[go: up one dir, main page]

JPS6018988A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS6018988A
JPS6018988A JP12721483A JP12721483A JPS6018988A JP S6018988 A JPS6018988 A JP S6018988A JP 12721483 A JP12721483 A JP 12721483A JP 12721483 A JP12721483 A JP 12721483A JP S6018988 A JPS6018988 A JP S6018988A
Authority
JP
Japan
Prior art keywords
region
stripe
active layer
regions
striped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12721483A
Other languages
Japanese (ja)
Inventor
Shinsuke Ueno
上野 眞資
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP12721483A priority Critical patent/JPS6018988A/en
Publication of JPS6018988A publication Critical patent/JPS6018988A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1064Comprising an active region having a varying composition or cross-section in a specific direction varying width along the optical axis

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable to oscillate at a lower threshold value and a higher efficiency and to realize a large beam output oscillation by a method wherein each stripe-shaped excited region is independently provided at plural stripe regions, wherein all of the boundary surfaces between mutually adjoining stripe regions become a total reflection angle to laser beams, and a current injection mechanism is provided at the excited regions. CONSTITUTION:A boundary surface between stripe regions 31 and 32 and a boundary surface between stripe regions 32 and 33 all become a total reflection angle to laser beams. An impurity compensation is performed in an active layer of the region 32 with impurities having a reverse conductivity to that of the active layer and a first stripe- shaped excited region is formed in the longitudinal direction of the resonator, while an impurity compensation is performed in an active layer of the stripe region 33 with impurities and a plural number of second stripe-shaped excited regions, which are mutually parallel, are formed in the longitudinal direction of the resonator. These excited regions are adjacent to P-N junction faces, which are grown between the active layers at both ends of a semiconductor laser and the excited regions; and P-N junction faces, which are formed on the boundary surfaces between the guide layers and the excited regions, electrons are flowed in form these P-N junction faces and a gain distribution is formed.

Description

【発明の詳細な説明】 本発明は半導体レーザ、特に火元出力半導体レーザに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser, and more particularly to a source output semiconductor laser.

最近、AlGaAs/GaAs等の結晶材料を用いた可
視光半導体レーザは、低閾値で高効率の室温連続発振を
行う事ができるので、元方式のディジタル・オーディオ
・ディスク(DAD)用元源として最適であシ、この可
視光半導体レーザを用いた装置が実用化されつつある。
Recently, visible light semiconductor lasers using crystalline materials such as AlGaAs/GaAs are capable of continuous oscillation at room temperature with low threshold and high efficiency, making them ideal as sources for original digital audio disks (DAD). Now, devices using this visible light semiconductor laser are being put into practical use.

この可視元手導体レーザは元プリンタ等の元簀ぎこみ用
光源としての需要も鵡まっているが、この要)F、’i
みたすため火元出力発振に耐える町税元半導体レーザの
研死開発が進められている。また、このaJ視元半導体
レーザとしては、光学系との結合効率ケ上げる事が望ま
しく、活性層水平方向と垂直方間とのムかり月が婦しい
V−ザ會要求されている。
Demand for this visible conductor laser is increasing as a light source for use in printers, etc.
In order to meet this requirement, efforts are underway to develop a semiconductor laser that can withstand fire source output oscillations. Further, for this aJ view semiconductor laser, it is desirable to increase the coupling efficiency with the optical system, and a V-thesis is required in which the horizontal and vertical deviations of the active layer are desirable.

このような半導体V−ザの中で、ツカダにより米国雑誌
“Journal of Applied Physi
cs”第45巻4899頁〜4906頁に報告されてい
ゐBH(Buried Heterostructur
e ) v−ザがahが、このHHレーザは活性1mf
f1クフノド+117 Cとυ〃蔦こみpn接甘せ組合
せにより活性1−同にのみ有効にキャリア會江人できる
構造τもつものでのり、活性層の水平方向と垂直方間と
の広がり月が等しい円形に近い光源でりり、低閾値電流
で扁効率りレーザ発振を行ン丁ぐれたI#注flしてい
る。しかし、造営のBHv−ザはスポットサイズが2〜
3μm程腿ときわめて小さいので、室温連@発振(CW
)光出力が2〜3mW、パルス動作(100ns幅)光
出力が10mW程度の動作限界となっておシ、これ以上
の光出力を放出すると容易に反射面が破壊される。この
現象はう′C学損傷として知られており、そのCW動作
の限界元出力密度は1MW/d前後である。これに対し
光学損傷を防ぎ火元出力を得る方法として、活性層に隣
接してガイド層を設けた構造B OG (Buried
 0ptico+GuideBHレーf)が、ナカジマ
等により雑誌” Japanese Journal 
of Applied Physics″。
Among such semiconductor V-za, Tsukada published an article in the American magazine “Journal of Applied Physiology”.
BH (Buried Heterostructure
e) The v-za is ah, but this HH laser has an activeness of 1mf.
f1 Kuhnod + 117 C and υ〃Ivy pn combination has a structure τ that can be effectively used as a carrier only for active 1-same, and the horizontal and vertical spread of the active layer is equal. The light source has a nearly circular shape, and the laser oscillates with low threshold current. However, the spot size of Zoei's BHv-The is 2~
Since it is extremely small, about 3 μm in size, it is capable of room temperature continuous @ oscillation (CW).
) Optical output is 2 to 3 mW, pulse operation (100 ns width) Optical output has an operating limit of about 10 mW, and if more optical output is emitted, the reflective surface will be easily destroyed. This phenomenon is known as carbon damage, and the limiting power density of CW operation is around 1 MW/d. On the other hand, as a method to prevent optical damage and obtain fire source power, a structure BOG (Buried
Japanese Journal
of Applied Physics''.

第19巻L591頁〜L594頁に報告されてbる。It is reported in Volume 19, pages L591-L594.

このレーザの構成は、活性層及びガイド層をクラッド層
でうめこみ活性層の元の一部を隣接したガイドJ→にし
み出させて光学損傷の生じるレベルを上昇させようとい
うものである。この構成はガイド層にしみ出す元の量に
依存するが、その最大光出力は10mW前後が限界であ
った。
The structure of this laser is such that the active layer and the guide layer are buried in a cladding layer, and a part of the original active layer is allowed to seep into the adjacent guide J→, thereby increasing the level of optical damage. Although this configuration depends on the original amount seeping into the guide layer, its maximum optical output was limited to around 10 mW.

