[go: up one dir, main page]

JPS60183933A - Protective relay device - Google Patents

Protective relay device

Info

Publication number
JPS60183933A
JPS60183933A JP3806084A JP3806084A JPS60183933A JP S60183933 A JPS60183933 A JP S60183933A JP 3806084 A JP3806084 A JP 3806084A JP 3806084 A JP3806084 A JP 3806084A JP S60183933 A JPS60183933 A JP S60183933A
Authority
JP
Japan
Prior art keywords
power
locus
quadrant
reactive power
active power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3806084A
Other languages
Japanese (ja)
Other versions
JPH0424935B2 (en
Inventor
杉山 ▲つとむ▼
杉浦 徳廣
俊樹 服部
本間 昭好
昭 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Chubu Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Chubu Electric Power Co Inc
Priority to JP3806084A priority Critical patent/JPS60183933A/en
Publication of JPS60183933A publication Critical patent/JPS60183933A/en
Publication of JPH0424935B2 publication Critical patent/JPH0424935B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は電力系統を保護する保護継電方式に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a protective relay system for protecting an electric power system.

〔従来技術〕[Prior art]

電力系統に事故が発生し、事故解除後系統に動揺が生じ
た時系統動揺が安定動揺か又は脱調に至るかを検出する
脱調保護継電装置について以下説明する。
A step-out protection relay device that detects whether the system oscillation is a stable oscillation or a step-out when an accident occurs in the power system and the system oscillates after the accident is cleared will be described below.

第1図は電力系統を模擬的に示した電力系統図で、1は
a端、2はb端の背後電源を示す。3゜4は各々a端す
端の母線、5,6は保護継電器(以下リレーと略称)9
.10に電流を導入する変流器、7,8はリレー9,1
0に電圧を導入する変成器、11は送電線を示す。
FIG. 1 is a power system diagram schematically showing a power system, where 1 indicates a back power source at the a end and 2 indicates a back power source at the b end. 3゜4 is the bus bar at the end a, 5 and 6 are protective relays (hereinafter referred to as relays) 9
.. 10 is a current transformer that introduces current, 7 and 8 are relays 9 and 1
0 is a transformer that introduces voltage, and 11 is a power transmission line.

a端す端において電流、電圧の位相角θを測定すると有
効電力P = VIct1sθ、無効電力Q = VI
glnθでめられる。有効電力P、無効電力Qは第2図
に示すように両端電源1,2の相差角φが変わると変化
し、有効電力Pはφ=900、無効電力Qはφ=180
°において極大値となり、図中のA点で等しくなる。ま
た横軸を有効電力P、縦軸を無効電力Qとした時、P、
Q軌跡は第3図に示すように円となり図中のA点がφ=
900を示す。一般に電力系統では相差角90°以内と
して運用しており、位相角90°以上になると脱調とな
る。即ち税調を検出するには電源端の電圧電流により有
効電力Pと無効電力Qを算出し、P、Q軌跡が90゜を
越えたことを検出すると良いことになる。
When the phase angle θ of current and voltage is measured at the end a, active power P = VIct1sθ, reactive power Q = VI
It is determined by glnθ. As shown in Fig. 2, the active power P and the reactive power Q change as the phase difference angle φ between the power supplies 1 and 2 at both ends changes, and the active power P is φ=900 and the reactive power Q is φ=180.
It reaches a local maximum value at .degree., and becomes equal at point A in the figure. Also, when the horizontal axis is active power P and the vertical axis is reactive power Q, P,
The Q locus is a circle as shown in Figure 3, and point A in the figure is φ=
900 is shown. Generally, power systems are operated with a phase difference angle of 90° or less, and if the phase angle exceeds 90°, step-out occurs. That is, in order to detect the tax adjustment, it is better to calculate the active power P and the reactive power Q from the voltage and current at the power source end, and to detect when the P and Q trajectories exceed 90 degrees.

税調検出は以上のべたようにP−Qローカスが90°を
越えたことを検出するとよいが、脱調の中心点を検出す
ることはこの状態ではできない。
Although it is preferable to detect the shift adjustment when the P-Q locus exceeds 90° as described above, it is not possible to detect the center point of the step-out in this state.

