ratio of non-magnetic sand to magnetic sand of 4, or the ratio of non-magnetic sand to magnetic sand of 4. It may be the ratio of magnetic sand.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は4種の再生砂についてr!1着砂0比率と抗折
強庸との関係を示すグラフ、第2図は本発明にJ:る鋳
物用再生砂の品質検査装置の一つの実施例を示す概略構
成図、第3図は第2図に示された実施例に於Gプる制御
回路を示Jブロック線図、第4図は本発明による鋳物用
再生砂の品質検査装置の他の一つの実施例を示す第2図
と同様の概略構成図である。 1・・・ホッパ、2・・・鋳物用再生砂、3・・・モー
タ。 4・・・スクリュフィーダ、5・・・シュート、6・・
・1電選機、7.8・・・計量フィーダ、9・・・モー
タ、10・・・ベルトコンベア、11.12・・・0−
ドセル1,13・・・モータ、14・・・ベルトコンベ
ア、15.16・・・ロードセル、17・・・制御l装
置、18・・・マイクロコンピュータ、19・・・入力
ボート装置20・・・ランダムアクセスメモリ(RAM
)、21・・・リードオンリメモリ(ROM)、22・
・・中央処理ユニット(CPU)、23・・・出力ボー
ト装置、24〜26・・・駆動回路、27・・・表示装
置、28・・・新砂供給系。 29・・・樹脂供給系、30・・・計量フィーダ、31
・・・モータ、32・・・ベルトコンベア、33.34
・・・ロードセル 特許出願人 トヨタ自動車株式会社 代 理 人 弁理士 明石 昌毅 第 1 図 第3図 ・回二二セク 岨貞[制 。 ulに姻−)1回路 ( 11人 出 n ll’ +1. ” カ 2o カ・・−・・・・
7“l F?OM l ・・3□、7,1電−ド ポ 
・ 1・ ・721 擲1261′Ill 第 2 図
Figure 1 shows the four types of recycled sand. A graph showing the relationship between the 1-sand zero ratio and the bending strength. Fig. 2 is a schematic configuration diagram showing one embodiment of the quality inspection device for recycled foundry sand according to the present invention. FIG. 2 is a block diagram showing the control circuit in the embodiment shown in FIG. 2, and FIG. FIG. 2 is a schematic configuration diagram similar to that of FIG. 1...Hopper, 2...Recycled foundry sand, 3...Motor. 4...Screw feeder, 5...Chute, 6...
・1 Electric separator, 7.8...Measuring feeder, 9...Motor, 10...Belt conveyor, 11.12...0-
1, 13...Motor, 14...Belt conveyor, 15.16...Load cell, 17...Control device, 18...Microcomputer, 19...Input boat device 20... Random access memory (RAM)
), 21... Read only memory (ROM), 22.
...Central processing unit (CPU), 23...Output boat device, 24-26...Drive circuit, 27...Display device, 28...New sand supply system. 29...Resin supply system, 30...Measuring feeder, 31
...Motor, 32...Belt conveyor, 33.34
...Load cell patent applicant Toyota Motor Corporation Representative Patent Attorney Masatake Akashi 1 Figure 3 / 22nd Section [System] ul -) 1 circuit (11 people out n ll' +1. ” Ka 2o Ka...
7"l F?OM l...3□, 7,1 Den-do Po
・ 1 ・ 721 1261'Ill Fig. 2

Claims (2)