また、高濃度の活性層を有するD H構造の共振器の長
手方向の両度射面からキャリアの拡散長程度以上はなれ
た中央部分に活性層とは逆のタイプの不純物拡散を行っ
て不純物補償しバンドギャップの実効的に縮少した励起
領域を設け、両度射面近傍全実効的にバンドギャップの
広いウィンドウ構造にし火元出力発振を可能にした半導
体レーザが林らによシ特願昭53−56781 (’扶
下先順という)に提案されている。この先願の半導体レ
ーザは活性層両端金弟1と第2とのクラッド層で挟んだ
DH構造をメサ状に加工し1周囲を第3のクラッド11
で埋めこんだ後不純物拡散をすることによシ形成される
pn接合面は埋込み層の第3クラッド層内もしくは活性
層と基板との間にある第2クラッド層内にある構造にな
っている。この構造においては、犬光出力発1aを行う
ために大電流を注入すると、各クラッド層のpn接合而
面耐圧を超えて電流が流れるが、この電流は全て無効電
流となるので注入電流のうち有効に発振に寄与する割合
が減少し、外部微分量子効率が悪くなり光出力がすぐに
飽和する現象を生ずる。そのため埋込み層をII8縁層
にする事も考えられるが1通常の液晶結晶技術ではきわ
めて困難であり実現性に乏しい。
In addition, impurity compensation is performed by diffusing the opposite type of impurity to the active layer in the central portion of the D H structure resonator having a highly concentrated active layer, which is separated from the longitudinal radiation plane by more than the carrier diffusion length. Hayashi et al. have proposed a semiconductor laser that has an excitation region with an effectively reduced bandgap and a window structure with an effectively wide bandgap near both emission surfaces, making it possible to oscillate the source output. 53-56781 (referred to as 'subservient order'). In the semiconductor laser of this earlier application, a DH structure in which the active layer is sandwiched between two cladding layers 1 and 2 is processed into a mesa shape, and a third cladding 11 is formed around the active layer.
The structure is such that the pn junction surface formed by burying the active layer and then diffusing impurities is within the third cladding layer of the buried layer or within the second cladding layer between the active layer and the substrate. . In this structure, when a large current is injected to perform the dog light output 1a, the current flows exceeding the pn junction breakdown voltage of each cladding layer, but all of this current becomes a reactive current, so it is part of the injected current. The ratio that effectively contributes to oscillation decreases, the external differential quantum efficiency deteriorates, and a phenomenon occurs in which the optical output is quickly saturated. Therefore, it is conceivable to use the II8 edge layer as the buried layer, but it is extremely difficult to do so using ordinary liquid crystal technology, and it is unlikely to be realized.

更に、この構造ではメサ状の活性層領域幅を狭くしない
と、火元出力発振とともにキャリア分布に空間的なホー
ルバーニングを生じゃすく、−欠損モード発振を容易に
許容する。しかし、活性ハ1領域幅を狭くするとスポッ
トサイズが狭くなり、発振元出力が減少し火元出力発振
が困難になる。また、この構造ではある程度の火元出方
密度cw発撮が可能であるが5通常のA I Ga A
S/心aAs 半導体レーザを火元出力密度CW発振を
させた時に生じる反射面破壊レベルを数倍程度上昇させ
るにすぎなかった。
Furthermore, in this structure, unless the width of the mesa-shaped active layer region is narrowed, spatial hole burning will occur in the carrier distribution as well as source output oscillation, easily allowing negative mode oscillation. However, when the width of the active C1 region is narrowed, the spot size becomes narrower, the oscillation source output decreases, and the source output oscillation becomes difficult. In addition, with this structure, it is possible to shoot with a certain degree of fire source density cw, but 5 normal A I Ga A
This only increased the level of damage to the reflective surface by several times when the S/core aAs semiconductor laser was subjected to CW oscillation with source power density.

更に、元書込用光源などに半導体レーザを用いる場合に
この半導体レーザiPCM動作をさせる必要があるが、
従来の半導体レーザをPCM動作させるには閾値電流近
傍の一定電流を流した状態においてパルス駆動を行って
火元出力発振をさせる直接変調方式が用いられている。
Furthermore, when using a semiconductor laser as the original writing light source, it is necessary to perform iPCM operation using the semiconductor laser.
In order to perform PCM operation on a conventional semiconductor laser, a direct modulation method is used in which pulse driving is performed while a constant current near a threshold current is flowing to cause source output oscillation.

しかし、この方式は各素子における閾値電流のばらつき
に伴ない、各素子毎にバイアス電流を設定する必要がち
力、駆動装置が複雑になると共に集積化する上でも困俸
であった。この場合も火元出力発掘をすると共に広い電
流動作にわたって基本横モード発」辰をし、緩和振動の
抑圧されたすぐれた動特性をもつ半導体レーザが必要で
ある。
However, this method tends to require setting a bias current for each element due to variations in threshold current in each element, complicates the driving device, and is difficult to integrate. In this case as well, it is necessary to have a semiconductor laser that has excellent dynamic characteristics, which has a fundamental transverse mode emission over a wide range of current operation, and suppresses relaxation oscillations, as well as excavating the source output.

また、半導体レーザを光源として用いる場合には更に単
一軸モード見損をする事が必要である。
Furthermore, when using a semiconductor laser as a light source, it is necessary to overlook the single-axis mode.

この目的を達するためH、C、Ca5ey 等が雑誌“
Applied Physics Letters” 
27巻142頁(1975年)に述べているようにdi
stributed−feedback (D F B
 ) v−ザが提案され開発されている。これは元の進
行領域に凸凹のきざみを周期的に設け、この凹凸による
元の反射によって決定される単一軸モードで発振させよ
うとするものである。このDFBレーザをつくるには、
発振波長と同一の凹凸を共振器長方向に形成する必要が
あり、大掛りな装置が必要であると共に複雑で再現性の
乏しい工程全必要としていた。又DFBV−ザは凹凸間
での元の干渉をともなって発振が生じるので、一般に閾
値電流が高くなるのみならず″、その凹凸を埋込んで成
長する際に生じる界面付近でのdislocation
のため劣化が激しい等の欠点があり実用化には種々の問
題がある。
To achieve this purpose, H, C, Ca5ey, etc. published the magazine “
Applied Physics Letters”
As stated in Vol. 27, p. 142 (1975), di
distributed-feedback (D F B
) v-the has been proposed and developed. This is intended to periodically provide irregularities in the original traveling region and to cause oscillation in a single-axis mode determined by the original reflection by the irregularities. To make this DFB laser,
It is necessary to form irregularities that are the same as the oscillation wavelength in the length direction of the resonator, which requires large-scale equipment and requires a complex process with poor reproducibility. In addition, in DFBV-Z, oscillation occurs with the original interference between the unevenness, so not only does the threshold current generally become high, but also the dislocation near the interface that occurs when the unevenness is buried and grown.
Therefore, it has drawbacks such as severe deterioration, and there are various problems in putting it into practical use.

