JPS6018620B2 - Zirconia wire drawing die and its manufacturing method - Google Patents
Zirconia wire drawing die and its manufacturing methodInfo
- Publication number
- JPS6018620B2 JPS6018620B2 JP56017268A JP1726881A JPS6018620B2 JP S6018620 B2 JPS6018620 B2 JP S6018620B2 JP 56017268 A JP56017268 A JP 56017268A JP 1726881 A JP1726881 A JP 1726881A JP S6018620 B2 JPS6018620 B2 JP S6018620B2
- Authority
- JP
- Japan
- Prior art keywords
- die
- zirconia
- wire drawing
- powder
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 title claims description 44
- 238000005491 wire drawing Methods 0.000 title claims description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000013078 crystal Substances 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 21
- 239000000843 powder Substances 0.000 claims description 21
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 11
- 238000000465 moulding Methods 0.000 claims description 7
- 238000001513 hot isostatic pressing Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000011164 primary particle Substances 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 2
- 238000005498 polishing Methods 0.000 claims 1
- 238000005245 sintering Methods 0.000 claims 1
- 238000004513 sizing Methods 0.000 claims 1
- 238000003466 welding Methods 0.000 description 7
- 239000011148 porous material Substances 0.000 description 6
- 229910003460 diamond Inorganic materials 0.000 description 5
- 239000010432 diamond Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000002860 competitive effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910001347 Stellite Inorganic materials 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- -1 yttrium compound Chemical class 0.000 description 2
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 150000003755 zirconium compounds Chemical class 0.000 description 2
- OBOSXEWFRARQPU-UHFFFAOYSA-N 2-n,2-n-dimethylpyridine-2,5-diamine Chemical compound CN(C)C1=CC=C(N)C=N1 OBOSXEWFRARQPU-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000009137 competitive binding Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C3/00—Profiling tools for metal drawing; Combinations of dies and mandrels
- B21C3/18—Making tools by operations not covered by a single other subclass; Repairing
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Crushing And Grinding (AREA)
- Metal Extraction Processes (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
【発明の詳細な説明】
本発明は、アルミニウム、アルミニウム合金、銅、銅合
金等の軟質金属及び軟質合金(以下単に軟質金属という
)用として優れだ性質をするジルコニア質伸線用ダイス
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a zirconia wire drawing die that has excellent properties for soft metals and soft alloys (hereinafter simply referred to as soft metals) such as aluminum, aluminum alloys, copper, and copper alloys.
従釆これ等欧質金属の伸線用ダイス材料としては、工具
類、超硬質合金、ステラィト等が一般に使用されている
が、これ等ダイス材料には、伸線材料との高い親和性に
基く溶着現象の為にダイス寿命が短かく且つ得られた伸
線品の表面光沢が悪い等の欠点がある。As for die materials for wire drawing of these European quality metals, tools, super hard alloys, stellite, etc. are generally used. There are drawbacks such as a short die life due to the welding phenomenon and poor surface gloss of the resulting wire drawn product.
最近にいたり、ダイヤモンド単結晶、ダイヤモンドコン
パックス、立方晶ボロンナイトラィド等のダイスも使用
されつつあるが、これ等は全て高価である。ダイヤモン
ド単結晶は表面光沢に優れた製品を与えるが非常に高価
である為単位価格当りのダイス寿命が短い場合があるほ
か、再研摩加工費が高い、ダイヤモンドコンパツクス及
び立方晶ボロンナィトライド等のダス材の場合は伸線品
の表面光沢が超硬質合金による製品よりも劣る場合があ
る等の難点があり、広く採用されるには到っていない。
本発明質は、上記知のダイス材料の欠点に鑑みて種々究
をねた結果、(・i)イットリウム酸化物を3.6〜8
.の重量%含有すること、(ii)焼結体の平均結晶蓬
が2山m以下であると及び側対理論密度が磯.5%以上
であることの三要件を備えた特定のジルコニア質隣繕体
が従来の超硬質ダイス材料に比して低硬度且つ低弾性で
あるにもかかわらず、軟質金属の伸線材との親和性が低
い為、ダイス材としての寿命が長く、しかも表面光沢に
優れた伸糠製品を与えることを見出し、本発明を完成す
るに到ったものである。100%ジルコニアからなる焼
結体は、1000〜1200qoで結晶型の転移により
大きな体積変化を生じ、破壊することは、よく知られて
いる。Recently, dies made of diamond single crystal, diamond compax, cubic boron nitride, etc. are also being used, but all of these are expensive. Single crystal diamond provides products with excellent surface gloss, but it is very expensive and the life of the die per unit price may be short. In the case of dust materials, there are drawbacks such as the surface gloss of drawn wire products being sometimes inferior to products made of super hard alloys, so it has not been widely adopted.
