[go: up one dir, main page]

JPS60185730A - Synthesis of radioactive compound using nucleus seed with short life - Google Patents

Synthesis of radioactive compound using nucleus seed with short life

Info

Publication number
JPS60185730A
JPS60185730A JP59041648A JP4164884A JPS60185730A JP S60185730 A JPS60185730 A JP S60185730A JP 59041648 A JP59041648 A JP 59041648A JP 4164884 A JP4164884 A JP 4164884A JP S60185730 A JPS60185730 A JP S60185730A
Authority
JP
Japan
Prior art keywords
synthesis
radioactive
compound
radioactive compound
short life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59041648A
Other languages
Japanese (ja)
Inventor
Akira Tanaka
明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP59041648A priority Critical patent/JPS60185730A/en
Publication of JPS60185730A publication Critical patent/JPS60185730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain advantageously a radioactive compound using a nucleus seed with a short life, by presealing hermetically a given amount of an intermediate for the desired radioactive compound within a reactor, attaching the reactor to a device for synthesizing the radioactive compound in synthesis, carrying out synthetic reaction. CONSTITUTION:In synthesizing a radioactive compound using a nucleus seed with a short life, especially a radioactive drug such as <11>C-N-methylspiperone (dopamine receptor blocking agent) useful for diagnosis, examination, etc. with positron CT100, each of a given amount (necessary amount for one administration) of an intermediate (e.g., alkali salt of spiperone) for the compound together with an inert gas is presealed hermetically within the reactor 70, preserved, the reactor 70 is attached to the device 30 for synthesizing the radioactive compound in case of necessity, and the intermediate is reacted with <11>C-CH3I, etc., so that the desired compound is obtained stably and simply even if a radioactive substance is synthesized by introducing an unstable intermediate or an intermediate of complicated synthesis into a nucleus seed with a short life.

Description

【発明の詳細な説明】 本発明は短寿命核種を用いた放射性化合物の合成方法に
関し、特に、ポジトロンOT(Oompu−teriz
ed Tomography )による診断、検査等に
使用される放射性医薬品の合成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for synthesizing radioactive compounds using short-lived nuclides.
This invention relates to a method for synthesizing radiopharmaceuticals used for diagnosis, testing, etc. using ed tomography.

一般K IIQ、 IIIN、IIQ、 lap すど
の短寿命核種によシ標識された生体関連物質を用い、各
種代射物質による体内代射過程をin vivoで測定
すること1診断、検査、研究など医学分野で広く用いら
れるようになっている、病院内に設置されているIシト
ロンOTによる診断は、サイクロトロンが生み出すポジ
トロン放出核種を適当な化学形に処理して放射性薬剤と
して使用し、薬剤の体内集積部を?シトロンOTにより
検出し、画像再生するものである。このような診断に用
いられる短寿命核種は半減期が短かいことから(IIO
で20分)、病院内にはサイクロトロンなどの短寿命核
種発生装置と、短寿命核種を導入して目的とする標識化
合物を合成する放射性薬剤合成装量とを備え迅速に処理
する必要があり、さらに作業者の負担や被曝を防止する
ため自動合成装置が採用され、一定の成果を収めている
General K IIQ, IIIN, IIQ, lap Measuring the internal radiation process of various radiation substances in vivo using bio-related substances labeled with short-lived nuclides. 1 Diagnosis, testing, research, etc. Medical. Diagnosis using the I-Citron OT installed in hospitals, which has become widely used in the field, processes the positron-emitting nuclide produced by the cyclotron into an appropriate chemical form and uses it as a radioactive drug, and the accumulation of the drug in the body is investigated. Department? It is detected by Citron OT and reproduced as an image. Short-lived nuclides used for such diagnosis have short half-lives (IIO
(20 minutes), the hospital must be equipped with a short-lived nuclide generator such as a cyclotron and a radiopharmaceutical synthesis unit that introduces the short-lived nuclide and synthesizes the desired labeled compound, so that it can be processed quickly. Additionally, automatic synthesis equipment has been adopted to prevent worker burden and radiation exposure, and has achieved certain results.