これに対して波長の近似した二つのレーザ発根をカップ
リングすると半導体レーザの同−発撮波長のみが互いに
競合することによって単−情モード化する事がラング及
びコバヤシによって米国雑誌“IEgE The Jo
urnal of Quantum Elect−ro
nics″誌QE−11巻515頁(1’975年)に
報告されている。この効果全利用して単一半導体レーザ
から単−情モード発振を得る方法として、通常二つの共
振器長方向の発振元金ガイド層などを使ってカンプリン
グする事が試みられている。
On the other hand, when two laser beams with similar wavelengths are coupled, only the same emission wavelengths of the semiconductor lasers compete with each other, resulting in a monotonous mode, as reported by Lang and Kobayashi in the American magazine “IEgE The Jo.”
Urnal of Quantum Elect-ro
nics'' magazine, QE-11, page 515 (1'975).As a method of obtaining single-mode oscillation from a single semiconductor laser by fully utilizing this effect, it is usually Attempts have been made to perform compres- sion using an oscillation source guide layer.

しかし、この方法は完全な元のカップリングは不可能で
、単一軸モード発振が不確実であるばかりでなく、ガイ
ド層へのキャリアのもれのおそれがあり、閾値電流が上
昇する等の欠点を有していた。
However, with this method, complete original coupling is not possible, single-axis mode oscillation is uncertain, and there is a risk of carrier leakage into the guide layer, which increases the threshold current. It had

本発明の目的は、これら欠点を除去し、低ド〕値高効率
で発振するのみならず、基本横モード発振及び単一軸モ
ード発振による犬う゛C出力発掘が可能であると共に、
緩和振動の抑圧されrcすぐオしfc動特性を示し、か
つ高速変h1可能で比蚊的答易に製作でき再現性および
信頼性の上ですぐれた半導体V−ザを提供する事にある
The purpose of the present invention is to eliminate these drawbacks, to not only oscillate with high efficiency at a low drive value, but also to be able to generate high-speed C output through fundamental transverse mode oscillation and single-axis mode oscillation.
It is an object of the present invention to provide a semiconductor V-zer which suppresses relaxation oscillations, exhibits RC and FC dynamic characteristics, can change h1 at high speed, can be manufactured with relative ease, and has excellent reproducibility and reliability.

本発明の半導体レーザは、この半導体基板上に、不純物
ドープした活性層とこの活性層に隣接してこの活性層と
同一の導電性でこの活性111よりも屈折率が小さい材
質からなるガイド層とを前記活性層と同一の導電性でこ
のガイド層よ)も屈折率が小さい材質からなる第1およ
び第2のクラッド層で挾んだダブルへテロ接置半導体多
層構造を、共振器の長さ方向に一方の反射面近傍から順
に幅の狭い第1のストライプ状領域とこの領域よりも幅
の広い第2のストライプ状領域とこの領域より更に幅の
広い第3のストライプ状領域とを形成し、前記第1と第
2のストライプ状領域との境界面および前記第2と第3
のストライプ状領域との境界面がそれぞれレーザ元に対
して全反射角となったストライブ状構造と、このストラ
イプ状構造の両側で前記基板上に埋込まれた第3のクラ
ッド層と全軸え、前記第2のストライプ状領域の活性層
内にこの活性層と逆の導電性をもつ不純物で不純物補償
して前記共振器の長で方向に形成された第1のストライ
ブ状励起領域と、前記第3のストライプ状領域の活性層
内に前記不純物により不純物補償して前記共振器の長て
方向に互に平行に複数本形成された第2のストライプ状
励起領域と、これら箒lおよび第2の各励起領域に独立
に設けられた電流注入1N溝とを有すること全特徴とす
る。
The semiconductor laser of the present invention has an impurity-doped active layer and a guide layer adjacent to the active layer made of a material having the same conductivity as the active layer and a lower refractive index than the active layer 111 on the semiconductor substrate. This guide layer has the same conductivity as the active layer and is also sandwiched between first and second cladding layers made of a material with a small refractive index. A first stripe-like region having a narrow width, a second stripe-like region having a wider width than this region, and a third stripe-like region having a width even wider than this region are formed in order from the vicinity of one reflective surface in the direction. , the interface between the first and second striped regions and the second and third striped regions.
A stripe-like structure whose interface with the stripe-like region is at a total reflection angle with respect to the laser source, and a third cladding layer embedded on the substrate on both sides of this stripe-like structure A first stripe-like excitation region is formed in the active layer of the second stripe-like region in the direction along the length of the resonator by impurity compensation with an impurity having a conductivity opposite to that of the active layer. , a plurality of second stripe-like excitation regions formed in the active layer of the third stripe-like region in parallel with each other in the longitudinal direction of the resonator by impurity compensation with the impurity; The present invention is characterized in that each of the second excitation regions has a current injection 1N groove independently provided therein.

以下11面を用いて本発BljJを詳細に説明する。The present BljJ will be explained in detail using page 11 below.

第1図は本発明の実施1!′すの斜視図、第211.第
31」、第4図、第5図は第1図のA−A’、 B−B
′。
Figure 1 shows implementation 1 of the present invention! ' Perspective view of 211. 31'', Figures 4 and 5 are A-A' and B-B of Figure 1.
'.

C−C’断面図および上面図、846図、第7図、第8
図はこの実施し1jの製造途中の側面図、斜視図および
平面図であろうこの実施1列の基1遣方法は、まず第6
図に示すように、(100)面を平面とするn形GaA
s基板lo上lcn形AIo、+20ao6sAs第1
クラッド層11を1.5μm1次いてn形濃度n””I
 XI o”Cm−3のAI 0.2 sGa o、r
 sAsガイ トノ112e0.5μm、n形濃度n 
= 3 X 10” cm−3のAI O,1sGa 
o、e 5活性層13を0.08Jim 、n形AI0
.4GaO,6As第2クラッド層14tl−1,0μ
m成長させる。この場合、高濃度のn形AlGaAs層
は5nTe。
CC' sectional view and top view, Figure 846, Figure 7, Figure 8
The figure shows a side view, a perspective view, and a plan view of this embodiment 1j in the middle of manufacturing.
As shown in the figure, n-type GaA with (100) plane as the plane
lcn type AIo on s substrate lo, +20ao6sAs first
The cladding layer 11 has a thickness of 1.5 μm and an n-type concentration n””I
AI of XI o”Cm-3 0.2 sGa o, r
sAs guy Tono 112e0.5μm, n type concentration n
= 3 X 10” cm-3 of AI O, 1sGa
o, e 5 active layer 13 0.08Jim, n-type AI0
.. 4GaO, 6As second cladding layer 14tl-1,0μ
m grow. In this case, the high concentration n-type AlGaAs layer is 5nTe.

