JPS60187829A - Infrared radiation thermometer - Google Patents
Infrared radiation thermometerInfo
- Publication number
- JPS60187829A JPS60187829A JP59044319A JP4431984A JPS60187829A JP S60187829 A JPS60187829 A JP S60187829A JP 59044319 A JP59044319 A JP 59044319A JP 4431984 A JP4431984 A JP 4431984A JP S60187829 A JPS60187829 A JP S60187829A
- Authority
- JP
- Japan
- Prior art keywords
- infrared
- shutter
- detector
- temperature
- radiation thermometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005855 radiation Effects 0.000 title claims description 18
- 239000000463 material Substances 0.000 claims abstract description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 3
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- 238000010897 surface acoustic wave method Methods 0.000 claims description 11
- 229910001220 stainless steel Inorganic materials 0.000 claims 1
- 239000010935 stainless steel Substances 0.000 claims 1
- 230000010355 oscillation Effects 0.000 description 11
- 238000005259 measurement Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910003327 LiNbO3 Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0803—Arrangements for time-dependent attenuation of radiation signals
- G01J5/0805—Means for chopping radiation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Radiation Pyrometers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は非接触温度計として用いられる赤外輻射温度計
に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an infrared radiation thermometer used as a non-contact thermometer.
従来例の構成とその問題点
従来の赤外輻射温度計について、第1図により説明する
と、1は焦電型の赤外線検出器、2aは対象物体からの
赤外線人力Rを断続的に庶継するシャッタ、3はシャッ
タを駆動するモータ、4はシャッタの温度を測温するだ
めのダイオードを示す。Configuration of conventional example and its problems A conventional infrared radiation thermometer will be explained with reference to Fig. 1. 1 is a pyroelectric infrared detector, and 2a is an infrared ray detector that intermittently transmits infrared rays R from a target object. A shutter, 3 a motor for driving the shutter, and 4 a diode for measuring the temperature of the shutter.
上記構成の動作を説明すると、赤外線検出器1は、シャ
ッタ2より断続的に赤外線人力Rを受けることにより、
対象物体とシャッタとの温度差に比例した電気信号を出
力する。対象物体の温度を正確に検知するためには、シ
ャッタ2の温度を精渡よく検出する必要があった。To explain the operation of the above configuration, the infrared detector 1 receives intermittently human infrared power R from the shutter 2.
Outputs an electrical signal proportional to the temperature difference between the target object and the shutter. In order to accurately detect the temperature of the target object, it is necessary to accurately detect the temperature of the shutter 2.
シャッタは一般に熱容量が小さく、その温度は雰囲気温
度の変動に大きく左右される。またシャッタ温度を測温
するためには非接触で測温する必要がある。このだめ熱
容量の小さい、応答速度の速い高価なダイオード4をシ
ャッタ2aに接近させて設ける必要があった。A shutter generally has a small heat capacity, and its temperature is largely influenced by changes in ambient temperature. Furthermore, in order to measure the shutter temperature, it is necessary to measure the temperature without contact. Therefore, it was necessary to provide an expensive diode 4 with a small heat capacity and a fast response speed close to the shutter 2a.
しかしながら、上記のような構成では、シャッタ2aが
雰囲気温度の変動に充分追随するようにシャッタ2aの
熱容量を小さくする必要がある、あるいはシャッタ2a
の温度が正確に測温されるようにシャッタ2aの赤外放
射率εを1.0に近づけるために塗膜処理を施すなど、
シャッタ2aに細心の注意が必要であり、材料などの限
定もあった。However, in the above configuration, it is necessary to reduce the heat capacity of the shutter 2a so that the shutter 2a can sufficiently follow changes in the ambient temperature, or the shutter 2a must have a small heat capacity.
In order to accurately measure the temperature of the shutter 2a, a coating treatment is applied to bring the infrared emissivity ε of the shutter 2a close to 1.0.
The shutter 2a required careful attention, and there were limitations on the materials used.
また、シャッタ2aの温度を測温するために、ダイオー
ド4を用いるため、取り出し信号が小さいため、また定
電流あるいは定電圧回路を構成する必要があるなど、信
号処理が繁雑であった。Further, since the diode 4 is used to measure the temperature of the shutter 2a, the signal to be taken out is small, and a constant current or constant voltage circuit must be constructed, resulting in complicated signal processing.
また、赤外線検出器1とシャッタ2aとの温度が異なっ
た場合、対象物体の温度を正確に検出することができな
い。Furthermore, if the temperatures of the infrared detector 1 and the shutter 2a are different, the temperature of the target object cannot be detected accurately.
