[go: up one dir, main page]

JPS60182090A - Fabrication method of ion implantation bubble device - Google Patents

Fabrication method of ion implantation bubble device

Info

Publication number
JPS60182090A
JPS60182090A JP59035903A JP3590384A JPS60182090A JP S60182090 A JPS60182090 A JP S60182090A JP 59035903 A JP59035903 A JP 59035903A JP 3590384 A JP3590384 A JP 3590384A JP S60182090 A JPS60182090 A JP S60182090A
Authority
JP
Japan
Prior art keywords
ion
ion implantation
ions
crystal
bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59035903A
Other languages
Japanese (ja)
Other versions
JPS6360475B2 (en
Inventor
Tsutomu Miyashita
勉 宮下
Keiichi Betsui
圭一 別井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59035903A priority Critical patent/JPS60182090A/en
Priority to CA000461786A priority patent/CA1231629A/en
Priority to US06/644,963 priority patent/US4568561A/en
Priority to EP84401728A priority patent/EP0139556B1/en
Priority to DE8484401728T priority patent/DE3478531D1/en
Publication of JPS60182090A publication Critical patent/JPS60182090A/en
Publication of JPS6360475B2 publication Critical patent/JPS6360475B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film
    • H01F41/34Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film in patterns, e.g. by lithography

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

PURPOSE:To manufacure an ion implantation bubble device having a large inductive anisotropic magnetic field in a short time by utilizing ion seeds except a hydrogen ion for a bubble crystal, performing ion implantation so that the crystal lattice distortion of an ion implantation layer will be the specific value and exposing the ion to a plasma of the specific gas. CONSTITUTION:Ions except H<+> ion, for instance, a Ne<+> ion or a He<+> ion, etc., are used as an ion seed for implantation to a bubble crystal and the ion implatation is performed so that th crystal lattice distortion of an ion implantation layer will be within the range of 0.8-2.5%. An ion-implanted wafer 11 is placed on an electrode 12, noble gases He, Ne and Ar, or noble gases including a hydrogen gas are introduced, high-frequency electric power is supplied between the electrode 12 and an opposite one 13, and an ion implantation layer of the wafer 11 is exposed to a generated plasma. A manufacturing period can be considerably reduced without use of hydrogen ion implantation demanding a long implantation period.

Description

【発明の詳細な説明】 発明の技術分野 本発明はイオン注入バブルデバイスの作製方法に関し、
特に大きな誘起異方性磁界ΔHKが得られる作製方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for making an ion implantation bubble device;
In particular, the present invention relates to a manufacturing method that can obtain a large induced anisotropic magnetic field ΔHK.

技術の背景 イオン注入バブルデバイス(以下「イオン注入デバイス
」と略記)は、周知の如く、主にガドリニウム・ガリウ
ム・ガーネットなどの非磁性ガーネット単結晶基板上に
液相エピタキシャル成長させた磁性ガーネット薄膜に対
しネオン(Ne)、ヘリウム(He)l水素(H)など
のイオンを注入してバブル転送パターンを形成し、イオ
ン注入による磁性薄膜の結晶格子歪Δd/dに基づく誘
起異方性磁界ΔHKを利用して例えば面内回転磁界の印
加によシバプルを転送パターンに沿って転送させるもの
である。
Background of the Technology Ion implantation bubble devices (hereinafter abbreviated as "ion implantation devices") are, as is well known, mainly used for magnetic garnet thin films grown by liquid phase epitaxial growth on nonmagnetic garnet single crystal substrates such as gadolinium, gallium, and garnet. Form a bubble transfer pattern by implanting ions such as neon (Ne), helium (He), hydrogen (H), etc., and utilize the induced anisotropic magnetic field ΔHK based on the crystal lattice strain Δd/d of the magnetic thin film due to ion implantation. For example, by applying an in-plane rotating magnetic field, the shiba pull is transferred along a transfer pattern.

かかるイオン注入デバイスにおいては、誘起異方性磁界
がバブル転送特性を決定する要因の1つであシ、安定な
バブル転送特性を実現するためには誘起異方性磁界を十
分に大きくする必要がある。
In such ion implantation devices, the induced anisotropic magnetic field is one of the factors that determines the bubble transfer characteristics, and in order to achieve stable bubble transfer characteristics, it is necessary to make the induced anisotropic magnetic field sufficiently large. be.