もしくはTeなどの不純物のドーピングにより形成する
事ができる。
Alternatively, it can be formed by doping with an impurity such as Te.

次に、5i02膜15で全体を被膜した後フォトレジス
ト法およびエツチング矢金用いて共振器の長さ方向(0
11) において、片側の反射面近傍に幅3μm長さ1
0μmの第1のストライプ状領域31.それに続いて幅
8μm長さ200μm の第2のストライプ状領域32
.続いて幅20μm長さ100 μmの第3のストライ
プ状領域33にそれぞれS io 2膜15を残して池
の領域in形G a A s基板10に達するまでエツ
チングする。
Next, the entire surface is coated with a 5i02 film 15, and then photoresist method and etching arrow are used to coat the resonator in the longitudinal direction (0
11) In the vicinity of the reflective surface on one side, a width of 3 μm and a length of 1
0 μm first striped region 31. This is followed by a second striped region 32 with a width of 8 μm and a length of 200 μm.
.. Subsequently, etching is performed until the S io 2 film 15 is left in each of the third stripe-like regions 33 having a width of 20 μm and a length of 100 μm until reaching the in-type GaAs substrate 10 in the pond region.

(箒7図)。この時各ストライプ状領域の中心は共振器
の長さ方向で一致するようにし、反射面近傍の第1スト
ライプ状領域31とこれに隣接する第2ストライプ状領
域32との境界および第2ストライプ状領域32とこれ
に隣接する斗3ストライブ状領域33との境界では各々
の斜面が共振器の長さ方向となす角度θ(第8図)は(
−一〇)が臨界角よシも大きくなるようにする。すなわ
ち臨界角ψは、nlを埋込み層の屈折率、n2をガイド
層もしくは活性層の屈折率としたとき次式のようになる
(Broom diagram 7). At this time, the centers of each striped region are made to coincide in the length direction of the resonator, and the boundaries between the first striped region 31 near the reflecting surface and the second striped region 32 adjacent thereto, and the second striped region At the boundary between the region 32 and the adjacent striped region 33, the angle θ (Fig. 8) that each slope makes with the longitudinal direction of the resonator is (
−10) is set so that the critical angle and shi are also large. That is, the critical angle ψ is expressed by the following equation, where nl is the refractive index of the buried layer and n2 is the refractive index of the guide layer or active layer.

nl 5inψ=− 2 この実施例の場合には、活性層のみならずガイド層へし
み出して伝搬する元も全反射するように0度くθ〈14
度にする事が望ましい。このようにすれば6第1及び第
2の励起領域から発光し活性層およびガイド層内を共振
器長方向に伝搬する元のうち斜面にぶつかったものは、
この斜面で全反射されて両度射面近傍の幅の狭いストラ
イプ状領域内を進行する。
nl 5in ψ=- 2 In this example, the angle θ<14
It is desirable to do so at a certain time. In this way, among the sources that emit light from the first and second excitation regions and propagate in the cavity length direction within the active layer and the guide layer, those that hit the slope will
It is totally reflected by this slope and travels within a narrow stripe-shaped area near the plane of incidence.

次に、5iOz膜15を残したまま、ガイド1→12よ
りも屈折率の低い材質からなりストライプ状のダブルへ
テロ(DH)接合構造の構成と不純物タイプの異なるp
−形−AI O,3sGa o、s sAs埋込み/i
! (第3クラッド層)16で埋込む。この時5iOz
膜15上には結晶成長されないのでストライプ状DH接
合構造の両側だけを埋込む事ができる。この埋込みi1
6は比抵抗の高いp形にする事がよシ望ましい。次に、
5iOz膜15をI余去し゛・jすの5i0211倦1
7で全体を被膜し、箒2ストライプ状領域32の中央部
分に幅3μm長さ180μm の窓34をあけ、第3ス
トライプ状領域33には幅8μmfおいて共振器長方向
に幅3μm長さ80μmの窓35.36fc二つ平行に
あけ埋込み法やニゾーン法等による低濃度拡散法により
s x i ot8ctY3の濃度の亜鉛を活性層内に
まで拡散する(亜鉛拡散領域18)。
Next, while leaving the 5iOz film 15, a striped double heterojunction (DH) structure made of a material with a lower refractive index than the guides 1→12 and a p-type film with different impurity types were added.
-Form-AI O,3sGa o,s sAs embedded/i
! (Third cladding layer) Filled with 16 layers. At this time 5iOz
Since no crystal is grown on the film 15, only both sides of the striped DH junction structure can be filled. This embed i1
It is preferable that 6 be of the p-type, which has a high specific resistance. next,
Remove the 5iOz film 15.5i0211〦1
A window 34 with a width of 3 μm and a length of 180 μm is opened in the center of the second striped region 32, and a window 34 with a width of 8 μm and a width of 3 μm and a length of 80 μm in the resonator length direction is formed in the third striped region 33. Two windows 35 and 36fc are opened in parallel, and zinc at a concentration of s x i ot8ctY3 is diffused into the active layer by a low concentration diffusion method such as an embedding method or a two-zone method (zinc diffusion region 18).

この時活性層13は不純物補償されたp形になるが、一
方活性層13に隣接したガイド層12のn形濃度は亜鉛
拡散濃度よシも高いので亜鉛拡散の深さを制御しなくて
も活性層13とガイド層12との境界にpn接合が形成
される。次に、第1及び第2のストライプ状領域内の亜
鉛拡散をした領域の拡散光面にそれぞれ独立にp形オー
ミックコンタクト19,20を形成し、一方基板10側
にはn形オーミックコンタクト21を形成し、各p形オ
ーミックコンタク)19.20にそれぞれ独立に電流注
入機構をもうけることにより本発明の半導体レーザが得
られる。この実施例は、第4図に示すように、パルス駆
動源3oにょジオ−ミックコンタクト19.21間にパ
ルス信号全供給することによりパルス状のレーザ元出刃
を得ることができる。なお、オーミックコンタクト20
゜210間には安定動作のために抵抗29が接続される
At this time, the active layer 13 becomes p-type with impurity compensation, but on the other hand, the n-type concentration of the guide layer 12 adjacent to the active layer 13 is higher than the zinc diffusion concentration, so there is no need to control the depth of zinc diffusion. A pn junction is formed at the boundary between the active layer 13 and the guide layer 12. Next, p-type ohmic contacts 19 and 20 are formed independently on the diffusion light surfaces of the zinc-diffused regions in the first and second striped regions, while an n-type ohmic contact 21 is formed on the substrate 10 side. The semiconductor laser of the present invention can be obtained by forming a current injection mechanism independently in each p-type ohmic contact (19, 20). In this embodiment, as shown in FIG. 4, a pulsed laser cutting edge can be obtained by supplying all pulse signals between the pulse drive source 3o and the geogeometric contacts 19 and 21. In addition, ohmic contact 20
A resistor 29 is connected between the angles 210 and 210 for stable operation.

