[go: up one dir, main page]

JPS60184713A - Elastic spacer for roller bearing for endless rectilinear movement - Google Patents

Elastic spacer for roller bearing for endless rectilinear movement

Info

Publication number
JPS60184713A
JPS60184713A JP3887184A JP3887184A JPS60184713A JP S60184713 A JPS60184713 A JP S60184713A JP 3887184 A JP3887184 A JP 3887184A JP 3887184 A JP3887184 A JP 3887184A JP S60184713 A JPS60184713 A JP S60184713A
Authority
JP
Japan
Prior art keywords
elastic
spacer
rolling
elastic spacer
spacers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3887184A
Other languages
Japanese (ja)
Other versions
JPH0427405B2 (en
Inventor
Norimasa Agari
上利 憲正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Thompson Co Ltd
Original Assignee
Nippon Thompson Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Thompson Co Ltd filed Critical Nippon Thompson Co Ltd
Priority to JP3887184A priority Critical patent/JPS60184713A/en
Publication of JPS60184713A publication Critical patent/JPS60184713A/en
Publication of JPH0427405B2 publication Critical patent/JPH0427405B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0614Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a shoe type bearing body, e.g. a body facing one side of the guide rail or track only
    • F16C29/0616Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a shoe type bearing body, e.g. a body facing one side of the guide rail or track only for supporting load essentially in a single direction
    • F16C29/0619Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a shoe type bearing body, e.g. a body facing one side of the guide rail or track only for supporting load essentially in a single direction with rollers or needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/20Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows with loose spacing bodies, e.g. balls, between the bearing balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/40Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings with loose spacing bodies between the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0633Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
    • F16C29/0635Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end
    • F16C29/065Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/37Loose spacing bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/37Loose spacing bodies
    • F16C33/3706Loose spacing bodies with concave surfaces conforming to the shape of the rolling elements, e.g. the spacing bodies are in sliding contact with the rolling elements

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PURPOSE:To reduce stick slip by inserting a plurality of elastic spacers in equal intervals between the rolling bodies in an endless circulation path and absorbing the gap between the rolling bodies. CONSTITUTION:The inner cylindrical rollers 1 having the length nearly equal to the diameter are arranged on an endless circulation path alternately in directly contiguously, shifting the centers of the rotary shafts by 90 deg., and each A type elastic spacer is inserted in substitution for the cylindrical roller 1 at the position divided into three parts in a nearly equal pitch to the length L of the trajectory passage, in other words, one spacer is set into the load range 3, and two spacers are set into the load ranges 4 and 5, and thus absorption amount can be stabilized. In this case, a C-type spacer is inserted into a circumferential gap, and stick slip is generated artificially. Therefore, the intermittent sharp increase and reduction of the sliding resistance of the stick pipe is softened, and the large stick slip during the transfer from the upper to the lower can be avoided, and the sufficient effect can be developed even in use of a longitudinal type.

Description

【発明の詳細な説明】 本発明は無限直線運動用ころがり軸受の弾性スペーサに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an elastic spacer for a rolling bearing for infinite linear motion.

従来のころがり軸受用のスペーサは、ころ等の転動体同
士を直接に接触させないことと転動体間距離を一定に保
つことを目的として転動体間に挿入されるものであるが
、負荷軌道上にある転動体の数が少くなるため負荷能力
が低下しまたスペーサの存在のため小型化ができない欠
点があった。
Conventional spacers for rolling bearings are inserted between rolling elements such as rollers to prevent them from coming into direct contact with each other and to maintain a constant distance between them. Since the number of rolling elements is reduced, the load capacity is reduced, and the presence of spacers makes it impossible to downsize.