従来技術と問題点 イオン注入デバイスにおける誘起異方性磁界ΔHKが注
入イオン種、及び結晶格子歪Δd/dつまシイオン注入
条件に依存することは周知である。
Prior Art and Problems It is well known that the induced anisotropic magnetic field ΔHK in an ion implantation device depends on the implanted ion species, the crystal lattice strain Δd/d, and the ion implantation conditions.

すなわち、後述するようにネオンイオンの場合はΔd/
dが約1チ以上になると非磁性層の形成によシ飽和して
小さなΔHKシか得られない。これに対し、水素イオン
の場合はΔd/dの増加に対しΔHKがほぼ比例して増
大し、ネオンイオンなどの場合に比べて非常に大きなΔ
HKを得ることが可能である口 このため従来は安定なバブル転送特性に必要な十分大き
い誘起異方性磁界を得るだめの方法として、水素イオン
のみ注入するかあるいは他のイオン種と水素イオン種と
を多重注入する方法が用いられている。しかし、水素イ
オン注入は長時間を要し、しかも熱処理依存性が高いと
いう欠点がある。
In other words, as described later, in the case of neon ions, Δd/
When d is about 1 inch or more, the formation of the nonmagnetic layer causes saturation and only a small ΔHK can be obtained. On the other hand, in the case of hydrogen ions, ΔHK increases almost in proportion to the increase in Δd/d, and is much larger than in the case of neon ions.
Therefore, in order to obtain a sufficiently large induced anisotropic magnetic field necessary for stable bubble transfer characteristics, conventional methods have been to implant only hydrogen ions or to implant other ion species and hydrogen ion species. A method of multiple injections is used. However, hydrogen ion implantation requires a long time and is highly dependent on heat treatment.

発明の目的 本発明は、上記従来技術の欠点に鑑み、誘起異方性磁界
の大きなイオン注入・々プルデ・々イスを短時間で作製
できるイオン注入・々ブルデ・々イスの作製方法を提供
することを目的とするものである。
Purpose of the Invention In view of the above-mentioned drawbacks of the prior art, the present invention provides a method for manufacturing an ion-implanted pulley device with a large induced anisotropic magnetic field in a short time. The purpose is to

発明の構成 本発明は、バブル用結晶に水素イオン以外のイオン種を
用いて且つイオン注入層の結晶格子歪Δd/dが0.8
〜2.5チの範囲の値となるようにイオン注入を行い、
そしてイオン注入後のノ々プル用結晶を希ガスのプラズ
マあるいは水素ガスを含む希ガスのプラズマにさらすこ
とを特徴とするものである。
Structure of the Invention The present invention uses an ion species other than hydrogen ions in the bubble crystal, and the crystal lattice strain Δd/d of the ion-implanted layer is 0.8.
Ion implantation was performed to obtain a value in the range of ~2.5 cm,
The method is characterized in that the nopull crystal after ion implantation is exposed to a plasma of a rare gas or a plasma of a rare gas containing hydrogen gas.

発明の実施例 以下、本発明の実施例を図面によって詳述する。Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

まず、本発明方法の説明に先立ち、バブル用結晶へのイ
オン注入の効果につき第1図を参照して説明する。第1
図は、膜厚1,1μm、磁区幅1.1μmのバブル用結
晶(YSmLuCa)3(GeFe )5012にH+
イオンあるいはNe+イオンを注入した場合の結晶格子
歪Δd/dと誘起異方性磁界ΔHKの関係を示す。
First, prior to explaining the method of the present invention, the effect of ion implantation into the bubble crystal will be explained with reference to FIG. 1st
The figure shows H +
The relationship between crystal lattice strain Δd/d and induced anisotropic magnetic field ΔHK when ions or Ne+ ions are implanted is shown.

但し、注入条件はHイオ/が50 keV、Ne イオ
ンが200 keVであシ、そして第1図においてΔd
/dが大きい程イオン注入量(ドーズ量)が多いことを
示している。この図から明らかな如く、H+イオン注入
の場合はΔHKがΔd/dに増大にほぼ比例して増大し
て大きなΔHKが得られる。これに対してNe+イオン
の場合はΔd/dが約1チでΔHKが飽和してしまい、
その値もHイオンの場合と比べて小さい。しかしHイオ
ン注入は前述のような欠点がある。
However, the implantation conditions are 50 keV for H ions, 200 keV for Ne ions, and Δd in Figure 1.
It is shown that the larger /d is, the larger the amount of ion implantation (dose amount) is. As is clear from this figure, in the case of H+ ion implantation, ΔHK increases approximately in proportion to the increase in Δd/d, and a large ΔHK is obtained. On the other hand, in the case of Ne+ ions, ΔHK becomes saturated when Δd/d is about 1 inch,
The value is also smaller than that for H ions. However, H ion implantation has the drawbacks mentioned above.