本発明の構造において、第2ストライプ状領域32内お
よび第3ストライプ状領域33内のn形活性層に亜鉛を
深く拡散し不純物補(Itして形成されたp影領域(3
4〜36)は電流注入によって第1〜第3の励起領域と
なる。tp¥に、この構造において第2と第3とのスト
ライプ状領域内に形成した励起領域が励起領域両端の活
性層との間に生じるpn接合面およびガイド層と活性層
との境界面に形成されたpn接合面に隣接しておシ、こ
れらpn接合面からキャリア(電子)が注入されて利得
分布が形成される。特に本発明の構造では先願とは異な
り三方のpn接合面からキャリアが注入されて利得分布
が形成されるので、平坦で矩形に近い利得分布となって
基本横モード発振に必要な利得の上昇を促し、低閾値の
レーザ発振を可能とする。
In the structure of the present invention, zinc is deeply diffused into the n-type active layer in the second striped region 32 and the third striped region 33, and the p shadow region (3
4 to 36) become the first to third excitation regions by current injection. In this structure, the excitation region formed in the second and third striped regions is formed at the pn junction surface between the excitation region and the active layer at both ends of the excitation region and at the interface between the guide layer and the active layer. Carriers (electrons) are injected from these pn junction surfaces adjacent to the pn junction surfaces, forming a gain distribution. In particular, in the structure of the present invention, unlike the previous application, carriers are injected from the pn junction plane on three sides to form a gain distribution, resulting in a flat and nearly rectangular gain distribution, which increases the gain necessary for fundamental transverse mode oscillation. This enables low-threshold laser oscillation.

更に、亜鉛拡散によって不純物補償して形成した1妨起
須域はパントチイルのために実効的なバンドギャップが
縮少しているが、非励起領域の活性層は高f%度のn影
領域になっているのでBursteinシフトのために
フェルミレベルがコングクションバンド内に入り実効的
なバンドギャップは広がっている。本発明者の実験結果
によれば、この実施例では、励起領域のバンドギャップ
が非励起領域のn形活性層にくらべて50me’V縮少
している。
Furthermore, the effective bandgap of the active region formed by impurity compensation by zinc diffusion is reduced due to the pantothiyl, but the active layer in the non-excited region becomes an n-shaded region with a high f% degree. Therefore, due to the Burstein shift, the Fermi level enters the congregation band and the effective band gap is widened. According to the experimental results of the inventor, in this example, the bandgap of the excitation region is reduced by 50 me'V compared to the n-type active layer of the non-excitation region.

従って、励起領域で発光したレーザ元は吸収をほとんど
受ける事なくn形活性層内を伝播する。特に、この実施
例の構造では、狛2ストライプ状領域と第3ストライブ
状領域との境界面が共振器方向に進行して込るレーザ元
に対して全反射角となっているので、第3ストライプ状
領域内の励起領域で発光した元のうちこの境界面に入射
したものは反射されて損失なく第2ストライプ状領域内
に入る。また、第2ストライプ状領域内の励起領域で再
励起したレーザ元は、共振器長方向に進行するが、反射
面近傍の第1ストライプ状領吠と第2ストライプ状領域
との境界面も共振器の長手方向に進行するレーザ元に対
して全反射角となっているので、レーザ元は損失なく第
1ストライブ状領域に入シ、反射面近傍に形成した幅の
狭い第1ストライプ状領域を吸収をうける事なく伝播す
る。
Therefore, the laser beam emitted in the excitation region propagates within the n-type active layer with almost no absorption. In particular, in the structure of this embodiment, since the boundary surface between the two-stripe region and the third stripe-like region forms a total reflection angle with respect to the laser source advancing toward the resonator. Of the light emitted from the excitation region within the three-stripe region, those that are incident on this interface are reflected and enter the second stripe-like region without loss. In addition, the laser source re-excited in the excitation region within the second striped region travels in the cavity length direction, but the boundary between the first striped region and the second striped region near the reflective surface also resonates. Since it is at a total reflection angle with respect to the laser source traveling in the longitudinal direction of the device, the laser source enters the first stripe-shaped region without loss, and the narrow first stripe-shaped region formed near the reflecting surface. propagates without being absorbed.

しかも、このストライプ状領域は活性層垂直方向がクラ
ッド層で挾まれているばかシでなく、活性層水平横方向
も埋込み層(第3クラッド層)で両端が挾みこまれてい
るので、レーザ元に対して光重波路を形成している。従
って、レーザ元は漏れる事なくレーザ元に対して透明に
近いこの光導波路全進行する。更に、反射面で反射され
た元は再びこの元導波路内をとおシ、幅の広い第2.第
3のストライプ状領域にもどり、各領域の励起領域で再
励起されるので損失なく発振に寄与する。
Furthermore, this striped region is not just sandwiched between cladding layers in the vertical direction of the active layer, but also in the horizontal and lateral directions of the active layer, both ends of which are sandwiched between buried layers (third cladding layer). A heavy optical wave path is formed with respect to the beam. Therefore, the laser source travels the entire length of this optical waveguide, which is nearly transparent to the laser source, without leaking. Furthermore, the source reflected by the reflecting surface passes through this source waveguide again and enters the wide second waveguide. The light returns to the third striped region and is re-excited in the excitation region of each region, contributing to oscillation without loss.

このように副反射面近傍をレーザ元に対して透明にする
事により、光学損失を生ずるレベル全署しく上昇させる
事ができ火元出方発振が可能となる。すなわち、通常の
半導体レーザはキャリア注入によって励起領域となる活
性層端面が反射面として露出しておシ、そこでは表面再
結合を生じ空乏層化してバンドギャップの^少した状態
になっているので、火元出力発条ヲさせるとこの縮少し
たバンドギャップのため元が吸収され局所的な発熱を生
じ融点近くまで上昇して光学損傷を生じる。
By making the vicinity of the sub-reflecting surface transparent to the laser source in this way, the level of optical loss that occurs can be raised all the way, and oscillation from the source can be performed. In other words, in a normal semiconductor laser, the end face of the active layer, which becomes the excitation region, is exposed as a reflective surface due to carrier injection, and surface recombination occurs there, forming a depletion layer and creating a state with a small band gap. When the source power is increased, the source is absorbed due to this reduced bandgap, causing local heat generation and rising to near the melting point, causing optical damage.

