[go: up one dir, main page]

JPS60190966A - Anti-thrombotic material - Google Patents

Anti-thrombotic material

Info

Publication number
JPS60190966A
JPS60190966A JP59047931A JP4793184A JPS60190966A JP S60190966 A JPS60190966 A JP S60190966A JP 59047931 A JP59047931 A JP 59047931A JP 4793184 A JP4793184 A JP 4793184A JP S60190966 A JPS60190966 A JP S60190966A
Authority
JP
Japan
Prior art keywords
collagen
layer
heparin
antithrombotic
fibronectin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59047931A
Other languages
Japanese (ja)
Other versions
JPS6158196B2 (en
Inventor
亮 児玉
坂井 士
津田 圭四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59047931A priority Critical patent/JPS60190966A/en
Publication of JPS60190966A publication Critical patent/JPS60190966A/en
Publication of JPS6158196B2 publication Critical patent/JPS6158196B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は新規な抗血栓性材料、さらに詳しくいえは、人
工血・11や血晋カテーテルなどに使用される、抗血栓
性及び生体適合性に曖れた医療用高分子材料に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a novel antithrombotic material, and more specifically, a medical high-grade material with unclear antithrombotic properties and biocompatibility, which is used in artificial blood 11, blood thinning catheters, etc. It concerns molecular materials.

近年、医療用材料として多くの高分子材料が用いられる
ようになったが、これを直接血液と接触する個所に用い
る医療用材料、例えば人工血゛0、器官カテーテル、人
工腎臓用チューブ、人工心肺、血液バイパスチューブ、
人工心臓ボンピングチェンバー、バルーンボンピング用
材料などとして使用する場合、抗血栓性はもちろんのこ
件−1生体適合性や弾性、耐久性、湿潤強靭性などの力
学的強度に優れていることが必要である。
In recent years, many polymeric materials have come into use as medical materials, and medical materials that use them in areas that come into direct contact with blood, such as artificial blood vessels, organ catheters, artificial kidney tubes, and heart-lung machines. , blood bypass tube,
When used as materials for artificial heart pumping chambers, balloon pumping, etc., it is important to have excellent mechanical strength such as biocompatibility, elasticity, durability, and wet toughness, as well as antithrombotic properties. is necessary.

現在、医療用材料として用いられている高分子材料の中
で、例えばナイロン、ポリエステル、ポリエチレン、ポ
リプロピレン、ポリウレタンなどは抗血栓性をもたず、
これを直接血液と接触する個Iフ[で使用する場合、血
液が凝固して血栓が生じるため、これらの高分子材料に
抗血栓性をもたせる工夫がなされてきた。
Among the polymer materials currently used as medical materials, for example, nylon, polyester, polyethylene, polypropylene, and polyurethane do not have antithrombotic properties.
When these polymer materials are used in areas where they come into direct contact with blood, the blood coagulates and thrombi occur, so efforts have been made to provide these polymeric materials with antithrombotic properties.

従来、前記の高分子制料に抗血栓性をもた′せる方法と
して、材料自体を血栓を生じにくいものとする方法、例
えばヘパリンのような天然の抗凝血剤を材料に混合した
シ、あるいは化学結合させる方法、さらには生体適合性
の潰れたコラーゲンを材料表面にコーティングする方法
などが知られている。
Conventionally, as a method of imparting antithrombotic properties to the above-mentioned polymeric material, methods have been used to make the material itself less likely to cause thrombosis, such as mixing a natural anticoagulant such as heparin into the material. Alternatively, methods of chemical bonding and methods of coating the material surface with biocompatible crushed collagen are known.