また従来の装置で両端の電圧位相φを比較し位相φ=1
80°となったことで内部判定するものはあったが、位
相φ=90°付近、即ち税調予測の時点ではできなかっ
た。
In addition, with a conventional device, the voltage phase φ at both ends is compared, and the phase φ=1
Although there was an internal determination when the phase became 80°, it could not be made when the phase φ was around 90°, that is, at the time of tax adjustment prediction.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来技術の問題点に鑑み、脱調
予測時点において税調の中心点を正確に検出し、脱調の
最適な系統分離を行なうことができる保護継電方式を提
供することを目的としている。
In view of the problems of the prior art as described above, the present invention provides a protective relay system that can accurately detect the center point of a tax adjustment at the time of predicting a step-out and perform optimal system separation for a step-out. It is an object.

〔発明の実施例〕[Embodiments of the invention]

以下この発明の1実施例を第4図ないし第7図を参照し
て説明する。
An embodiment of the present invention will be described below with reference to FIGS. 4 to 7.

第7図はこの発明の電気量を演算処理する構成図を示す
。4a、5aは系統の自端より電気量として入力信号の
電圧、電流、7aは入力電気量4a。
FIG. 7 shows a block diagram for calculating the amount of electricity according to the present invention. 4a and 5a are input signal voltages and currents as electrical quantities from the own end of the system, and 7a is an input electrical quantity 4a.

5aよシ有効電力P、と無効電力Q、の演算処理をする
第1演算部、8aは各時刻の有効電力P8 と無効電力
Q、の軌跡よシ生ずる弦を作成する第2演算部、9aは
上記法の方向変化を判定し、弦象限データの変化パター
ン91aを出力する判定部、10aは弦の象限データの
変化バター91a と相手端側の変化パターンデータ部
11aの出力を入力するパターン判定処理部、llaは
相手端リレー10に於ける弦象限テータを送出する変化
パターンデータ部、12は脱調中心点の区間検出データ
を出力する総合判定データ部を示す。
5a is a first calculation unit that performs calculation processing on active power P and reactive power Q; 8a is a second calculation unit that creates a string generated from the trajectory of active power P8 and reactive power Q at each time; 9a 10a is a determination unit that determines the direction change of the above-mentioned law and outputs a change pattern 91a of the string quadrant data, and 10a is a pattern determination unit that inputs the change butter 91a of the string quadrant data and the output of the change pattern data unit 11a on the other end side. In the processing section, lla indicates a change pattern data section that sends out string quadrant data at the other end relay 10, and 12 indicates a comprehensive judgment data section that outputs section detection data of the center point of step-out.

a、b端の間に税調中心点が存在する場合のP−Qロー
カスは第4図%自端の背後電源1側にある場合は第5図
のようになシ、b端の背後電源2側にある場合は第6図
の通シとなる。第4図、第5図および第6図(イ)は自
端で、f→はb端でのローカスを示す。なお第4図、第
5図、第6図でAはφ=90°の点、Bは180°の点
を表わす。
When the tax center point exists between ends a and b, the P-Q locus is shown in Figure 4. If it is on the back power source 1 side of the own end, it is as shown in Figure 5, and the back power source 2 of the b end is If it is on the side, it will be as shown in Figure 6. FIGS. 4, 5, and 6 (a) show the self-end, and f→ shows the locus at the b-end. Note that in FIGS. 4, 5, and 6, A represents a point at φ=90°, and B represents a point at 180°.

今第4図(イ)において原点からA点までP−Qローカ
スが移動している時は第1象限方向にローカスが移動し
ているとする。A点からB点は第2象限方向とし、同様
に第4図(ハ)では原点からA点までを第2象限方向、
A点からB点を第1象限方向となる。第5図(イ)では
第4象限方向から第3象限方向に変化する。これら象限
方向を象限ベクトルとして取扱い、この象限ベクトル〔
1→2:)、 [2→1〕。
Now, in FIG. 4(a), when the P-Q locus is moving from the origin to point A, it is assumed that the locus is moving in the direction of the first quadrant. From point A to point B is the direction of the second quadrant, and similarly in Figure 4 (c), from the origin to point A is the direction of the second quadrant.
The direction from point A to point B is the first quadrant. In FIG. 5(A), the direction changes from the direction of the fourth quadrant to the direction of the third quadrant. These quadrant directions are treated as quadrant vectors, and this quadrant vector [
1→2:), [2→1].