しかしながら、短寿命核種を導入するための中間体の合
成は病院内の作業者にとって負担が大きく、特に、中間
体が不安定な場合や外気と接触できない場合はポジトロ
ン核種の導入直前に中間体を合成することが必要となる
ため負担が大きい。また、得られる薬剤の品質や収率が
変化するため、合成する環境条件や作業者の能力表どが
厳しく要求されることになり、放射性薬剤の医療分野に
おけるよυ広範々利用を妨げる一因に本なっていた。
However, the synthesis of intermediates for introducing short-lived nuclides is a heavy burden on hospital workers, especially when the intermediates are unstable or cannot come into contact with the outside air. It is a heavy burden because it requires synthesis. In addition, since the quality and yield of the obtained drug changes, strict requirements are placed on the environmental conditions for synthesis and the ability of the workers, which is one of the factors that prevents the widespread use of radiopharmaceuticals in the medical field. It was a book.

本発明は、以上の観点からなされたものであり、不安定
な中間体や合成の煩雑外中間体に短寿命核種を導入して
放射性化合物を合成する場合であっても、安定に、且つ
簡便に放射性化合物を得ることのできる合成システムを
提供することを目的とする。
The present invention has been made from the above viewpoints, and even when a short-lived nuclide is introduced into an unstable intermediate or a complicated synthetic intermediate to synthesize a radioactive compound, it is possible to synthesize a radioactive compound stably and easily. The purpose of this invention is to provide a synthetic system that can obtain radioactive compounds.

すなわち、本発明の短寿命核種を用いた放射性化合物の
合成方法は、目的とする放射性化合物の中間体を予め反
応容器に密封用意しておき合成時に該反応容器を放射性
化合物合成装置に装着して反応合成させるととを特徴と
する。
That is, the method for synthesizing a radioactive compound using a short-lived nuclide of the present invention involves preparing an intermediate for the desired radioactive compound in a reaction container sealed in advance, and attaching the reaction container to a radioactive compound synthesis apparatus during synthesis. It is characterized by reaction synthesis.

以下、添付図面に沿って本発明をさらに詳細に説明する
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

第1図は本発明の実施例を示すフロー図であり、短寿命
核種発生装置10から短寿命核種がライン20を経て放
射性化合物の自動合成装置30に送られ、とこで反応容
器70内での反応により中間体に放射性核種が導入され
、110−N−メチルスビベロン IIQ−パルミチン
酸、1−”O−2−デオキシ−D−グルコースなどの標
識化合物が合成される。得られた標識化合物はライン8
0から取セ出され、被験者9oに注入され、ポジトロン
イメージング装置100によりホシトロンOTが施され
る。
FIG. 1 is a flow diagram showing an embodiment of the present invention, in which short-lived nuclides are sent from a short-lived nuclide generator 10 via a line 20 to an automatic radioactive compound synthesis device 30, where they are synthesized in a reaction vessel 70. A radionuclide is introduced into the intermediate through the reaction, and labeled compounds such as 110-N-methylsubiveron IIQ-palmitic acid and 1-"O-2-deoxy-D-glucose are synthesized. The resulting labeled compounds are shown in line 8.
0, injected into the subject 9o, and subjected to positron OT using the positron imaging device 100.

放射性化合物の自動合成装置3oは反応容器70を着脱
自在に装着することができ、反応容器70への放射性核
種の供給手段、得られ念標識化合物の取出手段を具えて
いる。第2図は放射性化合物の自動合成装W3oを反応
容器7゜を装着した状態で示す概略構成図であシ、第3
図は反応容器70の構成例を示す断面図である。
The radioactive compound automatic synthesis apparatus 3o can be detachably attached to a reaction vessel 70, and is equipped with a means for supplying a radionuclide to the reaction vessel 70 and a means for taking out the obtained labeled compound. Figure 2 is a schematic configuration diagram showing the radioactive compound automatic synthesis system W3o with a 7° reaction vessel attached.
The figure is a sectional view showing an example of the configuration of the reaction container 70.

反応容器70は容器本体72と、容器本体72に刻設さ
れたネジ部74に螺合した密閉蓋76を有し、その内部
には中間体(スピペロンアルカリ塩)が封入されている
。また、反応容器には予めマグネティックスターラなど
の攪拌子を収納しておくこともできる。反応容器7o内
には予めIIQ製された1回の金成分の中間体が封入さ
れ、必要により不活性ガスを封入した。す、冷暗所に保
存するなどして安定に保持される。
The reaction container 70 has a container body 72 and a sealing lid 76 screwed onto a threaded portion 74 formed in the container body 72, and an intermediate (spiperone alkali salt) is sealed inside the lid 76. Further, a stirrer such as a magnetic stirrer may be stored in the reaction vessel in advance. The reaction vessel 7o was filled with a single gold component intermediate prepared by IIQ in advance, and an inert gas was filled in if necessary. It can be kept stable by storing it in a cool, dark place.