AiJ記の方法の中で、材料自体を血栓が生じにくいも
のにする方法の例としては、ある種のポリウレタン系化
合物を疎水性と親水性の部分が交互に表面にでる構造を
もたせたもの、あるいはヒドロゲル又は親水性ポリマー
を基材ポリマーに結合させたものがある。しかしながら
、これらの高分子材料はかなり高い抗血栓性を示すもの
の、まだ実用に供するには不十分であって満足しうるも
のは得られていない。
Among the methods described in AiJ, examples of methods for making the material itself less likely to cause blood clots include using a certain type of polyurethane compound with a structure in which hydrophobic and hydrophilic parts alternately appear on the surface; Alternatively, a hydrogel or hydrophilic polymer may be bonded to a base polymer. However, although these polymeric materials exhibit fairly high antithrombotic properties, they are still insufficient for practical use and no satisfactory material has yet been obtained.

また、ヘパリンのような天然抗凝血剤を材料に化学結合
させる方法の例としては、基材ポリマーに第三級アミノ
基をもつビニル化合物ケクラフト重合させたのち、グラ
フト化されたポリマー中のアミン基を第四級化し、次い
でヘパリン化する方法が知られている。しかしながら、
このようにしてヘパリン化した高分子拐料は、基材ポリ
マーが本来布する望ましい力学的強度が低下し、実用に
際して必要な強度や耐久性が得られなくなるという欠点
がある。
In addition, as an example of a method for chemically bonding a natural anticoagulant such as heparin to a material, after polymerizing a vinyl compound with a tertiary amino group to the base polymer, amines in the grafted polymer are used. Methods are known to quaternize groups and then heparinize them. however,
The polymeric material heparinized in this manner has the disadvantage that the desirable mechanical strength originally possessed by the base polymer is reduced, making it impossible to obtain the strength and durability required for practical use.

さらに、コラーゲンを材料表面にコーティングする方法
の例として、ポリエチレン、ポリプロピレン、ポリニス
デルなどの表面を、例えばクロム酸混a処理やアルカリ
処理などの極性化処理に↓つて親水化したのち、コラー
ゲンを塗45シ、次いで放射線を照射して該コラーゲン
をコーティングする方法(特公昭46−37433号公
報)、あるいはシリコンゴム素材の表面を、プラズマグ
ロー放電処理や化学的処理などの極性化処理によって親
水化したのち、前記と同様にしてコラーゲンをコーティ
ングする方法(特公昭49−4559号公報)が提案さ
れている。しかしながら、このようにしてコラーゲンを
コーティングした高分子材料は、基材ポリマーが本来布
する望ましい力学的強度は低下しないものの、抗血栓性
については必ずしも満足しうるものではない。
Furthermore, as an example of a method of coating a material surface with collagen, the surface of polyethylene, polypropylene, polynisdel, etc. is made hydrophilic by polarization treatment such as chromic acid mixed a treatment or alkali treatment, and then collagen is applied. Then, the collagen is coated by irradiation with radiation (Japanese Patent Publication No. 46-37433), or the surface of the silicone rubber material is made hydrophilic by polarization treatment such as plasma glow discharge treatment or chemical treatment. , a method of coating collagen in the same manner as above (Japanese Patent Publication No. 49-4559) has been proposed. However, although the polymeric material coated with collagen in this manner does not reduce the desirable mechanical strength inherent to the base polymer, its antithrombotic properties are not necessarily satisfactory.

本発明者らは、このような事情に鑑み、従来の抗血栓性
高分子材料のもつ欠点を改良し、優れた抗血栓性と生体
適合性を有し、かつ力学的強度の良好な高分子材料を得
るために研究を重ねてきた。
In view of these circumstances, the present inventors have improved the drawbacks of conventional antithrombotic polymer materials, and developed a polymer that has excellent antithrombotic properties, biocompatibility, and good mechanical strength. Research has been carried out to obtain the materials.

その結果、先に、プラズマグロー放電処理にょシ活性化
された高分子材料の表面にムコ多糖を結合させたものが
、抗血栓性材料として従来のものに比較して潰れている
ことを見出し#妹許暮鼻頴ルた。
As a result, it was discovered that a polymer material in which mucopolysaccharide was bonded to the surface of a polymer material that had been activated by plasma glow discharge treatment had poor antithrombotic properties compared to conventional materials. My younger sister was a girl with a nose.