The material of the present invention was developed after various studies in view of the drawbacks of the known die materials mentioned above.
.. (ii) the average crystal grain size of the sintered body is 2 m or less, and the side theoretical density is Iso. Although the specific zirconia adjoining body, which meets the three requirements of 5% or more, has lower hardness and lower elasticity than conventional ultra-hard die materials, it is compatible with soft metal wire drawing materials. The present inventors have discovered that the present invention can be achieved by discovering that because of its low properties, it can be used as a die material for a long time and provide a rolled bran product with excellent surface gloss. It is well known that a sintered body made of 100% zirconia undergoes a large volume change due to crystal type transition at 1000 to 1200 qo, and is destroyed.
従って、アルカリ土類金属、希土類等の酸化物を加えて
転移を抑制した別ちいわゆる安定化又は部分安定化ジル
コニアの競鯖体が、通常使用されているが、これ等の安
定化又は部分安定化ジルコニア隣結体は、内部に密閉気
孔を多く含み且つ結晶粒径が粗大である為、ダイス材料
として使用することは不可能である。しかるに、イット
リウム酸化物の配合量及び成形材料粉体の粒径並びに競
結条件等を最適の状態で絹合せて製造する本発明ジルコ
ニア暁結体は、対理論密度が斑.5%以上であって密閉
気孔が極めて少なく、結晶粒径が2仏m以下と微小にな
るので、ダイス材料として極めて優れた性質を発揮する
ことが見出された。即ち、本発明ジルコニア競結体は、
ダイス材として鏡面加工を行なったものには、伸線材料
の溶着発生の起点となるスポットが殆ど存在しないので
、ダイス寿命が長く、且つ彼伸線材との親和性が低いの
で伸線製品の表面光沢を損うことが少ない。更に本発明
ダイス材の弾性率が低い為、ダイス表面が被伸線材と接
触した場合にもダイス表面から結晶粒子の離脱摩耗が生
じにくく、長期にわたり鏡面状態を維持し続けることも
優れた表面光沢の一つの原因と考えられる。密閉気孔の
多い公知のジルコニァ質暁結体の場合には、伸線材料と
の親和性は低いものの、ダイス材とした場合にはスポッ
トの存在により、ここを起点として急速に溶着が進行す
るので、伸線製品の光沢は悪化し、ダイス寿命も短いも
のとなる。本発明で使用するジルコニア凝結体において
は、ダイス材料として必要な特性を附与する為、イット
リウム酸化物(Y2Q)を通常3.6〜8・0重量%、
より好ましくは4.5〜7.0重量%含有させる。Therefore, a competitive body of stabilized or partially stabilized zirconia is usually used, in which oxides of alkaline earth metals, rare earths, etc. are added to suppress the transition. Since the zirconia adhesion structure contains many closed pores inside and has coarse crystal grains, it is impossible to use it as a die material. However, the zirconia crystals of the present invention, which are produced by optimizing the blending amount of yttrium oxide, the particle size of the molding material powder, and the competitive binding conditions, have uneven theoretical density. 5% or more, there are very few closed pores, and the crystal grain size is as small as 2 meters or less, so it has been found that it exhibits extremely excellent properties as a die material. That is, the zirconia composite of the present invention is
Mirror-finished die materials have almost no spots that can be the starting point for welding of the wire drawing material, so the life of the die is long. Less loss of gloss. Furthermore, since the elastic modulus of the die material of the present invention is low, even when the die surface comes into contact with the wire-drawing material, it is difficult for crystal particles to separate from the die surface and wear occurs, and the mirror-like state can be maintained for a long period of time, resulting in excellent surface gloss. This is thought to be one of the causes. In the case of known zirconia crystals that have many closed pores, they have low affinity with wire drawing materials, but when used as die materials, welding progresses rapidly starting from spots due to the presence of spots. , the luster of the drawn wire product will deteriorate and the life of the die will be shortened. The zirconia aggregate used in the present invention usually contains 3.6 to 8.0% by weight of yttrium oxide (Y2Q) in order to impart properties necessary as a die material.