合成に際して、反応容器70の密閉蓋76をはずし、第
2図に示したように自動合成装置30の装着部材31に
螺合して気密的に取りつけふ。
At the time of synthesis, the airtight lid 76 of the reaction container 70 is removed, and as shown in FIG. 2, the reaction container 70 is screwed onto the mounting member 31 of the automatic synthesis apparatus 30 and mounted in an airtight manner.

なお、以上の説明においてけ螺合により装着する場合に
ついて説明したが、JRツキングを用い反応容器を装着
部材に圧締するなど、装着形式%式% 、反応容器70には、供給管32および移送管34が挿
置されるようになっており、移送管からけノ々ルプ36
 a、 36 b、 36 cを介して放射性核種、溶
媒、不活性ガスなどを供給できるように々っている。さ
らに反応容器70の外部側には密閉状態で加熱空気ある
いは冷却空気を供給する温度調整器38が具えられてお
り、また、攪拌器42により攪拌子44を回転すること
ができる。
In the above explanation, the case of mounting by screwing has been explained. A pipe 34 is inserted, and a pipe 36 is inserted from the transfer pipe.
Radioactive nuclides, solvents, inert gases, etc. can be supplied via a, 36 b, and 36 c. Furthermore, a temperature regulator 38 is provided on the outside of the reaction vessel 70 to supply heated air or cooling air in a sealed state, and a stirrer 44 can be rotated by a stirrer 42 .

中間体を収納した反応容器70を装着したのち必要によ
ジノ9ルゾ36aから不活性ガスを導入して不活性雰囲
気とし、溶媒を36bから導き、ノ々ルゾ36cから放
射性核種が導かれて中間体と反応し、分子内に放射性核
種が導入された標識化合物が合成される。35はガスな
どの排出用ノ々ルゾを示す。
After the reaction vessel 70 containing the intermediate is installed, an inert gas is introduced from the Dino-9 Luso 36a to create an inert atmosphere, the solvent is introduced from the No-Norzo 36b, and the radionuclide is introduced from the No-Norzo 36c to form the intermediate. A labeled compound with a radionuclide introduced into the molecule is synthesized by reacting with the body. Reference numeral 35 indicates a nozzle for discharging gas and the like.

合成が完了すると1.Sルブ36aより不活性ガスが導
かれ、反応生成物はガス圧によシ移送管34からノ々ル
ブ46、フィルタ48、ノ々ルプ52を経て精製用カラ
ム54の上部に導入される。
When the synthesis is completed, 1. An inert gas is introduced from the S-lube 36a, and the reaction product is introduced into the upper part of the purification column 54 from the transfer tube 34 through the nozzle tube 46, filter 48, and nozzle tube 52 by gas pressure.

ついで、Iンゾ56により吸引しながらノ々ルプ58よ
υ溶媒(展開液)を加え、精製用カラム54にて目的物
(標識化合物)と不用物とを分離する。精製用カラム5
4からの流出液はRI検出器62により検知し、目的物
は、Sルプ64よシ受器66に導き、加熱器68からの
熱風により溶媒を蒸発させ、得られた標識化合物は生体
投与のために製剤される。また、不用物はノ々ルプ63
から排出される。
Next, a solvent (developing solution) is added to the Nolp 58 while suctioning with the Inzo 56, and the target substance (labeled compound) and unnecessary substances are separated in the purification column 54. Purification column 5
The effluent from 4 is detected by an RI detector 62, and the target substance is guided through an S loop 64 to a receiver 66, where the solvent is evaporated by hot air from a heater 68, and the labeled compound obtained can be administered to living organisms. It is formulated for Also, unnecessary items are Nonorupu 63
is discharged from.

第4図は本発明で用いられる反応容器70′の他の構成
例を示す断面図であシ、容器本体72′の上部側壁には
装着部材31に係合するネジ部74′が刻設されており
、上部は密閉栓78でも止されている。この反応容器7
0′を自動合成装N30に装着するには、まず反応容器
70′を直接、あるいは取付は治具を介して装着部材3
1に装着し、ついで、針状配管とした供給管、移送管々
どを密閉栓78を貫いて差し込めばよい。
FIG. 4 is a cross-sectional view showing another example of the configuration of the reaction vessel 70' used in the present invention, in which a threaded portion 74' that engages with the mounting member 31 is carved in the upper side wall of the vessel body 72'. The upper part is also closed with a sealing plug 78. This reaction vessel 7
0' to the automatic synthesis system N30, first attach the reaction vessel 70' directly or via a jig to the attachment member 3.
1, and then insert a needle-like supply pipe, transfer pipe, etc. through the sealing stopper 78.