本発明はこのような欠点を克服するため、H+イオン注
入を用いずに大きなΔ九を得ることを可能とするもので
ちる。すなわち、本発明はまずバブル用結晶へのイオン
注入を、H+イオン以外の例えばNe+イオンまたはH
e+イオン等をイオン種として用いて且つイオン注入層
の結晶格子歪Δd/dが第1図に符号Rで示す0.8〜
2.5係の範囲の値となるように行い、そして次にこの
イオン注入後の結晶をNe 、 He 、 Arなどの
希ガスのプラズマあるいは水素ガスH2を含む希ガスの
プラズマにさらすことによシΔHKを増大させるもので
ある。
In order to overcome these drawbacks, the present invention makes it possible to obtain a large Δ9 without using H+ ion implantation. That is, the present invention first implants ions into the bubble crystal with ions other than H+ ions, such as Ne+ ions or H
e+ ions or the like are used as the ion species, and the crystal lattice strain Δd/d of the ion-implanted layer is 0.8 to 0.8 as indicated by the symbol R in FIG.
2.5, and then the crystal after ion implantation is exposed to a plasma of a rare gas such as Ne, He, Ar, or a plasma of a rare gas containing hydrogen gas H2. This increases ΔHK.

第2図はこのような本発明方法におけるイオン注入後の
結晶を希ガスプラズマにさらす工程の実施例を示す。本
実施例は平行平板型プラズマエツチング装置を用いてウ
ェハー(バブル用結晶)をプラズマ処理するものであシ
、図中10は真空容器、11はウェハー、12はウェハ
ーを載置する電極、13は対向電極、14はガス導入口
、15は排気口、16は高周波電源、17は冷却水をそ
れぞれ示している。イオン注入したウェノ・−11を、
そのイオン注入層を上にして電極12上に置き、容器1
0の内部を排気したのち、希ガスHe。
FIG. 2 shows an example of the step of exposing the crystal after ion implantation to rare gas plasma in the method of the present invention. In this embodiment, a wafer (crystal for bubbles) is subjected to plasma processing using a parallel plate type plasma etching apparatus. A counter electrode, 14 a gas inlet, 15 an exhaust port, 16 a high frequency power source, and 17 a cooling water, respectively. Weno-11 implanted with ions,
Place the ion-implanted layer on the electrode 12, and place the container 1
After exhausting the inside of 0, rare gas He.

Ne 、 Ar %または水素ガスH2を含む希ガスを
ガス導入口14から導入し、電極12と対向電極13と
の間に高周波電力を供給して該電極間にプラズマを発生
させ、そのプラズマにウェハー11のイオン注入層を露
呈させる。
A rare gas containing Ne, Ar% or hydrogen gas H2 is introduced from the gas inlet 14, high frequency power is supplied between the electrode 12 and the counter electrode 13 to generate plasma between the electrodes, and the wafer is attached to the plasma. The ion-implanted layer No. 11 is exposed.

第3図は本発明方法の効果を示す図であp 、H+イオ
ン、 Ne+イオンを注入しただけの場合及び本発明方
法によりNe+イオン注入後にArガスプラズマ露呈を
行った場合のそれぞれのイオンドーズ量とΔHKの関係
を示す。イオン注入条件はH+イオンは50 keV、
 Ne イオンは200 keVでアシ、またArガス
プラズマ露呈は第2図に示す装置を用いて真空度150
mTorr 、放電周波数1356MHz、ウェハ一温
度約350℃で行った。尚、この図においてドーズ量1
×10〜4X10 /1yn2の範囲Rが第1図に示す
歪08〜2.5係の範囲に相当するものである。そして
第3図から明らかな如く、本発明方法によって得られる
ΔHKはNe+イオン注入だけの場合と比べるとドーズ
量lXl0”〜8X1014/(7)2の範囲で大きく
、またH”イオン注入だけの場合と比べるとドーズ量l
Xl0”〜4X10 7cm2の範囲で大きく、特にド
ーズ量2×10〜4 X 10 7cm2において格段
の増大効果が得られることがわかる。
FIG. 3 is a diagram showing the effect of the method of the present invention, and shows the ion dose amounts when only p, H+ ions, and Ne+ ions are implanted, and when Ar gas plasma exposure is performed after Ne+ ions are implanted using the method of the present invention. The relationship between and ΔHK is shown. The ion implantation conditions are 50 keV for H+ ions,
Ne ions were exposed at 200 keV, and Ar gas plasma exposure was performed at a vacuum degree of 150 using the apparatus shown in Figure 2.
The test was carried out at mTorr, discharge frequency of 1356 MHz, and wafer temperature of approximately 350°C. In addition, in this figure, the dose amount is 1
The range R of ×10 to 4X10 /1yn2 corresponds to the range of distortion coefficients of 08 to 2.5 shown in FIG. As is clear from FIG. 3, the ΔHK obtained by the method of the present invention is larger in the dose range of lXl0" to 8X1014/(7)2 compared to the case of only Ne+ ion implantation, and the ΔHK obtained by the method of the present invention is larger in the range of dose lXl0" to 8X1014/(7)2, and in the case of only H" ion implantation. compared to the dose l
It can be seen that a significant increase effect can be obtained in the range of Xl0" to 4X10 7 cm2, and especially in the dose amount of 2x10 to 4X10 7 cm2.