More preferably, it is contained in an amount of 4.5 to 7.0% by weight.
イットリウム酸化物が3.6重量%を下回ると、競成過
程においてジルコニア結晶の転移によるき裂が発生し、
所望の競結体が得られず、一方8.の重量%を上回ると
、暁縞体組織が粗大化て焼縞体内部に密閉気孔が多くな
るとともに粗大気孔を含む様になるので、アィソスタテ
ィツクプレス法により対bn/の以上の高圧力で成形後
焼結しても伸線用ダイスとして使用可能な程度までスポ
ットを抑制することは出来ない。又、イットリウム酸化
物含有量が8.の重量%を超えた場合に生成する密閉孔
を出来るだけ少なくする目的で、高温又は高温高圧下に
嫌結を行なうと、焼絹体中の結晶粒径が大きくなり、ダ
イス材としてはやはり使用し得なくなる。上記のスポッ
トは、ジルコニア質暁結体の密度と密接な関係があり、
実用上他のダイスと経済性その他の点で競合し得る為に
は、その対理論密度は通常聡.5%以上、より好ましく
は99.5%以上である。イットリウム酸化物を含有す
るジルコニア焼縞体の理論密度は、イットリウム酸化物
の含有量のみでなく、暁結体の結晶構造によっても異な
り、正確に測定することは困難である。従って、Y20
33.6%含有ジルコニアの理論密度を6.1鍵/地と
し、Y208含有量の増加に伴ってこれが直線的に低下
し、Y2Q8%含有ジルコニアでは、6.05離洲とな
るものとみなした。更に、本発明で使用するジルコニア
暁結体中の結晶粒径は2仏m以下であることを要し、1
.5一m以下であることが好ましい。結晶粒径が大きい
ものは、超高純度出発原料から得られた焼綾体であって
も、製造工程中に混入する不純物、暁結体中に存在する
微小クラツク、結晶粒と粒界との性質上の大きな差等の
多結晶体特有の欠陥がダイス寿命を短か〈する。従って
、結晶粒径を2りm以下として多結晶体の欠陥の起点と
る粒界層厚みを小さくすることは必須の要件であり、結
晶粒径が2山mを超えると、粒界層厚みの増大及び粗大
スポットの増加に伴う不均質性がダイスの耐摩耗性を低
下させ、延し、てはダイス寿命を短かくさせるのみなら
ず、伸線製品の表面光沢を劣化させることになる。本発
明のダイスは、通常次の様にして製造される。When the content of yttrium oxide is less than 3.6% by weight, cracks occur due to the dislocation of zirconia crystals during the competitive process.
On the other hand, 8. the desired competitive body could not be obtained. If the weight percentage exceeds bn/, the structure of the burnt stripe becomes coarse and the inside of the burnt stripe increases in number of closed pores and also includes coarse pores. Even if it is sintered after forming, it is not possible to suppress spots to the extent that it can be used as a wire drawing die. Moreover, the yttrium oxide content is 8. In order to minimize the number of sealed pores that are formed when the weight of It becomes impossible. The above spots are closely related to the density of zirconia crystals,
In order to be able to compete with other dice in terms of economy and other aspects in practical terms, the theoretical density of the die is usually sato. It is 5% or more, more preferably 99.5% or more. The theoretical density of a zirconia burnt stripe containing yttrium oxide varies not only depending on the content of yttrium oxide but also on the crystal structure of the Akatsuki compact, and is difficult to measure accurately. Therefore, Y20
The theoretical density of zirconia containing 33.6% was assumed to be 6.1 keys/base, and it was assumed that this decreases linearly as the Y208 content increases, and for zirconia containing 8% Y2Q, it becomes 6.05 key/base. . Furthermore, the crystal grain size in the zirconia crystals used in the present invention is required to be 2 mm or less, and 1
.. It is preferable that the length is 51 m or less. Even if a sintered twill body is obtained from an ultra-high purity starting material, those with large crystal grain sizes may be affected by impurities mixed in during the manufacturing process, minute cracks present in the sintered twill body, or the interaction between crystal grains and grain boundaries. Defects specific to polycrystalline materials, such as large differences in properties, shorten die life. Therefore, it is essential to reduce the thickness of the grain boundary layer, which is the origin of defects in polycrystals, by setting the grain size to 2 m or less, and when the grain size exceeds 2 m, the thickness of the grain boundary layer decreases. The heterogeneity caused by the increase in the number of coarse spots reduces and extends the wear resistance of the die, which not only shortens the life of the die but also deteriorates the surface gloss of the drawn wire product. The dice of the present invention are usually manufactured as follows.