この欠点を除くため、例えば第1.2図に示すごとき、
ころ間を係合するスペーサを有しないで多数の円筒状の
ころが、夫々回転軸心を90”異にして直接隣接して無
限循環路上を無限循環する所謂総形クロスローラ型があ
る直線運動用ころ軸受が開発され、その際軌道面の両端
の転動体の出る農と入る量とが一定しないために、すな
わち出入り変化量があるために、軸受のスティックスリ
ップが発生することに着目し、負荷軌道とリターン路の
長さ及び向直線路の両端間を連結する方向転換路の長さ
をころ軸径に対して所定倍数とすることにより前記ステ
ィックスリップを低減する直線運動用ころ軸受の無限循
環路(特願昭58−101467号、特願昭59−48
75号)が提案された。図中、1はころ、2は無限循環
路、3は直線状の負荷路、4は直線状のリターン路、5
は半円状の方向転換路、6はトラックレール、7はケー
シングである。
In order to eliminate this drawback, for example, as shown in Figure 1.2,
Linear motion with a so-called general cross-roller type, in which a large number of cylindrical rollers, each having their rotation axes 90" apart and directly adjacent to each other, circulate endlessly on an endless circulation path without a spacer that engages between the rollers. When roller bearings were developed, they focused on the fact that stick-slip occurs in bearings because the amount of rolling elements coming out and coming in at both ends of the raceway surface is not constant, that is, there is a change in the amount of coming and going. An infinite linear motion roller bearing that reduces the stick-slip by making the length of the load track and return path and the length of the direction change path connecting both ends of the direction straight path a predetermined multiple of the roller shaft diameter. Circulation route (Japanese Patent Application No. 1983-101467, Patent Application No. 59-48
No. 75) was proposed. In the figure, 1 is a roller, 2 is an endless circulation path, 3 is a linear load path, 4 is a linear return path, 5
is a semicircular turning path, 6 is a track rail, and 7 is a casing.

しかし、現実問題としては、無限循環路を構成する各部
品の加工誤差や無限循環路と転動体との遊び(カタ)由
の問題から、組立後の無限循環路の構造は、出入り変化
量の最少条件になるとは限らず、また最少条件でも小さ
なスティックスリップは発生していてゼロではない。
However, as a practical matter, the structure of the endless circulation path after assembly is difficult to control due to machining errors in the parts that make up the endless circulation path and play between the endless circulation path and the rolling elements. It is not always the minimum condition, and even under the minimum condition, small stick-slips occur and are not zero.

よって、理想的な条件以外の出入り変化量の大きい条件
の無限循環路構造の軸受においても、何等かの工夫を施
してその出入り変化量を小さくすればスティックスリッ
プは減少して理想的な条件のものに近付けることができ
る。
Therefore, even in a bearing with an endless circulation path structure under conditions other than ideal conditions, where the amount of change in inflow and outflow is large, if you take some measures to reduce the amount of change in inflow and outflow, stick-slip will be reduced, and even under ideal conditions. You can get close to things.

本発明はこの点に鑑み、弾性スペーサを用いることによ
り、無限循環路の中を多数の転動体が循環し、直線運動
する直線運動用ころがり軸受の転動体の挙動特性である
円周方向すきまの増減変化口を吸収することを第1の目
的とする。
In view of this point, the present invention uses an elastic spacer to allow a large number of rolling elements to circulate in an endless circulation path, thereby reducing the circumferential clearance, which is a behavior characteristic of the rolling elements of a linear motion rolling bearing. The primary purpose is to absorb changes in increase and decrease.

また本発明の弾性スペーサは第3図に示す無限直線運動
用ころがり軸受においてもその効果を発揮する。図中、
11は軌道台、12は軌道台の両側に取付けられる案内
板、13は案内板にガイドされて軌道台の周囲を無限循
環する段付ころである。このころがり軸受を第3図(B
)に示す状態を上下に180度回転させて使用する場合
には、無限循環路のうち下方の負荷域でころところの間
にすきまがなく、すきまは常にころが負荷域に入り込む
側の方向転換路の上部に生ずるので、負荷域ではころと
ころとが直接接触し、その接触部では回転方向が逆とな
ってころがり運動を妨げる力を発生する。本発明による
弾性スペーサによりかかる欠点を防止することができる
The elastic spacer of the present invention also exhibits its effects in a rolling bearing for infinite linear motion shown in FIG. In the figure,
11 is a track base, 12 is a guide plate attached to both sides of the track base, and 13 is a stepped roller that endlessly circulates around the track base while being guided by the guide plate. This rolling bearing is shown in Figure 3 (B
) When using the state shown in ) rotated 180 degrees up and down, there is no gap between the rollers in the lower load area of the endless circulation path, and the gap is always on the side where the rollers enter the load area. Since it occurs at the upper part of the road, the roller and roller come into direct contact in the load area, and the direction of rotation is reversed at the contact point, generating a force that impedes rolling motion. The elastic spacer according to the invention can prevent such drawbacks.