第4図では容器本体72′と密閉栓78を別体とする場
合について説明したが、プラスチックなどにより一体成
形することも可能である。また、反応容器Vi第3図お
よび第4図に示したものに限定されず、中間体を封入す
ることができ、合成時に放射性化合物の合成装置に装着
できるものであればいずれもが使用できる。さらに、反
応容器の材質はガラスが一般的であるが特に限定されず
、成形が容易な、f IJエチレンなどのプラスチック
のような化成品による場合は安価に入手することが可能
であり、使い捨てとすることもできる。
In FIG. 4, the case where the container body 72' and the sealing stopper 78 are separate bodies has been described, but it is also possible to integrally mold them from plastic or the like. Further, the reaction vessel Vi is not limited to those shown in FIGS. 3 and 4, but any vessel can be used as long as it can enclose an intermediate and can be attached to a radioactive compound synthesis apparatus during synthesis. Furthermore, the material of the reaction container is generally glass, but is not particularly limited; if it is made of a chemical product such as plastic such as f IJ ethylene, which is easy to mold, it can be obtained at low cost and can be disposable. You can also.

次に代表的な標識化合物の合成例に関し、従来法との比
較と併せてさらに具体的に説明する。
Next, examples of synthesis of typical labeling compounds will be explained in more detail along with a comparison with conventional methods.

11(1−N−メチルスビペロンの合成11Q−N−メ
チルスビペロンは以下の構造式を有し、脳精神医学でド
ーパミンレセプタブロッキング剤とL7て使用されてい
るものであ0弓H!I +1O−N−メチルスピペロンはスビベロンを原料とし
、とれを溶媒中ナトリウムアミド、ナトリウムヒドリド
等強塩基と反応させ、スビペロンのアルカリ塩を生成し
た後110−ヨウ化メチルを導入し合成することができ
る。
11 (Synthesis of 1-N-Methylsubiperone 11Q-N-Methylsubiperone has the following structural formula and is used as a dopamine receptor blocking agent in neuropsychiatry. Methylspiperone can be synthesized using subiveron as a raw material, by reacting the residue with a strong base such as sodium amide or sodium hydride in a solvent to produce an alkali salt of subiverone, and then introducing 110-methyl iodide.

一般にこれらの反応はマイクロモル規模で行なわれる為
、従来、スビペロンと強塩基の割合が反応時に一定とな
らず、過剰の強塩基を用いて副反応の生成を促したり、
その反面、脱水素化剤が少なく完全にスビペロンのアル
カリ塩が形成され衣い場合が多く、収率が変動する危険
性があった。又、水分の存在下で生成したスビぼロンア
ルカリ塩が元のスビペロンにもどってしまう危険性もあ
シ、反応系、反応容器の無水化にも注意する必要があっ
た。
Generally, these reactions are carried out on a micromolar scale, so conventionally, the ratio of subiperone and strong base was not constant during the reaction, and excessive strong base was used to promote the formation of side reactions.
On the other hand, there was a risk that the yield would fluctuate because the amount of dehydrogenating agent was small and the alkali salt of subiperone was often completely formed. In addition, there is a risk that the alkali salt of Subiborone produced in the presence of moisture will return to the original Subiperone, so care must be taken to ensure that the reaction system and reaction vessel are anhydrous.

これに対し本発明によれば、病院内あるいは病院外の適
当な施設で習熟した技術者により好ましい環境下で中間
体であるスビベロンアルカリ塩を大量に安定して合成す
ることができ、これらの中から一定量(1回投与必要量
)毎に反応容器に不活性ガスと共に予め封入保存してお
き、必要時直ちに供給するものである。なお、スピペロ
ンアルカリ塩は粉末であり室温下で長期保存ができ、ま
た遠隔輸送が可能である。而して、病院ではこの反応容
器を自動合成装置に装着し、110−OH,Iを導入し
て反応させることによシ容易にII□ N−メチルスビ
ペロンを合成することができ、上記の問題点が総て解決
できる。
On the other hand, according to the present invention, it is possible to stably synthesize large amounts of the intermediate subiverone alkali salt under favorable conditions by skilled technicians at appropriate facilities within or outside the hospital. A certain amount (amount required for one administration) is sealed and stored in a reaction container together with an inert gas in advance, and then supplied immediately when needed. Note that spiperone alkaline salt is a powder that can be stored for long periods at room temperature and can be transported over long distances. Therefore, in a hospital, II□ N-methylsubiperone can be easily synthesized by attaching this reaction container to an automatic synthesis device, introducing 110-OH,I, and causing the reaction, which solves the above-mentioned problems. can all be solved.