出発原料たるイットリウム酸化物を3.6〜8.0重量
%含有するジルコニア粉体は、その一次粒子の平均粒径
が0.5舷m以下であることが必須であり、0.3りm
以下であることがより好ましい。又、粉体中では、イッ
トリウム酸化物がジルコニアに均質に分散又は固落され
ていることが好ましいので、ジルコニア粉末とイットリ
ウム酸化物粉末を直接混合する方法よりは、以下の方法
で製造することが好ましい。(i) ジルコニウム化合
物及びイットリウム化合物を夫々含む溶液を液相の状態
で混合させた後、400〜120ぴ○程度で煩暁する。It is essential that the zirconia powder containing 3.6 to 8.0% by weight of yttrium oxide, which is a starting material, has an average particle size of its primary particles of 0.5 m or less, and 0.3 m
It is more preferable that it is below. In addition, in the powder, it is preferable that yttrium oxide is homogeneously dispersed or solidified in zirconia, so it is preferable to manufacture by the following method rather than the method of directly mixing zirconia powder and yttrium oxide powder. preferable. (i) After mixing solutions containing a zirconium compound and a yttrium compound in a liquid phase state, the solution is stirred at about 400 to 120 pi.
(ii) ジルコニウム化合物を含む溶液とイットリア
、又はジルコニアとイットリウム化合物溶液とを均質に
混合した後、上記と同様にして賭擁する。(ii) After homogeneously mixing a solution containing a zirconium compound and yttria, or a solution of zirconia and a yttrium compound, they are mixed in the same manner as above.
以上の方法で得られた粉体の一次粒子が強固に凝集して
いる場合には、湿式粉砕により分散ごた後、乾燥させて
成形用粉体とする。If the primary particles of the powder obtained by the above method are strongly agglomerated, the powder is dispersed by wet pulverization and then dried to obtain a powder for molding.
加圧成形により得られる成形体の強度をより一層向上せ
る為、或いは成形体の密度をより均質なものとする為に
は、該粉体をポリビニルアルコール、ステアリン酸、ワ
ックスェマルジョン等の成形助剤を使用して平均粒径1
0〜300山m程度に整粒し、成形用粉体としても良い
。次いで得られた粉体又は整粒体を0.5のn/の以上
、経済的な観点から好ましくは1〜3ton/地の圧力
下に所定形状に成形した後、ダイスニブの形状に加工す
る。本発明においては、対理論密度のより高いダイスを
得る為に大気中での焼成に引続きホットアィソスタティ
ックプレツシング(HIP)処理を行なう。即ち、加工
成形品を大気中で1200〜1650q○、より好まし
くは1250〜160000で焼成して対理論密度95
%〜98%程度の予備暁結体を得、次いでアルゴン、窒
素ガス等の不活性ガス雰囲気中で500k9/仇以上の
圧力下に1200〜155ぴ0の温度で、より好ましく
は500k9/塊以上の圧力下に1250〜1500q
○の温度で、HIP処理する。かくして、対理論密度班
.5%以上、通常99.5%以上にも達するダイスを得
ることができ、該ダイスは寿命が長く、且つ表面光沢に
優れた製品を与える。mP処理の温度が120ぴ0未満
或いは圧力が500k9/均未満の場合には、暁緒体の
対理論密度が98.5%に達しない場合がある。一方、
処理温度が155び0を上回ると、圧力が500k9/
c流であっても結晶粒径が2wm以上となる場合があり
、ダイス寿命を短か〈する煩向が大となり、本発明の目
的が達成されなくなる。実施例 1
純度99.塁重量%のオキシ塩化ジルコニウムと純度9
9.塁重量%の塩化イットリウムとを含む水溶液を縄枠
下に加熱加水分解する。In order to further improve the strength of the molded product obtained by pressure molding or to make the density of the molded product more homogeneous, the powder may be treated with a molding aid such as polyvinyl alcohol, stearic acid, or wax emulsion. The average particle size is 1