本発明は直線状の負荷軌道、直線状のリターン路および
両者の両端を連結する方向転換路からなる無限循環路内
のころ等の転動体間に複数個の弾性スペーサを等間隔に
装入して転動体間のすきまを吸収するという構成のもの
である。
In the present invention, a plurality of elastic spacers are inserted at equal intervals between rolling elements such as rollers in an endless circulation path consisting of a linear load track, a linear return path, and a direction change path connecting both ends of the path. This structure absorbs the gap between the rolling elements.

以下図面について本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第4図において、(A)〜(H)に各種の弾性スペーサ
の構造が示されているが、これ等を分類すると次の通り
となる。
In FIG. 4, structures of various elastic spacers are shown in (A) to (H), and these can be classified as follows.

(A)固定ビンA+に1つ割り弾性リングA2を嵌合す
る。
(A) Fit the split elastic ring A2 into the fixed bottle A+.

(B)円周方向に数個のスリットをいれて弾性変形しや
すくした弾性リングB2に固定ビンB1を挿入し、両端
または一端をかしめて固着する。
(B) The fixing bottle B1 is inserted into the elastic ring B2, which has several slits in the circumferential direction to facilitate elastic deformation, and is fixed by caulking both ends or one end.

(C)ころ接触部C1の中央に切欠部C2゜G3を設け
て弾性変形しやすくする。
(C) A notch C2°G3 is provided at the center of the roller contact portion C1 to facilitate elastic deformation.

(D)固定ビンD+に巻きばねD2を巻き付けたもの。(D) A coiled spring D2 is wound around a fixed bottle D+.

(E)(A)のごとき固定ビンE+を円周方向に2分割
し、これをリベットE3でかしめて固着したもので、弾
性リングE2は一体形でよい。
(E) The fixed bottle E+ as shown in (A) is divided into two parts in the circumferential direction, and these parts are fixed by caulking with rivets E3, and the elastic ring E2 may be integrally formed.

(F)(E)を改良したもので、固定ビンF+のテーパ
一部で弾性リングF2を支え、ガタをなくして音響を低
下させるもので、F3はリベットである。
(F) This is an improved version of (E), in which the tapered part of the fixed bin F+ supports the elastic ring F2 to eliminate looseness and reduce acoustics, and F3 is a rivet.

(G)針状ころ用の円周方向すきまに挿入する方式のも
ので、ころとの接触部G1の面上および他の部分に軸方
向に切欠きG2゜G3を有する。
(G) This type is inserted into the circumferential gap for needle rollers, and has notches G2 and G3 in the axial direction on the surface of the contact portion G1 with the roller and other parts.

(H)玉軸受用のもので、鋼球H1に弾性材H2をコー
ティングしたものである。
(H) For ball bearings, steel balls H1 are coated with an elastic material H2.

上記弾性スペーサを用途別に分類すると次の通りどなる
The above-mentioned elastic spacers can be categorized by use as follows.

弾性スペーサの外観寸法は上記各形式とも最大で転動体
寸法より、わずかに小さく形成され、負荷域を通過して
も軸受型を受けない構造となっている。
The external dimensions of the elastic spacer for each of the above types are at most slightly smaller than the dimensions of the rolling elements, and the structure is such that it does not receive the bearing type even when passing through the load range.

(a >形式の例では、弾性部材(弾性リング、弾性材
、巻きはね)が圧縮方向に弾性変形して転動体の出入り
量の変化を吸収するが、過大な圧縮力が弾性部材に負荷
したときは、固定部材(固定リング、鋼球)が弾性部材
の変形を阻止する構造になっている。(A、)、(D)
、(E)の形式では弾性部材と固定部材との間にすきま
があり、高速に直線運動するときは音響や弾性部材と固
定部材の摩耗が大きくなる。この場合は(F)や(B)
の様に弾性部材と固定部材を固着すればよい。
(In the example of type a, the elastic members (elastic ring, elastic material, winding spring) are elastically deformed in the compression direction to absorb changes in the amount of movement in and out of the rolling elements, but excessive compressive force causes a load on the elastic members. When this occurs, the structure is such that the fixing member (fixing ring, steel ball) prevents the elastic member from deforming. (A,), (D)
, (E), there is a gap between the elastic member and the fixed member, and when moving linearly at high speed, noise and wear between the elastic member and the fixed member increase. In this case, (F) or (B)
The elastic member and the fixing member may be fixed together as shown in FIG.