第5図は110−N−メチルスビペロンを合成する」−
合の第1図に対応したフロー図であり、サイクロトロン
12より生産された110はロCO7合成装置14によ
りIICQ、の形に変喚される。
Figure 5 synthesizes 110-N-methylsubiperone.
1, in which 110 produced by the cyclotron 12 is transformed into the form of IICQ by the CO7 synthesizer 14.

ls O+ Ol−+ ” O01 次に、■002は+10−01−1’、 I自動合成装
置に導かれ、還元してIICHllOHとし、ヨウ素化
して+1O−OH,Iが合成される。
ls O+ Ol-+ ''O01 Next, ■002 is +10-01-1', I guided to an automatic synthesizer, reduced to IICHllOH, and iodinated to synthesize +1O-OH,I.

ロoo、士土へ/:)]、II(用、OH」リ ”OH
,Iこの’1O−OH,Iはライン20から放射性化合
物の自動合成装置30に供給され、反応容器70内で、
この容器に予め収納された中間体であるスビペロンアル
カリ塩(Sp−Na)と反応し、”O−)I jA’ 
スビペ0 ン(Sp”−110H,)が合成される。
Rooo, to Shido/:)], II (for, OH"ri"OH
,I This '1O-OH,I is supplied from the line 20 to the radioactive compound automatic synthesis apparatus 30, and in the reaction vessel 70,
It reacts with subiperone alkali salt (Sp-Na), which is an intermediate stored in this container in advance, to form "O-)I jA'
Subipene (Sp"-110H,) is synthesized.

110−OH,l 5pNa Sp−ロOH。110-OH,l 5pNa Sp-RoOH.

得うれたII□−メチルスビペロンHライys。The obtained II□-methylsubiperone H-lys.

から取シ出されて製剤され、被検者9oに注入され、ポ
ジトロンOT装置によシ診断が行なわれる。
The drug is taken out, formulated, and injected into the subject 9o, and diagnosed using a positron OT device.

自動合成装置30における処理を第2図を参照してさら
に詳細に説明すると、5p−Naを不活性ガスと共に封
入した反応容器70を開封して装着部材31に装着し、
ノ々ルブ36aからN、などの不活性ガスを流して反応
容器を不活性ガスで置換する。ついで溶媒に溶解した”
O−OH,Iをバルブ36cから導入し、室温下または
温度調整器38が熱風を供給して加熱下に反応を完結さ
せ、S p −II OH,を合成する。また、 11
0−OH,Iをガスとして反応容器70に導入すふ場合
は、不活性ガスで置換したのち。
To explain the process in the automatic synthesis device 30 in more detail with reference to FIG. 2, the reaction container 70 containing 5p-Na and an inert gas is opened and mounted on the mounting member 31,
An inert gas such as N is passed through the nozzle tube 36a to replace the reaction vessel with the inert gas. It was then dissolved in a solvent.”
O-OH,I is introduced from the valve 36c, and the reaction is completed at room temperature or under heating by supplying hot air from the temperature regulator 38, to synthesize Sp-II OH. Also, 11
When 0-OH, I is introduced into the reaction vessel 70 as a gas, it is replaced with an inert gas.

先ずノ々ルゾ36bより溶媒を導入し、ついでノ々ルゾ
36cよりI’OH,Iガスを導入させてバブリングさ
せトラップさせて反応を終結する。得られた反応生成物
は、精製用カラム54としてシリカゲルカラムを用い、
第2図の説明と同様の手法によJ 5p−110H,を
回収する。
First, a solvent is introduced from the Noronozo 36b, and then I'OH and I gases are introduced from the Nonoruzo 36c to cause bubbling and trapping, thereby terminating the reaction. The obtained reaction product is purified by using a silica gel column as the purification column 54,
J 5p-110H is recovered by a method similar to that described in FIG.