しかしながら、この抗血栓性材料は、従来の抗血栓性材
料のもつ欠点がかなシ改良されているものの、抗血栓性
に関しては必ずしも満足しうるものではなかった。
However, although this antithrombotic material has considerably improved the drawbacks of conventional antithrombotic materials, its antithrombotic properties are not necessarily satisfactory.

したがって、本発明者ら妹、よりwれた抗血栓性材料を
提供すべく、さらに鋭意研究を進めてきた結果、高分子
材料の表面に設けられたコラーゲン層の上に、さらに細
胞接着タンパク質とし、て知られているフィブロネクチ
ン層を介してヘパリン層を設けて成るものが、高分子材
料のもつ力学的強度を失わずに、優れた抗血栓性及び生
体適合性を有することを見出し、この知見に基ついて本
発明を完成するに至った。
Therefore, the present inventors have conducted further intensive research in order to provide an even better antithrombotic material.As a result, we have added cell adhesion proteins to the collagen layer provided on the surface of the polymeric material. We discovered that a material with a heparin layer interposed between a fibronectin layer, which is known as a polymer material, has excellent antithrombotic properties and biocompatibility without losing the mechanical strength of the polymer material. Based on this, the present invention has been completed.

すなわち1本発明は、高分子材料の表面にコラーゲン層
を設け、さらにその上にフィブロネクチン層を介してヘ
パリン層を設けて成る抗血栓性材料を提供するものであ
る。
That is, one aspect of the present invention provides an antithrombotic material in which a collagen layer is provided on the surface of a polymeric material, and a heparin layer is further provided thereon via a fibronectin layer.

本発明において用いる高分子材料としては、例えばナイ
ロン、ポリエステル、ポリエチレン、ポリプロピレン、
ポリウレタン、シリコンゴムナトの機械的性能の優れた
高分子化合物が好1しく挙けられる。
Examples of polymeric materials used in the present invention include nylon, polyester, polyethylene, polypropylene,
Preferred examples include polymer compounds with excellent mechanical properties such as polyurethane and silicone rubber.

本発明の抗血栓性材料においては、前記高分子材料の表
面に、まずコラーゲン層を設ける。このコラーゲン層を
設ける方法としては、例えばo、i〜1重敞%a度のコ
ラーゲン水溶液を該高分子材料の表面に塗布する方法、
該高分子材料を前記コラーゲン水溶液にαせきする方法
、あるいは容器状のものやチューブ状のものの内面にコ
ラーゲン層を設ける場合は、該コラーゲン水溶液をそれ
らに注入、排出する方法などが用いられる。
In the antithrombotic material of the present invention, a collagen layer is first provided on the surface of the polymer material. The method of providing this collagen layer includes, for example, a method of applying an aqueous collagen solution of o, i to 1% a degree to the surface of the polymeric material;
A method is used in which the polymeric material is injected into the collagen aqueous solution, or when a collagen layer is provided on the inner surface of a container or tube-like object, a method in which the collagen aqueous solution is injected into and drained from the container or tube.

高分子材料として高有孔性のものを用いる場合、漏血の
ない状態にするために、コラーゲン層をグルタルアルデ
ヒドで架橋することが好ましい。このグルタルアルデヒ
ドによる架橋処理は、例えば0.05〜0.25%(V
/V )のグルタルアルデヒドを含有した生理食塩水溶
液を用いて、コラーゲン層を設けた高分子材料を前記と
同様に処理することにより行われる。
When using a highly porous polymeric material, it is preferable to crosslink the collagen layer with glutaraldehyde in order to prevent blood leakage. This cross-linking treatment with glutaraldehyde is performed by, for example, 0.05 to 0.25% (V
The polymer material provided with the collagen layer is treated in the same manner as described above using a physiological saline solution containing glutaraldehyde of /V).