発明の目的
本発明は上記従来の問題点を解消するもので、シャッタ
温度の変動に左右されにくく、雰囲気温度の信号処理を
簡単にでき、しかも対象物体の温度を高精度に検出する
ことができる赤外輻射温度計を提供することを目的とす
る。Purpose of the Invention The present invention solves the above-mentioned conventional problems, and is less susceptible to fluctuations in shutter temperature, simplifies signal processing of ambient temperature, and can detect the temperature of a target object with high precision. The purpose is to provide an infrared radiation thermometer.
発明の構成
本発明は赤外放射率εが0.2以下の材料で構成した赤
外線を断続的に遮断する/ヤッタと、このシャッタによ
り断続的に遮断された赤外線を受光する赤外線検出器と
、この赤外線検出器の温度を検出する雰囲気温度検出器
とを備えてなる赤外輻射温度計である。Structure of the Invention The present invention includes a shutter that intermittently blocks infrared rays and is made of a material with an infrared emissivity ε of 0.2 or less, and an infrared detector that receives infrared rays that are intermittently blocked by the shutter. This infrared radiation thermometer is equipped with an ambient temperature detector that detects the temperature of this infrared detector.
この構成によりシャッタ温度の赤外検出器の出力に与え
る影響を小さくし、シャッタ温度の変動にかかわらず正
確に対象物体の温度を検出する。This configuration reduces the influence of the shutter temperature on the output of the infrared detector, and accurately detects the temperature of the target object regardless of fluctuations in the shutter temperature.
実施例の説明 本発明の第1の実施例について第2図により説明する。Description of examples A first embodiment of the present invention will be described with reference to FIG.
従来例と共通の構成要素には第1図と同番号を付してい
る。Components common to the conventional example are given the same numbers as in FIG.
5は赤外線検出器1の近傍に設けた雰囲気温度検出器と
して用いた市販のサーミスタ素子を示す。5 indicates a commercially available thermistor element used as an ambient temperature detector provided near the infrared detector 1.
シャッタ2bは、鉄板、5Us5F磨板、7ルミ板など
を用いて構成し、板厚は0.1mmとした。The shutter 2b was constructed using an iron plate, a 5Us5F polished plate, a 7luminium plate, etc., and the plate thickness was 0.1 mm.
赤外線検出器1はTo−5パツケージ型の焦電型検出器
とした。シャッタ2bと赤外線検出器1は約5 mm離
して設置した。The infrared detector 1 was a To-5 package type pyroelectric detector. The shutter 2b and the infrared detector 1 were placed approximately 5 mm apart.
本実施例と従来例の測定結果を表1に示す。測定条件す
よ、室温25℃において、対象物体を100℃とし、シ
ャッタ温度を25℃、45℃としたときの赤外線検出器
1の出力比を示す。それぞれのシャッタの赤外放射率を
も併せて表1に記した。Table 1 shows the measurement results of this example and the conventional example. Measurement conditions: The output ratio of the infrared detector 1 is shown when the room temperature is 25°C, the target object is 100°C, and the shutter temperatures are 25°C and 45°C. The infrared emissivity of each shutter is also listed in Table 1.
表1 実施例および従来例の測定結果
表1において、■は従来例を示すものであり、シャッタ
をアルミ板で構成し、ラッカーにより塗膜を形成し、赤
外放射率εを0.85としたもの、■、■、@は本発明
の実施例を示す。Table 1 Measurement Results of Examples and Conventional Examples In Table 1, ■ indicates a conventional example, in which the shutter is made of an aluminum plate, a coating is formed with lacquer, and the infrared emissivity ε is 0.85. , ■, ■, and @ indicate examples of the present invention.
表1の出力比は、シャッタ温度が25℃のときの赤外線
検出器1の出力電圧V25と、シャッタ温度が45℃の
ときの出力電圧V45との出力電圧の比を示す。The output ratio in Table 1 shows the ratio of the output voltage V25 of the infrared detector 1 when the shutter temperature is 25°C and the output voltage V45 when the shutter temperature is 45°C.
赤外線検出器の出力電圧の変化を第3図に示す。Figure 3 shows changes in the output voltage of the infrared detector.
同図において、横軸に時間、縦軸に出力電圧を示す。S
はシャッタを開いた時間を示す。Hは出力電圧を示す。In the figure, the horizontal axis shows time and the vertical axis shows output voltage. S
indicates the time the shutter was opened. H indicates the output voltage.