〔4→3〕、〔3→4〕の変化がおきた時φ=90°を
こえたことを示すことになる。金弟1図で示す自端リレ
ーにおいて、第4図(イ)に示すような象限ベクトル〔
1→2〕の変化が発生し、かつb端すレーから伝送され
てくる象限ベクトルが象限ベクトル〔2→1〕の変化し
た時に内部に脱調中心点がおると判定しb端すレーの象
限ベクトルが象限ベクトル〔3→4〕の場合にはb端の
外部にあると判定する。これらの組合せ判定を総合判定
テータ部1zで得られ、次の第1表のようになる。
When a change of [4→3] or [3→4] occurs, it indicates that φ=90° has been exceeded. In the self-end relay shown in Figure 1, the quadrant vector [
When a change from 1 to 2] occurs and the quadrant vector transmitted from the b-end Ray changes from the quadrant vector [2 to 1], it is determined that there is an out-of-step center point inside the b-end Ray. If the quadrant vector is quadrant vector [3→4], it is determined that it is outside the b end. These combination judgments are obtained by the comprehensive judgment data section 1z, and are as shown in Table 1 below.

第1表 上記実施例では自端が90°をこえ、かつ相手端が90
°をこえた時に出力しているが、第1表に示すように自
端が象限ベクトル〔1→2〕の時にb端の象限ベクトル
〔2→1〕となれば総合判定は内部と言うことができる
。即ち、相手端の変化をみないでも、相手端の象限ベク
トルをみると、内部外部判定ができることは明らかであ
る。
Table 1 In the above embodiment, the own end is over 90° and the opposite end is 90°.
As shown in Table 1, when the self-end is a quadrant vector [1→2], if the b-end quadrant vector becomes [2→1], the overall judgment is internal. I can do it. That is, it is clear that an internal/external determination can be made by looking at the quadrant vector of the other end without looking at the change at the other end.

〔発明の効果〕 以上のよう罠この発明によると自端と相手端における象
限ベクトル棟たはその変化パターンを比較して脱調中心
点の内外部判定をおこなうため、脱調予測時点における
脱調中心点の内外部判定が可能となり、最適な系統分離
が可能となり電力系統の安定運用に寄与することができ
る保護継電方式が得られる効果がある。
[Effects of the Invention] As described above, according to the present invention, since the quadrant vector building or its change pattern at the own end and the opposite end are compared to determine whether the center point of the out-of-step is inside or outside, the out-of-step is detected at the time of predicting the out-of-step. It is possible to determine whether the center point is inside or outside, which enables optimal system separation, and provides a protective relay system that can contribute to stable operation of the power system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電力系統の模擬的な系統図、第2図はa端、b
端の相差角に対する有効電力Pと無効電力Qの特性図、
第3図は有効電力Pと無効電力Qの軌跡図、第4図、第
5図、第6図は有効電力Pと無効電力Qのローカスを説
明する説明図、第7図はこの発明の一実施例を説明する
保護継電方式の構成図である。 1.2・・・背後電源、3.4・・・母線、5.6・・
・変成器、7.8・・・変成器、9・・・a端すレー、
10・・・他端リレー、1工・・・送電線、7a・・・
第1演算部、8a・・・第2演算部、9a・・・判定部
、10a・・・パターン判定処理部、11a・・・変化
パターンデータ部、 12 ・・・総合判定テータ部。 代理人 大岩増雄 第1図 第2図 第 4図 第5図 (0)
Figure 1 is a simulated power system diagram, Figure 2 is a-end, b-end
Characteristic diagram of active power P and reactive power Q with respect to the phase difference angle at the ends,
Figure 3 is a locus diagram of active power P and reactive power Q, Figures 4, 5, and 6 are explanatory diagrams explaining the loci of active power P and reactive power Q, and Figure 7 is one of the loci of this invention. It is a block diagram of a protective relay system explaining an example. 1.2... Back power supply, 3.4... Bus bar, 5.6...
・Transformer, 7.8...Transformer, 9...A terminal relay,
10...Other end relay, 1 piece...Power transmission line, 7a...
1st calculation section, 8a... Second calculation section, 9a... Judgment section, 10a... Pattern judgment processing section, 11a... Change pattern data section, 12... Comprehensive judgment data section. Agent Masuo Oiwa Figure 1 Figure 2 Figure 4 Figure 5 (0)