また、コラーゲン層をより強固に高分子材料の表面に付
着させるために、必妥に応じ予め該高分子材料の表面を
プラズマグロー放M1処理によって活性化しておいても
よい。このプラズマグロー放電処理は、高分子材料の表
面を常法に従って清浄にしたのち、プラズマグロー放電
発生装+itにより発生するプラズマを該高分子材料の
表面に均一に当てることによって行われる。
Furthermore, in order to more firmly adhere the collagen layer to the surface of the polymeric material, the surface of the polymeric material may be activated in advance by plasma glow radiation M1 treatment if necessary. This plasma glow discharge treatment is performed by cleaning the surface of the polymeric material according to a conventional method and then uniformly applying plasma generated by a plasma glow discharge generator to the surface of the polymeric material.

このようにして、コラーゲン層を設けた高分子材料はか
なシの抗血栓性を有するものの、まだ十分ではなく、本
発明においては、さらにその上にフィブロネクチン層を
介してヘパリン層を設ける。
Although the polymeric material provided with the collagen layer thus has a slight antithrombotic property, it is still insufficient, and in the present invention, a heparin layer is further provided thereon via a fibronectin layer.

フィブロネクチンは細胞mMタンパク賀として知られて
おシ、血液中に存在する。このものの分子構造について
は、まだ明確には解明されていないが、コラーゲン、特
に熱変性したゼラチンに結合するドメインとヘパリンに
結合するドメインとを有しているため、このフィブロネ
クチンの層を介することによシ、ヘパリン層とコラーゲ
ン1−は比較的強固に結合する。
Fibronectin is known as a cellular mM protein and is present in the blood. The molecular structure of this substance has not yet been clearly elucidated, but it has a domain that binds to collagen, especially heat-denatured gelatin, and a domain that binds to heparin, so it can be used to bind to collagen, especially heat-denatured gelatin, and heparin. Yes, the heparin layer and collagen 1- are relatively tightly bound.

また、ヘパリンはムコ多糖類であつ5.優れた抗血栓性
及び生体適合性をaしている。
Furthermore, heparin is a mucopolysaccharide and 5. It has excellent antithrombotic properties and biocompatibility.

前記のようにしてコラーゲン層を設けた高分子材料に、
さらにフィブロネクチン層を介してヘパリン層を設ける
方法としては、例えば0.2〜2重ht%濃度のフィブ
ロネクチンを含む生理食塩水溶液を用いて該高分子材料
を処理したのち、0.5〜5重量%一度のヘパリンを含
む生理食塩水溶液で処理する方法が用いられる。これら
の水溶液による処理は、前記のコラーゲン水r&r&に
よる処理の場合と同様にして竹われる。
A polymer material provided with a collagen layer as described above,
Furthermore, as a method for providing a heparin layer through a fibronectin layer, for example, the polymer material is treated with a physiological saline solution containing fibronectin at a concentration of 0.2 to 2 ht%, and then 0.5 to 5 wt% A method of treatment with a saline solution containing heparin is used. The treatment with these aqueous solutions is carried out in the same manner as the treatment with collagen water r&r& described above.

このようにして、コラーゲン−フィブロネクチン−ヘパ
リン禮合層を設けた高分子材料は、コラーゲン単独層、
コンドロイチン硫酸単独層、あるいはコラーゲン−コン
ドロイチン硫841合層を設けた高分子材料に比べて擾
れた抗血栓性を有しており、例えは犬の静脈を利用する
in vivo (生体内)の実験にかいて、血栓の形
成はほとんど認められなかった。
In this way, the polymeric material provided with the collagen-fibronectin-heparin binding layer can be used as a collagen single layer,
It has poor antithrombotic properties compared to polymer materials with a single layer of chondroitin sulfate or a composite layer of collagen and chondroitin sulfate 841, and for example, in vivo experiments using dog veins. However, almost no thrombus formation was observed.

本発明の抗血栓性材料は、優れた抗血栓性と生体適合性
を有し、かつ機械的性能が良好で蔓って、直接血液と接
触する個所に用いられる各種医科用機器の材料、例えば
人工面前、血管カテーテル、人工腎臓用チューブ、人工
心肺、血液バイパスチュー7”、人工石aiホンピング
チェンバー、バルーンボンピング用などの材料として極
めて価値あるものである。
The antithrombotic material of the present invention has excellent antithrombotic properties and biocompatibility, has good mechanical performance, and is suitable for use in various medical devices used in areas that come into direct contact with blood, such as It is extremely valuable as a material for artificial surfaces, vascular catheters, artificial kidney tubes, heart-lung machines, blood bypass tubes 7", artificial stone AI pumping chambers, balloon pumping, etc.