11C−パルミチン酸の合成 jlQ−パルミチン酸は心筋代謝測定に利用されるもの
であり、グリニヤール反応を利用した以下の反応経路に
より合成されている。
Synthesis of 11C-palmitic acid jlQ-palmitic acid is used for measuring myocardial metabolism, and is synthesized by the following reaction route using the Grignard reaction.

Mg +100゜ 0BHIl−Br −0,gHllMgBr−−→01
1H1,”000Mg’Brニーアル 中間体であ石Q、、H81MgBrは1−プロムペンタ
デンカンとマグネシウムとをジエチルエーテル、テトラ
ヒドロフランなどの無水エーテル中で反応させるととK
J″シ得られ、溶媒中では安定であるが、水と反応して
ペンタデカンを、また、酸素と反応してペンタデシルア
ルコールを生成し副産物となる。したがって一般にその
都度中間体を合成するか、あるいけ大量に合成して低温
下で密閉容器に保存し必要量分取する方法をとっている
。しかしながら、低温保存の場合でも開放するたびに劣
化し、また、完全に不活性雰囲気とすることも困難であ
るから、1〜2週間が限度となる。
Mg +100゜0BHIl-Br -0,gHllMgBr--→01
1H1,"000Mg'Br Nial intermediate destone Q,,H81MgBr is produced by reacting 1-prompentadecane with magnesium in an anhydrous ether such as diethyl ether or tetrahydrofuran.
Although it is stable in a solvent, it reacts with water to produce pentadecane, and reacts with oxygen to produce pentadecyl alcohol as by-products.Therefore, generally, intermediates are synthesized each time, or The method is to synthesize a large amount, store it in a sealed container at low temperature, and take out the required amount.However, even when stored at low temperature, it deteriorates every time it is opened, and it is necessary to keep it in a completely inert atmosphere. Since it is also difficult, the limit is 1 to 2 weeks.

本発明によれば中間体である0111H11Mg B 
rを反応容器に所定量封入して供給することが可能とな
るため、作業者は上記の煩雑さから一挙に開放されるこ
とにな7−0第2図を参照して説明すると、(EtwH
s+MgBrを収納した反応容器70を装着し、バルブ
36cを軽て供給管32から1100.を・々シリング
して反応させ、ついで)ζルデ32bあるいは図示して
いない他の、Sルゾを軽て供給管32から酸水溶液を導
いて加水分解しO,、H8,”0OOHとする。ついで
上記第2図の説明と同様にして標識化合物である+1(
) 、qルミチン酸を得る。
According to the invention, the intermediate 0111H11Mg B
Since it becomes possible to supply a predetermined amount of r to the reaction vessel, the operator is freed from the above-mentioned complications.7-0 Referring to Figure 2, (EtwH
The reaction vessel 70 containing s+MgBr is attached, and the valve 36c is connected from the supply pipe 32 to 1100. Then, a) Zeta Lude 32b or other S Luzo (not shown) is used to introduce an acid aqueous solution from the supply pipe 32 and hydrolyze it to O, H8, 0OOH. The labeled compound +1(
), yielding q-rumitic acid.

IICDGは癌診断に利用されるものであり、たとえば
以下のプロセスによシ合成される。
IICDG is used for cancer diagnosis, and is synthesized, for example, by the following process.