これに対して本発明の構造は、レーザ元が副反射面近傍
のレーザ進行領域のバンドギャップよシも5QmeV 
以上縮少した領域から生じているので、反射面近傍での
元の吸収は小さく光学損傷を生ずるレベルは著しく上昇
する。
On the other hand, in the structure of the present invention, the laser source has a band gap of 5QmeV in the laser traveling region near the sub-reflection surface.
Since the light is generated from the reduced area, the original absorption near the reflecting surface is small and the level of optical damage is significantly increased.

本発明の構造では、ε53のストライプ状領域内のニフ
の励起領域から発光しt光は・喜2のストライプ状領域
内にもれる事なく入射するが、この入射光は、元の励起
された領域に集光する性質にょ力励起領域で完全にカッ
プリングする。その結果二つの励起領域からの発振波長
のうち発振波長が一致したものが強められて発振軸モー
ドになる。
In the structure of the present invention, the t light emitted from the excitation region of the nif in the striped region of ε53 enters the striped region of Ki2 without leaking, but this incident light is The property of concentrating light on a region causes complete coupling in the excitation region. As a result, of the oscillation wavelengths from the two excitation regions, those whose oscillation wavelengths match are strengthened and become the oscillation axis mode.

通常、二つの励起領域の発振軸モードは必ずしも一致し
ていないが、結果的には軸モードがほぼ一本になシ単−
軸モード発振を実現できる。
Normally, the oscillation axis modes of the two excitation regions do not necessarily match, but as a result, the oscillation modes become almost one.
Axis mode oscillation can be achieved.

更に、本発明の構造にお込て、第2および第3のストラ
イプ状領域内の励起領域に:はそれぞれ独立に電流注入
機溝が設けられてbる。この第3ストライプ状領域内の
励起領域には一定電流を注入して励起状態にしておき、
第2ストライプ状領域内の励起領域には電流を注入せず
非励起状態にしておくと、そこでは伝播する光に対して
150Crn−1程度の吸収損失′f!:有するので、
伝播してきた元は吸収されレーザ発振が阻止される。こ
れに対して第2ストライプ状領域内の励起領域にも電流
を注入して励起状態に変換すると伝播してきた元は再励
起されてただちにレーザ発振が開ll音される。従って
、呵3ストライプ状領域内の励起領域には常に一定電流
全注入しておき、第2ストライプ状領域内の励起領域は
電流注入のon−offi繰返す事によって容易にPC
M動作をさせる事ができ、しかもその注入電流量を制御
する椹により任意の大光出力発振金得る事ができる。
Further, in the structure of the present invention, the excitation regions in the second and third striped regions are each independently provided with current injector grooves. A constant current is injected into the excitation region within this third striped region to bring it into an excited state,
When no current is injected into the excitation region in the second striped region and the excitation region is kept in a non-excited state, there is an absorption loss 'f! of about 150 Crn-1 for the propagating light. : Since it has,
The propagating source is absorbed and laser oscillation is blocked. On the other hand, when a current is injected into the excitation region within the second striped region to convert it into an excited state, the propagated source is re-excited and the laser oscillation is immediately started. Therefore, a constant full current is always injected into the excitation region within the three striped regions, and the excitation region within the second striped region is easily PCized by repeating current injection on and off.
M operation can be performed, and by controlling the amount of current injected, it is possible to obtain an oscillator with an arbitrary large optical output.

さらに本発明の構造は、前記先順とは異なシ活性層に隣
接してガイド層をもつため次のような利点を有する。第
一に光学損失ノベル全署しく上昇できる。すなわちレー
ザ発振時において元の一部は活性層から隣接したガイド
層にしみ出てレーザ発振するが、しみ出た元は発振波長
に対してバンドギャップの広いガイド層1c通るので吸
収損失金全く受ける事なく透過する。ところで、活性層
においては、亜鉛を深く拡散して不純物補償して形成し
た励起領域ではそのバンドギャップが縮少しているが、
この励起領域で発光した元が高濃度のn形活性層を進行
する際にはわずかではあるが元の吸収をうけ、その吸収
係数は実験によれば約3 Q Cm’である事が判明し
た。この場合、ガイド層金もたない状態で大電流全注入
して犬光出力発損傷が通常のAlGaAs、/GaAs
 半7・導体レーザの5−6倍程匿の光出力によシ生ず
るが、本発明の構造のようにガイド層に元をしみ出させ
て活性層内の元の量を少くすれば光学損傷を生じる光出
力レベルを上昇させる事ができ、犬光出力発催が可能に
なる。
Furthermore, the structure of the present invention has the following advantages because it has a guide layer adjacent to the active layer, which is different from the above-described order. Firstly, the optical loss novel can be completely improved. That is, during laser oscillation, a part of the source seeps out from the active layer to the adjacent guide layer and oscillates, but the leaked source passes through the guide layer 1c, which has a wide bandgap relative to the oscillation wavelength, and therefore suffers no absorption loss. Passes through without incident. By the way, in the active layer, the band gap is reduced in the excitation region formed by deeply diffusing zinc and compensating for impurities.
When the element emitted in this excitation region travels through the highly concentrated n-type active layer, it is absorbed by the element, albeit slightly, and the absorption coefficient was found to be approximately 3 Q Cm' according to experiments. . In this case, when a large current is fully injected without the guide layer gold, the optical output damage is normal for AlGaAs and /GaAs.
This occurs due to the optical output being 5 to 6 times smaller than that of a semi-conductor laser, but if the amount of the element in the active layer is reduced by allowing the element to seep into the guide layer as in the structure of the present invention, optical damage can be reduced. The light output level produced can be increased, making it possible to produce dog light output.

又、本発明の構造では、ガイド層内を進行する元も第3
ストライプ状領、賊と第2ストライプ状領域との境界面
および第2ストライプ状領域と第1ストライプ状領域と
の境界面でそれぞれ全反射され、これら反射面近傍に隣
接した第1ストライプ状領域内に損失なく入射する。こ
の領域ではガイド層もガイド層よシも屈折率の低い第3
のクラッド層で全体を埋込まれており′)Y、導波路と
なっているので、元はもれる事なくガイド層内を進行で
き損失なく発振する事ができる。
In addition, in the structure of the present invention, the source traveling within the guide layer is also the third one.
Total reflection occurs at the striped region, the interface between the band and the second striped region, and the interface between the second striped region and the first striped region, and within the first striped region adjacent to these reflective surfaces. is incident without loss. In this region, both the guide layer and the guide layer have a low refractive index.
Since the waveguide is entirely embedded in the cladding layer, the waveguide can travel within the guide layer without leaking and can oscillate without loss.