また、フィブロネクチン自体が血漿タンパク質成分であ
るため、本発明材料を生体内で艮期間使用する場合、余
々にヘパリンがはずれて生体内の細胞や血漿タンパク質
がフィブロネクチンと結合して、器質化する(生体と同
じ組域になる)ことが期待できる。
In addition, since fibronectin itself is a plasma protein component, when the material of the present invention is used in vivo for a period of time, heparin is removed too much, and in vivo cells and plasma proteins bind to fibronectin and become organized ( It can be expected that the composition area will be the same as that of a living body.

次に実施例によって本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 高分子材料としてポリエステル繊維(デュポン社製、ダ
クロン)から成る烏有孔性(2000cc/min/m
)ダブル・グエロア型人工血管(ミードックス社衷)を
用いプラズマグロー放電処理を行つプこ。
Example 1 Polyester fiber (manufactured by DuPont, Dacron) was used as a polymeric material.
) Plasma glow discharge treatment is performed using a double gueroa type artificial blood vessel (manufactured by Meedox).

このプラズマグロー放電処理は、試料の内面のみを有効
に処理するために、内径が試料の外径よりも1m程度太
い、長さ25cJnのパイレックスのガラス製反応管を
用いて行った。
In order to effectively treat only the inner surface of the sample, this plasma glow discharge treatment was performed using a Pyrex glass reaction tube with an inner diameter approximately 1 m thicker than the outer diameter of the sample and a length of 25 cJn.

一方、豚皮膚をペプシン処理により可溶化後、塩化ナト
リウムによる逐次分別によりコラーゲン(2,5MNa
Ct沈殿成分)を得、これを酢酸水溶rt(0,21に
溶解したのち、水に対して透析を縁起して、0.4重量
%のコラーゲン水溶l改を18製した。
On the other hand, after solubilizing pig skin by pepsin treatment, collagen (2,5 MNa
After dissolving this in an acetic acid aqueous solution rt (0.21), dialysis was performed against water to prepare a 0.4% by weight collagen aqueous solution 18.

このコラーゲン水溶液中に、前記のプラズマグロー放電
処理した人工血管を室温で1時間浸せきしたのち、さら
に0.2%(V/V )グルタルアルデヒドを含有した
生理食塩水溶α中に浸せき処理して、該人工血管表面に
グルタルアルデヒドで架橋されたコラーゲン層を設けた
The artificial blood vessel treated with plasma glow discharge was immersed in this aqueous collagen solution for 1 hour at room temperature, and then further immersed in a physiological saline solution α containing 0.2% (V/V) glutaraldehyde. A collagen layer crosslinked with glutaraldehyde was provided on the surface of the artificial blood vessel.

次に、前記のコラーゲン処理した人工血管を40℃の梢
製氷に1時間浸したのち、豚の血液からアフィニティー
クロマトグラフィーにょシ調製したフィブロネクチン溶
液(濃度5■/ ml )中に、中性条件下で浸せきし
た。次いで過剰のフィブロネクチンを生理食塩水で洗い
流しだのち、10〜/−濃度のヘパリン(シグマ社製)
を含む生理食塩水溶液中に中性条件下で4時間浸せき後
、過剰のヘパリンを生理食塩水で除去した。
Next, the collagen-treated artificial blood vessel was immersed in ice cubes at 40°C for 1 hour, and then placed under neutral conditions in a fibronectin solution (concentration 5 μ/ml) prepared by affinity chromatography from pig blood. I soaked it in Next, excess fibronectin was washed away with physiological saline, and then heparin (manufactured by Sigma) at a concentration of 10~/- was added.
After 4 hours of immersion in a physiological saline solution containing the following under neutral conditions, excess heparin was removed with physiological saline.