The powder may be sized to about 0 to 300 m, and used as a powder for molding. Next, the obtained powder or granulated material is molded into a predetermined shape under a pressure of n/ of 0.5 or more, preferably 1 to 3 tons/kg from an economical point of view, and then processed into the shape of a die nib. In the present invention, hot isostatic pressing (HIP) treatment is performed following firing in the atmosphere in order to obtain a die having a higher theoretical density. That is, the processed molded product is fired in the atmosphere at 1,200 to 1,650 q○, more preferably 1,250 to 160,000 to achieve a theoretical density of 95.
% to about 98%, and then at a temperature of 1200 to 155 psi under a pressure of 500 k9/mass or more in an inert gas atmosphere such as argon or nitrogen gas, more preferably 500 k9/mass or more. 1250~1500q under the pressure of
Perform HIP treatment at a temperature of ○. Thus, the counter-theoretical density group. It is possible to obtain dies that have a yield of 5% or more, usually as much as 99.5% or more, and the dies provide a product with a long life and excellent surface gloss. If the mP treatment temperature is less than 120 psi or the pressure is less than 500 k9/y, the theoretical density of the crystal body may not reach 98.5%. on the other hand,
When the processing temperature exceeds 155 and 0, the pressure increases to 500k9/
Even in the c-flow, the crystal grain size may be 2 wm or more, and the life of the die is likely to be shortened, making it impossible to achieve the object of the present invention. Example 1 Purity 99. Base weight% zirconium oxychloride and purity 9
9. An aqueous solution containing yttrium chloride in an amount of % by weight is heated and hydrolyzed under the rope frame.
2種の化合物の割合は、Zて02及びY203として第
1表に示す割合に調整する。The ratios of the two types of compounds are adjusted to the ratios shown in Table 1 as Z02 and Y203.
加水分解溶液にnーオクチルアルコ−ルを加え、蒸留に
より脱水乾燥して、ジルコニウム含有化合物の微粒子を
得た後、これを85000で賭隣し、Y203を分散固
溶した単斜晶及び等軸晶からなり且つ晶粒子径100〜
300Aの酸化ジルコニウム一次粒子からなる粉体を得
る。得られた粉体をエチルアルコールを使用してボール
ミル中で48時間湿式粉砕して分散させ、乾燥させて整
粒し、均100山mの成形用粉体を得る。(1) 得ら
れた成形用粉体を第1表に示す圧力下にHIP法により
円筒形に成形し、これをダイスニブの形状に加工した後
、大気中で第1表に示す常圧焼成条件で競結することに
より、第1表に示すダイス素材を得る。After adding n-octyl alcohol to the hydrolyzed solution and dehydrating and drying it by distillation to obtain fine particles of a zirconium-containing compound, the fine particles of the zirconium-containing compound were agitated at 85,000 ni. and the crystal particle size is 100~
A powder consisting of 300A zirconium oxide primary particles is obtained. The obtained powder is wet-milled using ethyl alcohol in a ball mill for 48 hours to be dispersed, dried, and sized to obtain a powder for molding having a uniform size of 100 m. (1) The obtained molding powder was molded into a cylindrical shape by the HIP method under the pressure shown in Table 1, and after processing this into the shape of a die nib, it was fired in the atmosphere under the atmospheric pressure conditions shown in Table 1. By competing with each other, the dice materials shown in Table 1 are obtained.