Claims (1)

【特許請求の範囲】[Claims] 電力系統の電圧、電流信号を導入して所定の周期でサン
プリングし、それらをA/D変換してマイクロプロセッ
サ−にてディジタル演算して上記電力系統の税調現象を
検出し上記電力系統を保護する保護継電方式において、
上記電圧、電流信号よシ有効電力と無効電力を演算し有
効電力と無効電力のローカスを検出し、該有効電力と無
効電力のローカスから電力系統の脱調を検出し、かつ保
護区間の相手端から得られた有効電力と無効電力のロー
カスと自端での有効電力と無効電力のローカスを比較し
、脱調の中心点が保護区間内にあるか区間外にあるかを
検出し、上記電力系統を保護することを特徴とする保護
継電方式。
Voltage and current signals from the power system are introduced, sampled at a predetermined period, A/D converted, and digitally calculated by a microprocessor to detect tax adjustment phenomena in the power system and protect the power system. In the protective relay system,
Calculate the active power and reactive power from the above voltage and current signals, detect the locus of the active power and reactive power, detect the out-of-step of the power system from the locus of the active power and reactive power, and at the other end of the protection zone. The locus of active power and reactive power obtained from the locus of active power and reactive power at the own end is compared, and it is detected whether the center point of the step-out is within the protected area or outside the protected area, and the above power A protective relay system that protects the grid.
JP3806084A 1984-02-28 1984-02-28 Protective relay device Granted JPS60183933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3806084A JPS60183933A (en) 1984-02-28 1984-02-28 Protective relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3806084A JPS60183933A (en) 1984-02-28 1984-02-28 Protective relay device

Publications (2)

Publication Number Publication Date
JPS60183933A true JPS60183933A (en) 1985-09-19
JPH0424935B2 JPH0424935B2 (en) 1992-04-28

Family

ID=12514951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3806084A Granted JPS60183933A (en) 1984-02-28 1984-02-28 Protective relay device

Country Status (1)

Country Link
JP (1) JPS60183933A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1013553A3 (en) 2000-06-13 2002-03-05 Unilin Beheer Bv Floor covering.

Also Published As

Publication number Publication date
JPH0424935B2 (en) 1992-04-28

Similar Documents

Publication Publication Date Title
US4731689A (en) Directional detection in connection with faults in a power supply network
US5731943A (en) Protective relay having out-of-step logic capability
KR100554502B1 (en) Directional ground relay system
US7199991B2 (en) Electrical bus protection method & apparatus
US4450497A (en) Ultra-high-speed relay
JPS60183933A (en) Protective relay device
US4635157A (en) Generator protecting relay
JPS6011722Y2 (en) Digital protective relay device
JPS6022772Y2 (en) Digital protective relay device
SU1304118A1 (en) Device for current protection of electric installation against short circuits
JP2747028B2 (en) Step-out detection relay
JPS61189119A (en) Disconnection detector
JPS62293929A (en) Power directional relay
JPH0222605B2 (en)
SU1117758A1 (en) Device for current protection of negative phase-sequence of electric installation with isolated neutral
JPS60183934A (en) Protective relay device
JPH0424934B2 (en)
JPS63117618A (en) Power directional relay
JPH0359657B2 (en)
JPS62110440A (en) Desynchronization protection
JPS58139634A (en) Device for protecting branch reactor
JPS63114522A (en) Protective relay
JPS6392220A (en) Failure detector for power system
JPH049014B2 (en)
JPH01227617A (en) Current differential relay system

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

EXPY Cancellation because of completion of term
R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370