(b)形式は転動体の円周すきまを埋める様に無限循環
路内に挿入されるもので、例えば、転動体1個分の円周
すきまがある場合、0.5個分の(11)形式の弾性ス
ペーサを2個等分に配置してもよく、0.3個分の(b
)形式弾性スペーサを3個等分に配置してもよい。この
形式のものは円周すきまを単に埋める構成となるため、
軸受の負荷容量が低下しないことが大きな特色であり、
むしろ軌道路内の転勤個数が安定するので実質的には負
荷能力を増加させる効果がある。
Type (b) is inserted into the infinite circulation path so as to fill the circumferential gap between the rolling elements.For example, if there is a circumferential gap for one rolling element, (11) for 0.5 It is also possible to arrange two elastic spacers of the same type as 0.3 pieces (b
) Type elastic spacers may be arranged equally into three pieces. This type of structure simply fills the circumferential gap, so
A major feature is that the load capacity of the bearing does not decrease.
Rather, since the number of transferred objects within the track is stabilized, this has the effect of substantially increasing the load capacity.

第5図(A)、(B)は(a)形式と(b )形式の弾
性スペーサの両方を使用した1例を示す。
FIGS. 5(A) and 5(B) show an example in which both types (a) and (b) of elastic spacers are used.

(A)は縦断正面図、(B)はA−A方向に視る説明図
である。第5図(B)は第5図(A)においてろ−45
°の場合であり、第1.2図は0くδ′く45°の場合
である。1は直径と長さが略相等しい円筒状ころで、夫
々の回転軸心を90゜異にして直接隣接して交互に無限
循環路上に配置されており、該無限循環路は直線状で長
さLの負荷軌道3と直線状で長さしのリターン路4と両
路3.4の両端を連結する半円形の方向転換路5゜5と
からなる。軌道路の長さしと略同−ピッチで3等分され
た位置の円筒ころ1に替えてA塑弾性スペーサが入れら
れる。その結果、負荷域3に1個、無負荷域4,5に2
個となり、吸収量が安定する。C型スペーサは口の場合
は1個用いて円周すきま内に入れている。なおC型スペ
ーサのみを用いることもあるが、その場合、複数個では
均等ピッチで配置しtc方が安定する。
(A) is a longitudinal front view, and (B) is an explanatory view seen in the AA direction. Figure 5 (B) is similar to Figure 5 (A) -45
Figure 1.2 shows the case of 0, δ' and 45°. Cylindrical rollers 1 are approximately equal in diameter and length, and are arranged directly adjacent to each other alternately on an endless circulation path with their rotation axes 90 degrees apart, and the endless circulation path is linear and long. It consists of a load track 3 of length L, a linear return path 4, and a semicircular turning path 5.5 connecting both ends of both paths 3.4. Plastic elastic spacers A are inserted in place of the cylindrical rollers 1 at positions divided into three equal parts with approximately the same pitch as the length of the raceway. As a result, one in load area 3 and two in no-load area 4 and 5.
The amount of absorption becomes stable. In the case of the mouth, one C-shaped spacer is used and inserted into the circumferential gap. Note that only C-shaped spacers may be used, but in that case, tc is more stable if a plurality of spacers are arranged at equal pitches.

第6図(A)は第1,2図に示す形式でδ′=18°の
ころ軸受を水平位置に置いて、グリース封入して移動速
度10 mm、/ secで摺動抵抗を測定した実測値
を示す曲線で、太線は従来の軸受、曲線はC型弾性スペ
ーサ1個を配置した場合であり、第6図(B)は同じ状
態であるが、特にスティックスリップを入口的に発生に
ろを傾けて負荷域に入るようにセットする)させたもの
を用いた例である。
Figure 6 (A) is an actual measurement in which a roller bearing of the type shown in Figures 1 and 2 with δ' = 18° was placed in a horizontal position, filled with grease, and the sliding resistance was measured at a moving speed of 10 mm/sec. In the curves showing the values, the bold line is for a conventional bearing, and the curve is for a case with one C-shaped elastic spacer. Figure 6 (B) shows the same situation, but especially when stick-slip occurs at the entrance. This is an example using a device that is tilted and set so that it falls within the load range.

本発明による効果は次の通りである。The effects of the present invention are as follows.