(0) 上記(1)と同様にして得た成形体を大気中で
第1表の試料番号他及び側の常圧焼成条件で焼成するこ
とにより夫々対理論密度96%及びび97.5%の焼縞
体を得、これをヒーターを内装する高圧容器に装入して
、アルゴンガス雰囲気中で第1表に示すHIP条件下に
1時間保持する。(0) The compacts obtained in the same manner as in (1) above were fired in the atmosphere under normal pressure firing conditions according to the sample numbers and others in Table 1, resulting in theoretical densities of 96% and 97.5%, respectively. A burnt striped body was obtained, placed in a high-pressure container equipped with a heater, and held in an argon gas atmosphere under the HIP conditions shown in Table 1 for 1 hour.
得られた暁結体を第1表のGの及び肌として示す。尚、
試料番号(xi)のみは、一次粒子の平均粒径が0.8
山mの粉体を原料として使用した。The obtained Akatsuki concretions are shown as G and skin in Table 1. still,
Only sample number (xi) has an average primary particle diameter of 0.8
Powder from Yamam was used as a raw material.
更に、第1表中の(i)、Gの及び肌を除く全ての試料
を第2表に示す条件下にHm処理したところ、試料番号
MD及び(xi)を除く全ての試料の対理論密度99.
0%以上を示し、一方平均結晶粒蚤はHIP処理の前後
でほとんど変化がなかった。第1表第2表
上記(1)及び(ロ)で得られたダイス素材の内外面を
ダイヤモンド砥石により所定の寸法に研削し、更に内面
をダイヤモンドパウダーにより鏡面仕上して、伸線用ダ
イスとする。Furthermore, when all samples except (i), G and skin in Table 1 were subjected to Hm treatment under the conditions shown in Table 2, the theoretical density of all samples except sample numbers MD and (xi) was 99.
0% or more, and on the other hand, there was almost no change in the average grain size before and after the HIP treatment. Table 1 Table 2 The inner and outer surfaces of the die material obtained in (1) and (b) above are ground to the specified dimensions using a diamond grindstone, and the inner surface is mirror-finished with diamond powder to be used as a wire drawing die. do.
得られた伸線用ダイスをアルミニウム、銅、真ちゆう及
び鋼合金の伸線に使用した結果は、以下の通りであった
。1 アルミニウム
a 試料Mを使用するダイス径6.3肌0の伸線ダイス
においては、2トンの伸線後にも伸線の光沢及び仕上り
精度は超硬合金ダイスによる製品以上に優れており、更
に長い寿命が予想される。The obtained wire drawing die was used for wire drawing of aluminum, copper, brass, and steel alloys, and the results were as follows. 1 In a wire drawing die using aluminum a sample M with a die diameter of 6.3 and a skin of 0, even after drawing 2 tons of wire, the gloss and finish accuracy of the wire drawing were superior to those made with a cemented carbide die, and Expected to have a long life.
一方、試料MDを使用するダイスにおいては、2トンの
伸線により溶着が生じ、伸線の光沢も悪化したので、そ
れ以降の使用は不能となった。又、試料(xi)による
ダイスは、使用後間もなく溶着が発生し、ダイスとして
全く不適当なることが判明した。b ダイス径4.5肌
めの伸線ダイスとして使用する場合、夫々試料側は17
トン、試料側は12トンの伸線後にも溶着は生ぜず、伸
線の表面光沢及び仕上り精度は良好であり、超硬合金ダ
イスよりも寿命が長く、且つ良好な製品が得られた。On the other hand, in the die using sample MD, welding occurred after 2 tons of wire drawing, and the gloss of the drawn wire deteriorated, so that it could no longer be used. Further, it was found that the die of sample (xi) was completely unsuitable as a die because welding occurred soon after use. b When used as a wire drawing die with a die diameter of 4.5 mm, each sample side has a diameter of 17 mm.
On the sample side, no welding occurred even after drawing 12 tons of wire, the surface gloss and finish accuracy of the wire drawing were good, and a product with a longer life and better quality than the cemented carbide die was obtained.
ロ鋼
a 試料側によるダイス径2.6肋での伸線ダイスでの
伸線量は、25トンにも及んだ。Steel A The amount of wire drawn using a wire drawing die with a die diameter of 2.6 ribs on the sample side reached 25 tons.