表1より、従来の赤外輻射温度計においては、シャッタ
の温度が変動することにより、出力が40%も低下する
ことがわかる。それに対して本発明の実施例においては
、その変化は小さく、出力低下は2〜10%と非常に小
さい。From Table 1, it can be seen that in the conventional infrared radiation thermometer, the output decreases by as much as 40% when the shutter temperature fluctuates. On the other hand, in the embodiment of the present invention, the change is small, and the output reduction is very small, 2 to 10%.
以上のように、シャッタを赤外放射率εが0.2以下の
材料で構成することによりシャッタ温度に左右されにく
い赤外輻射温度計を実現することができ、高精能な赤外
輻射温度計を提供することができる。As described above, by constructing the shutter with a material with an infrared emissivity ε of 0.2 or less, an infrared radiation thermometer that is less affected by the shutter temperature can be realized, and a highly accurate infrared radiation temperature can provide a meter.
以上説明したように、本発明の実施例によれば赤外線検
出器1の出力信号がシャッタの温度に左右されることが
少ないため、シャッタの温度を正確に測窄する必要がな
く、シャンクの近傍に、熱容量の小さな、応答速度の速
い高価なダイオードを設ける必要がない。As explained above, according to the embodiment of the present invention, the output signal of the infrared detector 1 is less affected by the temperature of the shutter, so there is no need to accurately measure the temperature of the shutter, and Therefore, there is no need to provide an expensive diode with a small heat capacity and a fast response speed.
表1に示したように、赤外線検出器の出力は、シャッタ
構成材料の赤外放射率εを0.2以下にすることにより
、シャッタ温度に左右されにくくなる。このだめ、赤外
線検出器の出力は対象物体と赤外線検出器との温度差に
比例することになる。As shown in Table 1, the output of the infrared detector becomes less dependent on the shutter temperature by setting the infrared emissivity ε of the shutter constituent material to 0.2 or less. In this case, the output of the infrared detector is proportional to the temperature difference between the target object and the infrared detector.
従って、雰囲気温度検出器として、特に熱容量、応答速
度などで選別することなく、市販の安価なサーミスタ素
子を赤外線検出器の近くに設置すればよく、赤外線検出
器と同等の熱容量のもので充分である。このため、前記
ダイオードに比べ、出力信号を大きくとることができ、
また通常のサーミスタ使用法でよく、信号処理も非常に
簡単となる。また、設置場所も、シャッタに接近させる
等の制約もなくなる。Therefore, as an ambient temperature detector, it is sufficient to install a commercially available inexpensive thermistor element near the infrared detector without selecting it based on heat capacity, response speed, etc., and one with the same heat capacity as the infrared detector is sufficient. be. Therefore, compared to the diode, it is possible to obtain a larger output signal,
In addition, normal thermistor usage is sufficient, and signal processing becomes extremely simple. Furthermore, there are no restrictions on the installation location, such as proximity to the shutter.
次に本発明の第2の実施例について第4.5図を用いて
説明する。Next, a second embodiment of the present invention will be described using FIG. 4.5.
同図において、前記実施例と相違する点は、赤外線検出
器1′として、焦電型検出器から弾性表面波型検出器と
した点と、雰囲気温度測温用のサーミスタ素子5を無く
した点である。In the figure, the difference from the above embodiment is that the infrared detector 1' is replaced by a surface acoustic wave detector instead of a pyroelectric detector, and the thermistor element 5 for measuring the ambient temperature is eliminated. It is.
弾性表面波型赤外線検出器1′は、弾性表面波素子6(
以下、素子と称す)と増幅器7と組み合わせて発振器を
溝成し、出力端子8よりその発振周波数を検知する。こ
のとき素子6は遅延線として作用する。素子6に赤外線
が照射されると、素子6に温度変化が発生し、素子6の
弾性表面沿の遅延特性が変化し、発振周波数が変化する
。The surface acoustic wave infrared detector 1' includes a surface acoustic wave element 6 (
(hereinafter referred to as an element) and an amplifier 7 form an oscillator, and its oscillation frequency is detected from an output terminal 8. At this time, element 6 acts as a delay line. When the element 6 is irradiated with infrared rays, a temperature change occurs in the element 6, the delay characteristic along the elastic surface of the element 6 changes, and the oscillation frequency changes.