(1)第6図の実測曲線からも明らかなように、摺動抵
抗は弾性スペーサを入れることにより明らかに減少する
。その減少の特徴は、スティックスリップといわれてい
る断続的な摺動抵抗の急増減少を緩衝させて減少平滑化
するところにある。
(1) As is clear from the measured curve in FIG. 6, the sliding resistance is clearly reduced by inserting the elastic spacer. The characteristic of this reduction is that it smoothes out the intermittent rapid decrease in sliding resistance, which is called stick-slip, by buffering it.

(2)上下方向に直線運動させる縦形使用の場合に、上
から下への移動的には、特に大きなスティックスリップ
が顕著に現われていたが、本発明の実施により、この減
少もなくなり縦形使用でも十分効果を発揮することがで
きる。
(2) In the case of vertical use with linear movement in the vertical direction, particularly large stick-slip was noticeable when moving from top to bottom, but with the implementation of the present invention, this reduction is no longer possible and even with vertical use It can be fully effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は直線運動用ころ軸受の1実施例を示す一部切断
正面図、第2図は同じく一部切断側面図、第3図(A)
、(B)、(C)は直線運動用ころ軸受の他の実施例を
示す斜視図、一部切断正面図、要部斜視図、第4図(A
)〜(H)はそれぞれ本発明実施の1例を示す斜視図ま
たは一部切断正面図、第5図(A>、(B)は本発明を
実施した直線運動用ころ軸受の一部断面図、A−A方向
に視る説明図、第6図(A)、(B)は実測結果を示す
曲線図である。 図中の符号はそれぞれ下記部材を示す。 1: ころ 2: 無限循環路 3: 負荷軌道 4: リターン路 5二 方向転換路 6: トラックレール7: ケーシ
ング 11: 軌道台 12: 案内板 13: 段付ころ (A)〜(H)二 弾性スペーサ 特許出願人 日本トムソン 株式会社 オ 1 図 牙2図 牙3図 24図 (A) (G) (1−1) 牙5図 (A) オ6図
Figure 1 is a partially cutaway front view showing one embodiment of a linear motion roller bearing, Figure 2 is a partially cutaway side view, and Figure 3 (A).
, (B), and (C) are perspective views, partially cutaway front views, and main part perspective views showing other embodiments of linear motion roller bearings, and FIG.
) to (H) are respectively perspective views or partially cutaway front views showing one example of implementing the present invention, and Figures 5 (A> and (B) are partial cross-sectional views of a linear motion roller bearing implementing the present invention). , an explanatory diagram viewed in the A-A direction, and FIGS. 6(A) and 6(B) are curve diagrams showing actual measurement results. The symbols in the figures indicate the following members, respectively. 1: Roller 2: Endless circulation path 3: Load track 4: Return path 52 Direction change path 6: Track rail 7: Casing 11: Track base 12: Guide plate 13: Stepped rollers (A) to (H) 2 Elastic spacer patent applicant Nippon Thomson Co., Ltd. E 1 Fig. 2 Fig. 3 Fig. 24 (A) (G) (1-1) Fig. 5 (A) Fig. O 6

Claims (1)

【特許請求の範囲】 1、直線状の負荷軌道、直線状のリターン路および両者
の両端を連結する方向転換路からなる無限循環内のころ
等の転動体間に1個又は等間隔に装入された複数個の弾
性スペーサを有することを特徴とする無限直線運動用こ
ろがり軸受の弾性スペーサ。 2、前記弾性スペーサが転動体と長さが同じ固定ビンの
外周に外形が僅かに小さい弾性体を取付けてなり、転動
体と入れ替えて使用することを特徴とする特許請求の範
囲第1項に記載の無限直線運動用ころがり軸受の弾性ス
ペーサ。 3、前記弾性スペーサが転動体と同じ長さで転動体と適
合した形状の接触部と適宜切欠部とを有し、転動体間の
すきまを1個又は複数個等分して埋めるようにしたこと
を特徴とする特許請求の範囲第1項に記載の無限直線運
動用ころがり軸受の弾性スペーサ。
[Claims] 1. Insert one piece or equally spaced between rolling elements such as rollers in an endless circulation consisting of a linear load track, a linear return path, and a direction change path connecting both ends of the track. An elastic spacer for a rolling bearing for infinite linear motion, comprising a plurality of elastic spacers. 2. The elastic spacer is formed by attaching an elastic body with a slightly smaller outer diameter to the outer periphery of a fixed bottle having the same length as the rolling element, and is used in place of the rolling element. Elastic spacer for rolling bearings for infinite linear motion as described. 3. The elastic spacer has the same length as the rolling element and has a contact part with a shape compatible with the rolling element and an appropriate notch, so that the gap between the rolling elements is filled by dividing it into one or more equal parts. An elastic spacer for a rolling bearing for infinite linear motion according to claim 1.
JP3887184A 1984-03-02 1984-03-02 Elastic spacer for roller bearing for endless rectilinear movement Granted JPS60184713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3887184A JPS60184713A (en) 1984-03-02 1984-03-02 Elastic spacer for roller bearing for endless rectilinear movement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3887184A JPS60184713A (en) 1984-03-02 1984-03-02 Elastic spacer for roller bearing for endless rectilinear movement