これに対し、超硬工具材種GIによるダイスの寿命は、
約20トンであり、且つ伸線製品の表面光沢も本発明品
に比して、箸るしく劣っていた。On the other hand, the life of the die using carbide tool grade GI is
The weight was about 20 tons, and the surface gloss of the drawn wire product was also significantly inferior to that of the product of the present invention.
m 真ちゆう
試料似によるダイス径5.6職◇の伸線ダイスを使用す
る場合、1000本(1本の長さ約1仇h)の伸線後に
もダイス内面は使用前と殆ど変化なく、且つ伸線の表面
光沢も良好であった。When using a wire drawing die with a die diameter of 5.6 mm, the inner surface of the die will remain almost unchanged from before use even after drawing 1,000 wires (each length is about 1 h). , and the surface gloss of wire drawing was also good.
一方、試料のによる同一径のダイスにおいては、100
0本の伸線後には、ダイス内面の彼伸線材が最も高い応
力で接触する部分の鏡面がやや粗となってきており、そ
れ以降の使用により溶着の発生が予想される状態となっ
ていたた。W Cu−P−Fe系銅合金
試料側を使用するダイス径2.3側めの伸線ダイスによ
り熱間押出しを行なったところ、40回の押出し作業に
耐えた。On the other hand, in a die of the same diameter as the sample, 100
After drawing 0 wires, the mirror surface of the inner surface of the die where the wire drawing material was in contact with the highest stress had become somewhat rough, and welding was expected to occur with subsequent use. Ta. When hot extrusion was performed using a wire drawing die with a die diameter of 2.3 using the W Cu-P-Fe-based copper alloy sample side, it withstood 40 extrusion operations.
これに対し、ステライトダイスでは1〜2回、超硬工具
材種GIによるダイスでは2の国が使用限度であるから
、本発明ダイスの優れた耐久性が明らかである。On the other hand, the use limit for the Stellite die is 1 to 2 times, and the use limit for the die made of carbide tool grade GI is 2 countries, which clearly shows the excellent durability of the die of the present invention.
Claims (1)
るジルコニア焼結体からなり、該焼結体の平均結晶粒径
が2μm以下で且つ対理論密度が98.5%以上である
ことを特徴とする軟質金属の伸線用ダイス。 2 (1)イツトリウム酸化物を3.6〜8.0重量%
含有し且つ平均結晶粒径が0.5μm以下のジルコニア
粉体一次粒子の凝集体を分散させ、更に必要に応じ整粒
して成形粉体とする工程、(2)得られた成形粉体を5
00kg/cm^2以上の圧力で加圧成形する工程、(
3)得らた成形体を大気中1200〜1650℃で焼結
して対理論密度95〜98%の予備焼結体を得る工程、
(4)得られた予備焼結体を不活性ガス雰囲気中で50
0kg/cm^2以上、1200〜1550℃の条件下
にホツトアイソスタテイツクプレツシング処理する工程
、及び、(5)該焼結体の被伸線材通過面を研摩加する
工程を備えたことを特徴とする軟質金属の伸線用ダイス
の製造方法。[Claims] 1. A zirconia sintered body containing 3.6 to 8.0% by weight of yttrium oxide, the average crystal grain size of the sintered body is 2 μm or less, and the theoretical density is 98.5. % or more. 2 (1) 3.6 to 8.0% by weight of yttrium oxide
A step of dispersing aggregates of primary particles of zirconia powder containing zirconia powder and having an average crystal grain size of 0.5 μm or less, and further sizing as necessary to form a shaped powder, (2) the obtained shaped powder 5
A process of pressure molding at a pressure of 00 kg/cm^2 or more, (
3) Sintering the obtained molded body in the atmosphere at 1200 to 1650°C to obtain a pre-sintered body with a theoretical density of 95 to 98%,
(4) The obtained pre-sintered body was heated to 50°C in an inert gas atmosphere.