このようにして、人工血管の表面に設けられたコラーゲ
ン層の上に、さらにフィブロネクチン層を介してヘパリ
ン層を設けて成る抗血栓性材料が得られた。
In this way, an antithrombotic material was obtained in which a heparin layer was further provided on the collagen layer provided on the surface of the artificial blood vessel with a fibronectin layer interposed therebetween.

なお、コラーゲン層をグルタルアルデヒドで架橋処理し
たことにより、このものはほとんど漏血のない状帽とな
った。
In addition, by crosslinking the collagen layer with glutaraldehyde, this product became a cap with almost no blood leakage.

実施例2 高分子材料として、ポリエステル繊維(デュポン社製、
ダクロン)から成る高有孔性(2000cc/min/
+u4)ダブル・ヴエロア・ファブリック型バッチ(ミ
ードックス社製)を用い、プラズマグロー放電処理しな
いこと以外は、実施例1と全く同様にして該バッチ表面
上にコラーゲン−フィブロネクチン−ヘパリン複合層を
設けて成る抗血栓性材料を作成した。
Example 2 Polyester fiber (manufactured by DuPont,
Dacron) with high porosity (2000cc/min/
+u4) A collagen-fibronectin-heparin composite layer was provided on the surface of the batch in exactly the same manner as in Example 1, except that a double velour fabric type batch (manufactured by Meedox) was not treated with plasma glow discharge. An antithrombotic material was created.

参考例 実施例工で得られたコラーゲン−フィブロネクチン−ヘ
パリン複合層を設けた人工血管、及び実施例2で得られ
たコラーゲン−フィブロネクチン−ヘパリン複合層を設
けたバッチにおける抗血栓性を次のようにして調べだ。
Reference Example The antithrombotic properties of the artificial blood vessel provided with the collagen-fibronectin-heparin composite layer obtained in Example 2 and the batch provided with the collagen-fibronectin-heparin composite layer obtained in Example 2 were evaluated as follows. I looked it up.

実施例1で得られたコラーゲン−フィブロネクチン−ヘ
パリン複合層を設けた人工血管を犬の腹部大静脈に置喚
して40分後に取り出し、表面を観察した結果、血栓の
付着(ユはとんど認められなかった。
The artificial blood vessel provided with the collagen-fibronectin-heparin composite layer obtained in Example 1 was placed in the abdominal vena cava of a dog, and removed after 40 minutes, and the surface was observed. I was not able to admit.

なお、コラーゲン層のみを設けた人工血管の抗血栓性に
ついても同様に調べたところ、フィブリン網形成を伴う
赤色血栓が認められた。
When the antithrombotic properties of an artificial blood vessel provided with only a collagen layer were similarly investigated, red blood clots accompanied by fibrin network formation were observed.

実施例2で得られたコラーゲン−フィブロネクチン−ヘ
パリン複合層を設けたバッチを、クエン酸ナトリウム水
溶液を加えた豚の血液中に、37℃で1時間浸せきした
のち、取り出して表面を観察した結果、フィブリン網の
形成はなく、赤血球の凝集塊もほとんど認められなかっ
た。
The batch with the collagen-fibronectin-heparin composite layer obtained in Example 2 was immersed in pig blood containing an aqueous sodium citrate solution at 37°C for 1 hour, then taken out and the surface observed. There was no fibrin network formation, and almost no red blood cell aggregates were observed.

々お、コラーゲン層のみを設けたバッチの抗血栓性につ
いても同様に調べたところ、赤血球の凝集塊が認められ
た。
When the antithrombotic properties of the batch provided with only the collagen layer were examined in the same manner, aggregates of red blood cells were observed.