例えば検出器1′の弾性表面波素子6をLiNbO3な
どの圧電体で構成し、発振周波数約174MHzの発振
器を購成したとすると、その発振周波数の変化は、検出
器1′の雰囲気温度の変化約1℃あたり約15 KHz
である。また、前記測定条件に示した対象物体からの
赤外線による発振周波数の変化は数十Hzである。For example, if the surface acoustic wave element 6 of the detector 1' is made of a piezoelectric material such as LiNbO3 and an oscillator with an oscillation frequency of about 174 MHz is purchased, the change in the oscillation frequency will be caused by the change in the ambient temperature of the detector 1'. Approximately 15 KHz per 1℃
It is. Further, the change in oscillation frequency due to infrared rays from the target object shown in the measurement conditions is several tens of Hz.
この第2の実施例におけるシャンクの開閉に応じた発振
周波数の変化を第6図に示す。横軸に時間を、縦軸に発
振周波数を示す。9.1oはそれぞれシVソ)の開いた
時間、閉じた時間を示す。 5第6図に示した発振周波
数は、前記弾性表面波素子6の絶対温度に応じて変化す
るため、シャンクが開く時間9の直前の発振周波数を検
知することにより、弾性表面波素子6自身の温度、すな
わち、赤外線検出器1′の温度を知ることができる。FIG. 6 shows changes in the oscillation frequency according to opening and closing of the shank in this second embodiment. The horizontal axis shows time and the vertical axis shows oscillation frequency. 9.1o indicates the open time and closed time of shi and s, respectively. 5 The oscillation frequency shown in FIG. 6 changes depending on the absolute temperature of the surface acoustic wave element 6, so by detecting the oscillation frequency immediately before the shank opening time 9, the oscillation frequency of the surface acoustic wave element 6 itself can be determined. The temperature, that is, the temperature of the infrared detector 1' can be known.
また、シャンクの開閉による発振周波数の変化、第6図
に示したΔfにより対象物体と検出器との温度差を検知
することができる。Further, the temperature difference between the target object and the detector can be detected based on the change in the oscillation frequency due to opening and closing of the shank, and Δf shown in FIG. 6.
上記第2の実施例によれば、シャンクを赤外放射率の小
さい材料で構成し、赤外線検出器の出力信号がシャンク
の温度で左右されないようにし、かつ、赤外線検出器を
弾性表面波型のもので購成することにより、赤外線検出
器の温度を測温するためのサーミスタが不要となり、か
つ高精度な赤外輻射温度計を実現することができる。According to the second embodiment, the shank is made of a material with low infrared emissivity so that the output signal of the infrared detector is not influenced by the temperature of the shank, and the infrared detector is made of a surface acoustic wave type material. By purchasing the infrared radiation thermometer, there is no need for a thermistor to measure the temperature of the infrared detector, and a highly accurate infrared radiation thermometer can be realized.
発明の効果
本発明の赤外輻射温度計は、シャッ構成成材を赤外放射
率の小さい材料にすることにより、赤外線検出器の出力
信号がシャンク温度に左右されることかない。Effects of the Invention In the infrared radiation thermometer of the present invention, the output signal of the infrared detector is not influenced by the shank temperature by using a material with low infrared emissivity as the shutter component.
また、赤外線検出器自身の温度を測温すればよいため、
熱容量の小さい、高速応答性のダイオードを用いる必要
がなくなり、市販のサーミスタを用いることができ、信
号処理が簡単になる。In addition, since it is only necessary to measure the temperature of the infrared detector itself,
There is no need to use a high-speed response diode with a small heat capacity, and a commercially available thermistor can be used, which simplifies signal processing.
第1図は従来の赤外輻射温度計の断面図、第2図は本発
明の第1の実施例における赤外輻射温度計の断面図、第
3図は赤外線検出器の出ノJ信号を示す図、第4図は本
発明の第2の実施例におけあ赤外輻射温度計の断面図、
第5図は弾性表面波型赤外検出器の原理図、第6図は弾
性表面波型赤外検出器の出力例を示す図である。
1.1′・・・・赤外線検出器、2b ・シャンク、5
・・・・・測温サーミスタ、6・・・・弾性表面波素子
。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2灰1
第3図
第4図
第5図
1′
第6図Fig. 1 is a cross-sectional view of a conventional infrared radiation thermometer, Fig. 2 is a cross-sectional view of an infrared radiation thermometer according to the first embodiment of the present invention, and Fig. 3 shows the output J signal of an infrared detector. FIG. 4 is a cross-sectional view of an infrared radiation thermometer according to a second embodiment of the present invention.