Publications (2)

Publication Number Publication Date
JPS60184713A true JPS60184713A (en) 1985-09-20
JPH0427405B2 JPH0427405B2 (en) 1992-05-11

Family

ID=12537271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3887184A Granted JPS60184713A (en) 1984-03-02 1984-03-02 Elastic spacer for roller bearing for endless rectilinear movement

Country Status (1)

Country Link
JP (1) JPS60184713A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412129A (en) * 1987-07-07 1989-01-17 Hiihaisuto Seiko Kk Linear motion guiding roller bearing
JP4931081B2 (en) * 2004-05-10 2012-05-16 ベール ゲーエムベーハー ウント コー カーゲー Air spillers, especially for automobiles
EP2390520A3 (en) * 2010-05-27 2016-08-17 Jtekt Corporation Roller bearing
US10112459B2 (en) 2012-08-08 2018-10-30 Toyota Jidosha Kabushiki Kaisha Register

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2827345A (en) * 1955-10-17 1958-03-18 Thew Shovel Co Ball bearing
JPS5110285U (en) * 1974-07-09 1976-01-26
JPS5390158U (en) * 1976-12-25 1978-07-24

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2827345A (en) * 1955-10-17 1958-03-18 Thew Shovel Co Ball bearing
JPS5110285U (en) * 1974-07-09 1976-01-26
JPS5390158U (en) * 1976-12-25 1978-07-24

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412129A (en) * 1987-07-07 1989-01-17 Hiihaisuto Seiko Kk Linear motion guiding roller bearing
JP4931081B2 (en) * 2004-05-10 2012-05-16 ベール ゲーエムベーハー ウント コー カーゲー Air spillers, especially for automobiles
EP2390520A3 (en) * 2010-05-27 2016-08-17 Jtekt Corporation Roller bearing
US10112459B2 (en) 2012-08-08 2018-10-30 Toyota Jidosha Kabushiki Kaisha Register

Also Published As

Publication number Publication date
JPH0427405B2 (en) 1992-05-11

Similar Documents

Publication Publication Date Title
US6813968B2 (en) Ball screw device and linear motion device
US4505484A (en) Sealing device for a rolling bearing
US11035402B2 (en) Method of assembling a rolling element intermediate shaft assembly
JP2510374B2 (en) Sliding / rolling bearings with rolling elements
JPS6034513A (en) Tumbling body recirculating type guide mechanism
GB2268548A (en) Bearing
JPH02229912A (en) Radial ball-and-roller bearing
CA1194911A (en) Combination of rotary and rectilinear bearing
US20090151493A1 (en) Rolling-element screw device and method of assembling the same
US8100025B2 (en) Rolling element retainer
JPH11210858A (en) Circulation type screw device
US7401978B2 (en) Linear motion guiding apparatus
JPS60184713A (en) Elastic spacer for roller bearing for endless rectilinear movement
US4443042A (en) Rolling bearing for lengthwise movement
US6655839B2 (en) Linear guide device
US6402382B1 (en) Inner casing of a bearing for limited longitudinal movement
US6435720B1 (en) Linear guide device
JPH028178B2 (en)
JPS6060323A (en) Direct-acting ball bearing movably supporting shaft body in longitudinal direction
JP4142771B2 (en) Ball bearing for linear motion
JPH0112969B2 (en)
US3606499A (en) Antifriction bearing assembly having an orbiting roller arrangement
JPH11166540A (en) Cage for rolling bearing
JP4269797B2 (en) Rolling bearing
JP2010096356A (en) Ball screw mechanism