Claims (1)

【特許請求の範囲】[Claims] 1 高分子材料の表面にコラーゲン層を設&J、さらに
その上にフィブロネクチン層を介してヘパリン層を設け
て成る抗血栓t1ユ材料。
1. An anti-thrombotic T1 material comprising a collagen layer on the surface of a polymeric material and a heparin layer on top of the collagen layer via a fibronectin layer.
JP59047931A 1984-03-13 1984-03-13 Anti-thrombotic material Granted JPS60190966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59047931A JPS60190966A (en) 1984-03-13 1984-03-13 Anti-thrombotic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59047931A JPS60190966A (en) 1984-03-13 1984-03-13 Anti-thrombotic material

Publications (2)

Publication Number Publication Date
JPS60190966A true JPS60190966A (en) 1985-09-28
JPS6158196B2 JPS6158196B2 (en) 1986-12-10

Family

ID=12789112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59047931A Granted JPS60190966A (en) 1984-03-13 1984-03-13 Anti-thrombotic material

Country Status (1)

Country Link
JP (1) JPS60190966A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743252A (en) * 1986-01-13 1988-05-10 Corvita Corporation Composite grafts
US5028597A (en) * 1986-04-07 1991-07-02 Agency Of Industrial Science And Technology Antithrombogenic materials
US5037377A (en) * 1984-11-28 1991-08-06 Medtronic, Inc. Means for improving biocompatibility of implants, particularly of vascular grafts
JPH06173883A (en) * 1992-10-06 1994-06-21 Toyo Denki Kogyosho:Kk Submerged pump
US5735897A (en) * 1993-10-19 1998-04-07 Scimed Life Systems, Inc. Intravascular stent pump
EP0965310A4 (en) * 1996-12-06 2003-03-19 Tapic Int Co Ltd Artificial blood vessel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037377A (en) * 1984-11-28 1991-08-06 Medtronic, Inc. Means for improving biocompatibility of implants, particularly of vascular grafts
US4743252A (en) * 1986-01-13 1988-05-10 Corvita Corporation Composite grafts
US5028597A (en) * 1986-04-07 1991-07-02 Agency Of Industrial Science And Technology Antithrombogenic materials
JPH06173883A (en) * 1992-10-06 1994-06-21 Toyo Denki Kogyosho:Kk Submerged pump
US5735897A (en) * 1993-10-19 1998-04-07 Scimed Life Systems, Inc. Intravascular stent pump
EP0965310A4 (en) * 1996-12-06 2003-03-19 Tapic Int Co Ltd Artificial blood vessel

Also Published As

Publication number Publication date
JPS6158196B2 (en) 1986-12-10

Similar Documents

Publication Publication Date Title
JP3221690B2 (en) Collagen structure
US5028597A (en) Antithrombogenic materials
US5578073A (en) Thromboresistant surface treatment for biomaterials
JP4383851B2 (en) Polysaccharide biomaterial and use thereof
JP3784798B2 (en) Implantable tubular prosthesis made of polytetrafluoroethylene
US5098977A (en) Methods and compositions for providing articles having improved biocompatability characteristics
EP0230635A2 (en) Tubular prosthesis having a composite structure
JPS6145765A (en) Blood vessel prosthesis and its production
JPH03254752A (en) Artificial blood vessel coated with polysaccharide or its derivative and manufacture of said artificial blood vessel
US4833200A (en) Antithrombogenic medical material and method of preparing same
WO1992009312A1 (en) Implant material
Bruck Interactions of synthetic and natural surfaces with blood in the physiological environment
JPH0611305B2 (en) Method for producing antithrombogenic material
EP0781089B1 (en) Thromboresistant surface treatment for biomaterials
US5098960A (en) Methods and compositions for providing articles having improved biocompatibility characteristics
WO1996008149A9 (en) Thromboresistant surface treatment for biomaterials
Sipehia et al. Enhanced albumin binding to polypropylene beads via anhydrous ammonia gaseous plasma
JPS60190966A (en) Anti-thrombotic material
US5017670A (en) Methods and compositions for providing articles having improved biocompatibility characteristics
JPS6344383B2 (en)
Bruck Physicochemical aspects of the blood compatibility of polymeric surfaces
JPS61263448A (en) Blood vessel prosthesis
CA1299937C (en) Antithrombogenic material
EP0282091A2 (en) Medical device with heparin slow-release
Wilson Hemocompatible polymers: preparation and properties

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term