FIG. 5 is a diagram showing the principle of a surface acoustic wave type infrared detector, and FIG. 6 is a diagram showing an output example of the surface acoustic wave type infrared detector. 1.1'... Infrared detector, 2b ・Shank, 5
...Temperature thermistor, 6...Surface acoustic wave element. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Ash 1 Figure 3 Figure 4 Figure 5 Figure 1' Figure 6
Claims (1)
線を断続的に遮断するシャッタと、このシャッタにより
断続的に遮断された赤外線を受光する赤外線検出器と、
この赤外線検出器の温度を検出する雰囲気温度検出器と
を備えてなる赤外輻射温度計。 2 シャッタが、鉄板、ステンレス研磨板あるいはアル
ミニウム板からなる特許請求の範囲第1項記載の赤外輻
射温度計。 Ω 雰囲気温度検出器がサーミスタ素子からなる特許請
求の範囲第1項記載の赤外輻射温度計。 ■ 赤外線検出器が弾性表面波型赤外線検出器からなる
特許請求の範囲第1項記載の赤外輻射温度計。(1) A shutter that intermittently blocks infrared rays and is made of a material with an infrared emissivity ε of 0.2 or less, and an infrared detector that receives infrared rays that are intermittently blocked by the shutter;
An infrared radiation thermometer comprising an atmosphere temperature detector that detects the temperature of this infrared detector. 2. The infrared radiation thermometer according to claim 1, wherein the shutter is made of an iron plate, a polished stainless steel plate, or an aluminum plate. Ω The infrared radiation thermometer according to claim 1, wherein the ambient temperature detector comprises a thermistor element. (2) The infrared radiation thermometer according to claim 1, wherein the infrared detector is a surface acoustic wave infrared detector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59044319A JPS60187829A (en) | 1984-03-08 | 1984-03-08 | Infrared radiation thermometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59044319A JPS60187829A (en) | 1984-03-08 | 1984-03-08 | Infrared radiation thermometer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60187829A true JPS60187829A (en) | 1985-09-25 |
Family
ID=12688162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59044319A Pending JPS60187829A (en) | 1984-03-08 | 1984-03-08 | Infrared radiation thermometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60187829A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5127742A (en) * | 1991-04-19 | 1992-07-07 | Thermoscan Inc. | Apparatus and method for temperature measurement by radiation |
US5516010A (en) * | 1984-10-23 | 1996-05-14 | Sherwood Medical Company | Sanitary speculum for tympanic thermometer probe |
-
1984
- 1984-03-08 JP JP59044319A patent/JPS60187829A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5516010A (en) * | 1984-10-23 | 1996-05-14 | Sherwood Medical Company | Sanitary speculum for tympanic thermometer probe |
US5707343A (en) * | 1984-10-23 | 1998-01-13 | O'hara; Gary J. | Disposable sanitary speculum for timpanic thermometer probe |
US5127742A (en) * | 1991-04-19 | 1992-07-07 | Thermoscan Inc. | Apparatus and method for temperature measurement by radiation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB1385660A (en) | Resistance-to-frequency converter | |
JPH09257587A (en) | Non-contact type temperature meter | |
US6340816B1 (en) | Pyroelectric detector with feedback amplifier for enhanced low frequency response | |
JPS60187829A (en) | Infrared radiation thermometer | |
JPS645646B2 (en) | ||
US5508546A (en) | Active pyroelectric infrared detector | |
Ziegler et al. | Digital sensor for IR radiation | |
US3956932A (en) | Wind sensor | |
JPH0783756A (en) | Oscillatory type infrared sensor, oscillatory type infrared imager, and infrared-ray detecting method | |
JPS63286729A (en) | Thermopile detector | |
US4602159A (en) | Infrared detector | |
ZUCKERWAR et al. | Active pyroelectric infrared detector(Patent Application) | |
JP2567229B2 (en) | Electronic dew point or frost point measuring device | |
EP0983491B1 (en) | Pyroelectric detector feedback amplifier with low frequency response | |
JPH02196933A (en) | Infrared-ray detection device | |
JPH0320465A (en) | Film thickness monitor with temperature compensation function | |
JPS60249023A (en) | Heat flow sensor | |
SU1659745A1 (en) | Digital thermometer | |
JPS6337225A (en) | Temperature detection circuit | |
JPH0373817A (en) | Method and instrument for measuring temperature | |
SU1719925A1 (en) | Temperature-measuring device | |
JPH0156695B2 (en) | ||
SU717563A1 (en) | Temperature measuring device | |
JPS6045813B2 (en) | infrared thermometer | |
JPH03176669A (en) | Acceleration sensor |