【特許請求の範囲】[Claims] (1)鋳物用再生砂の品質検査装置にして、鋳物用再生
砂を磁着砂と非磁着砂とに分離−4る磁選手段と、前記
磁選手段により分離された磁6妙の重量を測定づる第一
の重量測定手段と、前記磁選手段により分離された非磁
着砂の重量を測定する第二のlhj測定手段とを有する
鋳物用再生砂の品質検査装置。
(1) A quality inspection device for recycled foundry sand is equipped with a magnetic separation means for separating recycled foundry sand into magnetic sand and non-magnetic sand, and a weight of the magnetic material separated by the magnetic separation means. A quality inspection device for reclaimed foundry sand, comprising a first weight measuring means for measuring, and a second lhj measuring means for measuring the weight of non-magnetic sand separated by the magnetic separation means.
(2)鋳物用再生砂の品ff4I!杏装置に1ノで、鋳
物用再生砂をtit着砂と非磁着砂とに分離する磁選手
段ど、前記磁選手段により分111[されるべき鋳物用
再生砂の重石を測定する第一の重量測定手段と、前記磁
選手段により分離された磁着砂及び非磁着砂の何れか一
方の重石を測定する第二の重石測定1段どを有ηる鋳物
用再生砂の品質検査装置。
(2) Recycled foundry sand product ff4I! A magnetic separator for separating recycled foundry sand into tit sand and non-magnetic sand is installed in the apricot device. A quality inspection device for recycled foundry sand, comprising a weight measuring means, and a second weight measuring stage for measuring the weight of either magnetic sand or non-magnetic sand separated by the magnetic separation means.
JP4523884A 1984-03-09 1984-03-09 Device for inspecting quality of regenerated sand for casting Granted JPS60191634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4523884A JPS60191634A (en) 1984-03-09 1984-03-09 Device for inspecting quality of regenerated sand for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4523884A JPS60191634A (en) 1984-03-09 1984-03-09 Device for inspecting quality of regenerated sand for casting

Publications (2)

Publication Number Publication Date
JPS60191634A true JPS60191634A (en) 1985-09-30
JPH0360571B2 JPH0360571B2 (en) 1991-09-17

Family

ID=12713672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4523884A Granted JPS60191634A (en) 1984-03-09 1984-03-09 Device for inspecting quality of regenerated sand for casting

Country Status (1)

Country Link
JP (1) JPS60191634A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115727A (en) * 1976-03-25 1977-09-28 Kawaguchi Tetsukou Kk Molding sand reproduction process
JPS57175048A (en) * 1981-04-20 1982-10-27 Kubota Ltd Reconditioning method for molding sand

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115727A (en) * 1976-03-25 1977-09-28 Kawaguchi Tetsukou Kk Molding sand reproduction process
JPS57175048A (en) * 1981-04-20 1982-10-27 Kubota Ltd Reconditioning method for molding sand

Also Published As

Publication number Publication date
JPH0360571B2 (en) 1991-09-17

Similar Documents

Publication Publication Date Title
EP3965982B1 (en) Foundry production line and method of operating such foundry production line
DE3272153D1 (en) Audio/video quality monitoring system
CN115540987A (en) Dynamic vehicle overload detection method and control device based on load sensor
CN101398327B (en) On-line matter verifying device and method for belt feed weigher
CN116238176A (en) Artificial quartz stone plate raw material configuration control system
CN113916297B (en) Coal measurement and quality inspection integrated intelligent management and control system
JPS60191634A (en) Device for inspecting quality of regenerated sand for casting
CN110864794A (en) Batching belt scale online detection device and method thereof
CN113561335B (en) Method and device for calculating residual aggregate amount of aggregate bin and mixing station
US8269483B2 (en) Magnetic flux tagging for quality construction
CN1051792A (en) Method and device for inspecting devices for measuring characteristics of bulk material and for taking samples from bulk material
CN1109882C (en) Electronically weighing method and equipment for the accuracy calibration of coal feeding machine
CN209296120U (en) Multi-channel quantitative entrucking track scale
EP0737530B2 (en) Method for measuring the amount of an active clayey component contained in molding greensand
JPS6488700A (en) Traffic signal interlocking controller
CN106940176A (en) A kind of thickness of feed layer detection means and method
CN112518976A (en) Method and device for preparing hollow brick based on red mud
US20210220903A1 (en) Green molding sand treatment equipment monitoring system and green molding sand treatment equipment monitoring method
JPH07218326A (en) Load weighing method in belt conveyor
JP2597172B2 (en) Sand mold deformation inspection method
JP2001023609A (en) Method and apparatus for sorting battery
CN109405947A (en) Multi-channel quantitative entrucking track scale and its metering method
SU1497507A1 (en) Apparatus for measuring particle size of materials
CN115931656A (en) Control instrument for online detection of permeability of molding sand
JP2006053035A (en) Weighing system