ill l)−アラビトール ↓ (212,3−4,5−ジ0−インゾロビリデンー〇−
ア2ビトール ↓ +31 2.3−4.5−ジ0−インゾロビリデンー1
−0−メタンスルホニル〜D−75ビトール ↓ (4)1−デオキシ−2,3−4,5−ジ0−インプロ
ピリデンー1−ヨード−D−7ラビトール ↓Na ”0N (5) 2−デオキシ−3,4−5,6−ジ0−イソプ
ロピリデン−D(1−”O)グルコノニトリル このように11C核種の導入するのけ(5)ステップ目
であることから、(1)〜(4)の合成は予め病院外な
どの適当な設備で行ない、反応容器に(4)のヨード化
合物をクロロホルム中で封入して冷暗所で保存して供給
することが可能となる。(6)の目的物を合成するには
上記反応容器を自動合成装置に装着し、ノ々ルゾ36c
を経て供給管32よりNa”ONを導入して(5)ステ
ップ目の反応を行彦い、ついで適当なパルプを経て供給
管32よりパラジウムブラック分散液を導入し、脱イン
プロピリデンを行なえばよい。このように本発明の方式
によれば、(4)のヨード化合物を予め反応容器に封入
して供給することができ、複雑な合成工程が不要となリ
、現在、世界でも有数の病院でしか供給できない”OD
G標識化合物を簡便に供給することが可能となる。
ill l)-arabitol↓ (212,3-4,5-di0-inzolobylidene〇-
A2bitol↓ +31 2.3-4.5-di0-inzolobylidene-1
-0-methanesulfonyl~D-75bitol↓ (4) 1-deoxy-2,3-4,5-di0-impropylidene-1-iodo-D-7bitol↓Na ”0N (5) 2- Deoxy-3,4-5,6-di0-isopropylidene-D(1-”O)glucononitrile Since this is the (5) step of introducing the 11C nuclide, (1) to The synthesis of (4) can be carried out in advance in a suitable facility such as outside a hospital, and the iodine compound of (4) can be sealed in chloroform in a reaction vessel and stored in a cool, dark place before being supplied. To synthesize the target product (6), attach the above reaction container to an automatic synthesizer, and
After that, Na'ON is introduced through the supply pipe 32 to carry out the reaction in step (5), and then the palladium black dispersion is introduced through the supply pipe 32 through an appropriate pulp to perform deimpropylidene. As described above, according to the method of the present invention, the iodine compound (4) can be sealed in a reaction container in advance and supplied, eliminating the need for a complicated synthesis process. "OD" that can only be supplied
It becomes possible to supply G-labeled compounds easily.

以上の説明からも明らかなように、本発明によれば、病
院外などの適当な施設で中間体を合成して反応容器に必
要量毎に封入保存することができる。よって、高品質の
中間体を供給することができ、高品質の目的物を得るこ
とができ7−oまた、不安定な中間体でも長期保存や遠
隔輸送が可能であり、病院などの使用現場の作業者は反
応容器を自動合成装置に装着するだけで目的物が簡単に
得られ、作業者の負担が著しく軽減される。さらに、反
応容器を交換するだけで、装置を繰返し使用することも
可能である。
As is clear from the above description, according to the present invention, intermediates can be synthesized at an appropriate facility such as outside a hospital, and the intermediates can be sealed and stored in reaction containers in required amounts. Therefore, high-quality intermediates can be supplied, and high-quality target products can be obtained.7-o In addition, even unstable intermediates can be stored for a long time and transported over long distances, making it possible to store them at sites of use such as hospitals. The operator can easily obtain the desired product by simply attaching the reaction container to the automatic synthesis equipment, significantly reducing the burden on the operator. Furthermore, the apparatus can be used repeatedly by simply replacing the reaction vessel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すフロー図であり、M5図
はII(3,N−メチルスビベロンを合成する場合のさ
らに具体的なフロー図である。 第2図は本発明で用いられる自動合成装置の構成例を示
す概略図である。 第3図および第4図は本発明で用いられる反応容器の構
成例を示す断面図である。 10・・・サイクロトロン 3o・・・自動合成装置3
1・・・装着部材 32・・・供給管34・・・移送管
 54・・・精製用カラム62・・・RI検出器 66
・・・受 器70.70’・・・反応容器 72.72
′・・・容器本体76・・・密閉蓋 78・・・密閉栓 100・・・鱈?シトロンイメージング装渦“帛1図 篤2図
Figure 1 is a flow diagram showing an example of the present invention, and Figure M5 is a more specific flow diagram for synthesizing II (3,N-methylsubiveron). It is a schematic diagram showing a configuration example of a synthesis apparatus. FIGS. 3 and 4 are sectional views showing a configuration example of a reaction container used in the present invention. 10... Cyclotron 3o... Automatic synthesis device 3
1... Mounting member 32... Supply pipe 34... Transfer pipe 54... Purification column 62... RI detector 66
... Receiver 70.70' ... Reaction container 72.72
'... Container body 76... Airtight lid 78... Airtight stopper 100... Cod? Citron Imaging Vortex “Paper 1 Figure Atsushi 2

Claims (1)