更に、一般の半導体レーザでは、活性ノー垂直方向の広
がシ角程が40度〜50度以上で、活性層水平横方向の
広がシ角θIが10度〜15[前後であるためそのスポ
ットサイズが偏平な形状であるが1本発明の構造は元の
ガイド1−へのしみ出しによ勺活性層垂直方向の広がり
角θ□を25度〜30度まで狭くする事ができ、また反
射面が埋込み層(よって活性層水平横方向で挾まれてい
るので、活性水平横方向の広がり角θ9は15度〜20
度前後となるので、はぼ等心円的な光源金得る事ができ
る。
Furthermore, in general semiconductor lasers, the vertical spread angle of the active layer is 40 degrees to 50 degrees or more, and the active layer horizontal spread angle θI is around 10 degrees to 15 degrees, so the spot Although the size is flat, the structure of the present invention can narrow the vertical spread angle θ□ of the active layer to 25 to 30 degrees by seeping into the original guide 1. Since the surface is sandwiched between the buried layer (and therefore the active layer in the horizontal and lateral directions), the active horizontal and lateral spread angle θ9 is 15 degrees to 20 degrees.
Since it is around 100 degrees, it is possible to obtain a nearly equicentric light source.

本発明の構造は、先順と異なり、中央の扇の広いストラ
イブ状領域内に不純物補償して励起領域が形成されてい
る。ところでn形、p形不純物タイプの差、不純物濃度
によすGaAs等の半導体結晶は屈折率が異なシ、この
実施例ではキャリア注入時に約9X10−3 の屈折率
差を生じ、活性層水平横方向において励起領域の屈折率
が上昇していた。このように屈折率差が通常のBllレ
ーザのへテロ接合によって形成される値よりも充分小さ
く、横モード制御が可能な程度の大きさであり、かつガ
イド層と活性層との境界のpn接合から主にキャリアが
注入されるので、lマは矩形に近いキャリア分布が保た
れる。このため両度射面近傍のストライブの幅、すなわ
ち光導波路の幅をこの実施例程度に広くしておけば、キ
ャリア分布に空間的なホー A/ バーニングを生じに
<<、−欠損モート発振に必要な利得の上昇が抑圧され
て安定な基本横モード発掘ヲ大光出力発振時にも維持で
きる。
The structure of the present invention differs from the previous structure in that an excitation region is formed in a wide striped region of the central fan by compensating for impurities. By the way, semiconductor crystals such as GaAs have different refractive indexes depending on the type of n-type and p-type impurities and the impurity concentration. The refractive index of the excitation region was increasing in the direction. In this way, the refractive index difference is sufficiently smaller than the value formed by the heterojunction of a normal Bll laser, large enough to enable transverse mode control, and the pn junction at the boundary between the guide layer and the active layer. Since carriers are mainly injected from , a nearly rectangular carrier distribution is maintained in lma. For this reason, if the width of the stripe near both incident surfaces, that is, the width of the optical waveguide, is made as wide as in this example, spatial hole burning will occur in the carrier distribution. This suppresses the increase in gain required for this, and allows stable fundamental transverse mode detection to be maintained even during large optical output oscillation.

又本発明の構造は、第2.第3のストライブ状領域の第
2クラッド層でこの第2クラッド層と亜鉛を拡散した領
域との間にもpn接合が形成され−Cいるが、ポ2クラ
ッド層を薄くしておけば大電流注入によってここからキ
ャリアがもれる割合は小さく、また第2クラッド層金薄
くする事は熱抵抗を減少させるので大光出力発1辰上か
らもM効である。
Further, the structure of the present invention is as follows. In the second cladding layer of the third striped region, a pn junction is also formed between this second cladding layer and the region in which zinc is diffused. The rate at which carriers leak from this layer due to current injection is small, and making the second cladding layer thinner reduces thermal resistance, so it is effective for producing large optical output.

以上説明したように、本発明による半導体レーザは、励
起領域が直接反射面に露出している通常の半導体レーザ
に比べて、外部との化学反応はおこりにくく反射面の光
学反応による劣化を阻止する事ができ、また通常の埋込
みへテロ接合(BH)レーザと同一製造過程でつくる事
ができ、更に高速PCM駆動を容易に行う事ができ、か
つ単一軸モード発掘を実現する事ができる。
As explained above, in the semiconductor laser according to the present invention, compared to a normal semiconductor laser in which the excitation region is directly exposed to the reflective surface, chemical reactions with the outside are less likely to occur, and deterioration due to optical reactions on the reflective surface is prevented. Furthermore, it can be manufactured in the same manufacturing process as a normal buried heterojunction (BH) laser, it can be easily driven by high-speed PCM, and it can realize single-axis mode excavation.

なお、この実施例はAI GaAs/GaAs ダブル
へテロ接合結晶材料について説明したが、他の結晶材料
、例えばInGaAsP/InGaP、 InGaP/
AlIn1’。
Although this example describes the AI GaAs/GaAs double heterojunction crystal material, other crystal materials such as InGaAsP/InGaP, InGaP/
AlIn1'.

InGaAsP/InP、AlGaAs8b/(JaA
sSb 等数多くの結晶材料にも適用する事ができる。
InGaAsP/InP, AlGaAs8b/(JaA
It can also be applied to many crystalline materials such as sSb.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の斜視図、第2図、第3図、第4
図は第1図のA−λ、B−B’、C−C’の各断面図、
第5図は第1図の上面図、第6図はこの実権例の作製の
過程においてダブルへテロ接合結晶を成長した時の断面
図、第7図はこの実施例の作製過程においてダブルへテ
ロ接合結晶全ストライプ状領域を残してその両側をエッ
チオフした時の斜視図%第8図は第7図の上面1(であ
る。図において 10・・す・・−n形GaAs基板、11・−・・・n
形Alo、azGa O,6sAs第1クラッド層、1
2 ・=・n形AI0.25Gao、tSASガイド層
、l 3 ・−−−−−n形Al o、t sQa O
,85AS活性層、14−− n形Al o、4Gao
、sAs WJ2 :9 ラッ)”層、15・・・・・
・5i02膜、16・・・・・・p−形AI0.35G
ao、5sAs jili込み層、17−・−・−8r
OzfJi、i s ・・・・・・亜鉛拡散領域、19
・・・・−・p形オーミックコンタクト、20・・・・
・・p形オーミックコンタクト、21・・・・・・n形
オーミックコンタクト、29・・・・・・抵抗、30・
・・・・・ハルス[動4.31 、 32. 33・・
・・・・ストライプ状領域% 34,35.36・・・
・・・窓である。 讐 3 図 第4−図 第左図
Figure 1 is a perspective view of an embodiment of the present invention, Figures 2, 3, and 4.
The figure is each cross-sectional view of A-λ, B-B', and CC' in Fig. 1,
FIG. 5 is a top view of FIG. 1, FIG. 6 is a cross-sectional view of a double heterojunction crystal grown in the process of manufacturing this example, and FIG. 7 is a top view of the double heterojunction crystal grown in the process of manufacturing this example. Figure 8 is a perspective view when both sides of the bonded crystal are etched off leaving the entire striped region. In the figure, 10... - n-type GaAs substrate, 11... -...n
Type Alo, azGa O, 6sAs first cladding layer, 1
2 ・=・n-type AI0.25Gao, tSAS guide layer, l 3 ・---n-type Al o, t sQa O
, 85AS active layer, 14-- n-type Al o, 4 Gao
, sAs WJ2: 9 layer) layer, 15...
・5i02 film, 16...p-type AI0.35G
ao, 5sAs jili inclusion layer, 17-・-・-8r
OzfJi,is...Zinc diffusion region, 19
・・・・P type ohmic contact, 20・・・・
...p-type ohmic contact, 21...n-type ohmic contact, 29...resistance, 30.
...Hals [V.4.31, 32. 33...
...Stripe area% 34,35.36...
...It's a window. Enemy 3 Figure 4 - Figure left