0 kg/cm^2 or more and a step of hot isostatic pressing under conditions of 1200 to 1550°C, and (5) a step of polishing the wire-drawing material passing surface of the sintered body. A manufacturing method for a soft metal wire drawing die.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56017268A JPS6018620B2 (en) | 1981-02-06 | 1981-02-06 | Zirconia wire drawing die and its manufacturing method |
JP61204776A JPS62235257A (en) | 1981-02-06 | 1986-08-29 | Manufacturing method of zirconia die for soft metal wire drawing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56017268A JPS6018620B2 (en) | 1981-02-06 | 1981-02-06 | Zirconia wire drawing die and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57130717A JPS57130717A (en) | 1982-08-13 |
JPS6018620B2 true JPS6018620B2 (en) | 1985-05-11 |
Family
ID=11939215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56017268A Expired JPS6018620B2 (en) | 1981-02-06 | 1981-02-06 | Zirconia wire drawing die and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6018620B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0772102B2 (en) * | 1983-06-20 | 1995-08-02 | 東ソー株式会社 | Method for manufacturing zirconia sintered body |
JPS6054972A (en) * | 1983-09-02 | 1985-03-29 | 住友電気工業株式会社 | Manufacture of high strength zirconia sintered body |
JPS60226457A (en) * | 1984-04-25 | 1985-11-11 | 東ソー株式会社 | Manufacturing method of high strength zirconia sintered body |
JPS60235762A (en) * | 1984-05-07 | 1985-11-22 | 東ソー株式会社 | High strength zirconia sintered body |
JPS60215570A (en) * | 1984-04-06 | 1985-10-28 | 東ソー株式会社 | High strength zirconia sintered die |
JPS60239357A (en) * | 1984-05-14 | 1985-11-28 | 東ソー株式会社 | Member for high strength zirconia cutting tool |
JPS60255668A (en) * | 1984-05-31 | 1985-12-17 | 京セラ株式会社 | Partially stabilized zirconia sintered body |
JPS61101463A (en) * | 1984-10-25 | 1986-05-20 | 東ソー株式会社 | High strength zirconia ceramic engine parts |
-
1981
- 1981-02-06 JP JP56017268A patent/JPS6018620B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS57130717A (en) | 1982-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2947056A (en) | Sintered alumina articles and a process for the production thereof | |
JP3080873B2 (en) | Abrasion resistant alumina ceramics and method for producing the same | |
JP2512061B2 (en) | Homogeneous silicon nitride sintered body and method for producing the same | |
JPS6018620B2 (en) | Zirconia wire drawing die and its manufacturing method | |
EP0019335A1 (en) | Ceramic cutting tip for machining tools and method of production thereof | |
US4623498A (en) | Method of improving quality of hot pressed Si3 N4 bodies | |
JPH06107454A (en) | Alumina-based sintered body and manufacturing method thereof | |
JPS62235257A (en) | Manufacturing method of zirconia die for soft metal wire drawing | |
JP2003321270A (en) | Alumina ceramics superior in wearing resistance and corrosion resistance and method for manufacturing its molding | |
JPH01502426A (en) | Method for preparing aluminum oxide ceramics with increased wear resistance | |
RU2008188C1 (en) | Method of making diamond tool by powder metallurgy | |
JP2920482B2 (en) | Silicon carbide sintered body excellent in toughness and manufacturing method | |
CN113173789A (en) | Non-binding phase corrosion-resistant hard alloy and production process and application thereof | |
JP2650049B2 (en) | Ceramic cutting tool and its manufacturing method | |
JPH08215731A (en) | Ceramic jig for hot rolling and its manufacture | |
JPS6042276A (en) | Zirconia black decorative material and method for producing the same | |
JP2723170B2 (en) | Superplastic silicon nitride sintered body | |
JPH0688832B2 (en) | Polycrystalline ceramic product and manufacturing method thereof | |
JPH0598369A (en) | Cemented carbide manufacturing method | |
JPH05320816A (en) | Composite material | |
JP2920138B1 (en) | Ceramic jig for hot rolling line | |
JP2922713B2 (en) | Zirconia sintered body for tools | |
JPS6348825B2 (en) | ||
McCREIGHT | Processing studies on pure oxide bodies | |
SU1722805A1 (en) | Abrasive body for manufacturing finishing tools |