【特許請求の範囲】[Claims] 1、 放射性化合物を合成する方法において、目的とす
る放射性化合物の中間体を予め一定貴毎反応容器に密封
用意しておき、合成時に核反応容器を放射性化合物合成
装置に装着して、反応合成させることを特徴とする短寿
命核種を用いた放射性化合物の合成方法。
1. In the method of synthesizing a radioactive compound, the intermediate of the desired radioactive compound is prepared in advance in a sealed reaction container at a certain temperature, and during synthesis, the nuclear reaction container is attached to a radioactive compound synthesis apparatus and the reaction is synthesized. A method for synthesizing radioactive compounds using short-lived nuclides.
JP59041648A 1984-03-05 1984-03-05 Synthesis of radioactive compound using nucleus seed with short life Pending JPS60185730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59041648A JPS60185730A (en) 1984-03-05 1984-03-05 Synthesis of radioactive compound using nucleus seed with short life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59041648A JPS60185730A (en) 1984-03-05 1984-03-05 Synthesis of radioactive compound using nucleus seed with short life

Publications (1)

Publication Number Publication Date
JPS60185730A true JPS60185730A (en) 1985-09-21

Family

ID=12614162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59041648A Pending JPS60185730A (en) 1984-03-05 1984-03-05 Synthesis of radioactive compound using nucleus seed with short life

Country Status (1)

Country Link
JP (1) JPS60185730A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823016A (en) * 1986-09-18 1989-04-18 Hamamatsu Photonics Kabushiki Kaisha Scintillation detector for three-dimensionally measuring the gamma-ray absorption position and a positron CT apparatus utilizing the scintillation detector
JP2016508220A (en) * 2012-12-21 2016-03-17 ジーイー・ヘルスケア・リミテッド Disposable radiochemical device that records radiation dose

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823016A (en) * 1986-09-18 1989-04-18 Hamamatsu Photonics Kabushiki Kaisha Scintillation detector for three-dimensionally measuring the gamma-ray absorption position and a positron CT apparatus utilizing the scintillation detector
JP2016508220A (en) * 2012-12-21 2016-03-17 ジーイー・ヘルスケア・リミテッド Disposable radiochemical device that records radiation dose
US10067249B2 (en) 2012-12-21 2018-09-04 Ge Healthcare Limited Disposable radiochemistry device with radiation dose recordal

Similar Documents

Publication Publication Date Title
Machulla et al. Simplified labeling approach for synthesizing 3′-deoxy-3′-[18F] fluorothymidine ([18F] FLT)
US5759513A (en) Apparatus and process for preparing radioisotope-labeled reagent
US9254471B2 (en) Apparatus and method for synthesizing F-18 labeled radioactive pharmaceuticals
US20110070160A1 (en) Dose Synthesis Mosule for Biomaker Generator System
US6344178B1 (en) Method for the preparation of facial metal tricarbonyl compounds and their use in the labelling of biologically active substrates
JP2002512616A (en) Process for preparing fac-type metal tricarbonyl compounds and their use in labeling bioactive substrates
JPS61134394A (en) Radiant nuclide complex synthetic metal-isonitrile addition body for label and image forming agent
KR101009712B1 (en) Labeling Method of Fluorine-18 Using Fluorine-18 Fluoride Elution from Anionic Exchange Polymer Support Using Protic Solvent and Soluble Salts
JPS60185730A (en) Synthesis of radioactive compound using nucleus seed with short life
AU2004237297B2 (en) Device and method for the fluorination of nucleophiles
US5538712A (en) Cyclopentadienylcarbonyl 99MTC complexes, process for their production as well as their use in diagnostics
KR100679867B1 (en) Know this labeled compound synthesis system
CN102656169A (en) Radioiodinated tropane derivatives
Nakagawa et al. Synthesis of [123 I]-iodometomidate from a polymer-supported precursor with a large excluded volume
US20070059230A1 (en) Process
JP2828853B2 (en) Acetic acid synthesis method
JPS6345647B2 (en)
Stavchansky et al. Synthesis of carbon‐14 labeled diphenylhydantoin and its major metabolite 5‐(p‐hydroxyphenyl)‐5‐phenylhydantoin (HPPH) in 70 minutes
JP2776766B2 (en) Method and apparatus for producing high specific activity 13N-labeled drug
Waterhouse The synthesis of radioiodinated carbohydrates and butyrothienones as potential imaging agents for computed tomography
JPH01501423A (en) Rhenium generator system, its preparation and use
JPH035437A (en) ↑1↑1C ketene production method and automatic production device
Basmadjian et al. Synthesis of 123mTe-nucleophiles: Potential use in the synthesis of new 123mTe-radiopharmaceuticals
Shiue et al. /sup 18/F-4-fluoroantipyrine
Lockley A simple apparatus for reductive labelling with isotopic hydrogen gas at atmospheric pressure