Claims (1)

【特許請求の範囲】 半導体基板上に、不純物ドープした活性層とこの活性層
に隣接してこの活性層と同一の導電性でこの活性層よシ
も屈折率が小さい材質からなるガイド層とを前記活性層
と同一の6 TIE性でこのガイド層よりも屈折率が小
さい材質からなる第1および第2oクラツド層で挟んだ
ダブルへテロ接合半導体多層構造を、共振器の長さ方向
に一方の反射面近傍から順に幅の狭い第1のストライプ
状領域とこの領域よシも幅の広い第2のストライプ状領
域とこの領域よシ更に幅の広い第3のストライプ状領域
とを形成し、前記第1と第2のストライプ状領域との境
界面および前記第2と第3のストライプ状領域との境界
面がそれぞれレーザ元に対して全反射角となったストラ
イプ状構造と、このストライプ状構造の両側で前記基板
上に埋込まれた第3のクラッド層とを備え、前記@2の
ストライプ状領域の活性層内にこの活性層と逆の導電性
をもつ不純物で不純物補償して前記共振器の長で方向に
形成された第1のストライプ状励起領域と。 前記第3のストライプ状領域の活性層内に前記不純物に
より不純物補償して前記共振器の長て方向に互に平行に
複数本形成された第2のストライプ状励起領域と、これ
ら第1および第2の各励起領域に独立に設けられた電流
注入機構と全方することを特徴とする半導体レーザ。
[Claims] A semiconductor substrate is provided with an impurity-doped active layer and a guide layer adjacent to the active layer made of a material having the same conductivity as the active layer and a lower refractive index than the active layer. A double heterojunction semiconductor multilayer structure sandwiched between first and second o-clad layers made of a material with the same 6TIE properties as the active layer and a refractive index lower than that of the guide layer is formed on one side in the longitudinal direction of the resonator. A first stripe-like region having a narrow width, a second stripe-like region having a wider width than this region, and a third stripe-like region having a width even wider than this region are formed in order from the vicinity of the reflecting surface, and A striped structure in which the interface between the first and second striped regions and the interface between the second and third striped regions are at total reflection angles with respect to the laser source, and this striped structure. and a third cladding layer embedded on the substrate on both sides of the substrate, and impurity compensation is performed in the active layer of the @2 striped region with an impurity having a conductivity opposite to that of the active layer to achieve the resonance. a first stripe-shaped excitation region formed in the direction of the length of the vessel; a plurality of second stripe-like excitation regions formed in the active layer of the third stripe-like region in parallel with each other in the longitudinal direction of the resonator by impurity compensation with the impurity; 2. A semiconductor laser characterized by having a current injection mechanism independently provided in each excitation region.
JP12721483A 1983-07-13 1983-07-13 Semiconductor laser Pending JPS6018988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12721483A JPS6018988A (en) 1983-07-13 1983-07-13 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12721483A JPS6018988A (en) 1983-07-13 1983-07-13 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6018988A true JPS6018988A (en) 1985-01-31

Family

ID=14954545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12721483A Pending JPS6018988A (en) 1983-07-13 1983-07-13 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6018988A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161173A (en) * 1986-01-10 1987-07-17 Canon Inc Original scanning device
JPS63269119A (en) * 1987-04-27 1988-11-07 Nec Corp Multiple quantum well structure
JP2002076512A (en) * 2000-09-05 2002-03-15 Hitachi Ltd Semiconductor laser device and optical system device
JP2006120862A (en) * 2004-10-21 2006-05-11 Nippon Telegr & Teleph Corp <Ntt> Optical amplification element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161173A (en) * 1986-01-10 1987-07-17 Canon Inc Original scanning device
JPS63269119A (en) * 1987-04-27 1988-11-07 Nec Corp Multiple quantum well structure
JP2002076512A (en) * 2000-09-05 2002-03-15 Hitachi Ltd Semiconductor laser device and optical system device
JP2006120862A (en) * 2004-10-21 2006-05-11 Nippon Telegr & Teleph Corp <Ntt> Optical amplification element

Similar Documents

Publication Publication Date Title
US4063189A (en) Leaky wave diode laser
US4803691A (en) Lateral superradiance suppressing diode laser bar
US4841532A (en) Semiconductor laser
US4297652A (en) Injection-type semiconductor laser
US4546481A (en) Window structure semiconductor laser
JPS6343908B2 (en)
JPH0518473B2 (en)
JPS6018988A (en) Semiconductor laser
Botez Single-mode AlGaAs diode lasers
US4592061A (en) Transverse junction stripe laser with steps at the end faces
JPS61164287A (en) Semiconductor laser
JPS5832794B2 (en) semiconductor laser
US4434491A (en) Semiconductor laser
JPS59195895A (en) Semiconductor laser
JPH0671121B2 (en) Semiconductor laser device
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPS621277B2 (en)
JPS59197181A (en) Semiconductor laser
JPS5916432B2 (en) Composite semiconductor laser device
JPS5963788A (en) Semiconductor laser
JPS6112399B2 (en)
JPS59184585A (en) Semiconductor laser of single axial mode
JPS6237833B2 (en)
JPS5923585A (en) Semiconductor laser element
JPS58216488A (en) Semiconductor laser