次に第4図に本発明方法によるイオン注入デバイス及び
従来方法によるイオン注入デバイスにおけるバブル転送
マージンつまシ駆動磁界HDに対するバイアス磁界HB
のマージンを対比して示しである。尚、転送パターンは
いずれもビット周期4μmのスネイク形であシ、駆動磁
界は周波数100kHzの三角波面内回転磁界である。
Next, FIG. 4 shows the bias magnetic field HB with respect to the bubble transfer margin drive magnetic field HD in the ion implantation device according to the present invention method and the ion implantation device according to the conventional method.
The margins are shown in contrast. The transfer patterns are all snake-shaped with a bit period of 4 μm, and the driving magnetic field is a triangular in-plane rotating magnetic field with a frequency of 100 kHz.

また本発明方法によるデバイスAはNe イオンの50
 keV−、lXl0 7cm2及び200keV、3
X10 .4肩2での二重注入後に前述したような装置
および条件でのArガスプラズマ露呈を行ったものであ
シ、従来方法によるデバイスBはNe+イオンの50 
keV。
Further, device A according to the method of the present invention has 50% of Ne ions.
keV-, lXl0 7cm2 and 200keV, 3
X10. 4 Shoulder 2 double implantation was followed by Ar gas plasma exposure using the apparatus and conditions described above.
keV.

I X 10 ” 7cm2及び200 keV、 2
 X 10” 7cm”での二重注入に加えて更にH+
イオンの60 keV、2X10”・74刀2の注入を
行っただけのものであん図から明らかな如・く、本発明
方法によるデバイスAはH+イオン注入を行っていない
が、第2ONe+イオン注入層のドーズ量を3X10”
 として結晶歪Δd/dを約2係程度にした上でArガ
スプラズマ露呈を行ったことによシ約52000eの大
きな誘起異方性磁界ΔHK(第3図参照)が得られるこ
とから、従来方法によるH+イオン注入を行ったデバイ
スBとほぼ同等の転送マージンを実現している。
I x 10” 7cm2 and 200 keV, 2
In addition to double injection at X 10"7cm", H+
As is clear from the diagram, device A according to the method of the present invention does not implant H+ ions, but has a second ONe+ ion-implanted layer. The dose of 3X10”
A large induced anisotropic magnetic field ΔHK of approximately 52,000 e (see Figure 3) can be obtained by performing Ar gas plasma exposure with the crystal strain Δd/d being approximately 2 coefficients. The transfer margin is almost the same as that of device B in which H+ ions were implanted using the method.

尚、以上は注入イオン種がNe+、プラズマ用希ガスが
Atの場合を例示したが、注入イオン種がHe イオン
、プラズマ用希ガスがNe 、 He 、あるいは水素
ガスH2を含むAr 、 Ne 、 Heなどの場合も
ほぼ同様の効果が得られる。
In addition, although the case where the implanted ion species is Ne+ and the rare gas for plasma is At is illustrated above, the implanted ion species is He ions and the rare gas for plasma is Ne, He, or Ar, Ne, He containing hydrogen gas H2. Almost the same effect can be obtained in such cases.

発明の効果 以上の如く、本発明によれば非常に大きな誘起異方性磁
界を有するイオン注入バブルデバイスを実現でき、しか
も注入時間の長い水素イオン注入を用いないので作製時
間の大幅な短縮すなわち生産性向上およびコスト低減が
可能でア)、その技術的および経済的効果は著大である
Effects of the Invention As described above, according to the present invention, an ion implantation bubble device having a very large induced anisotropic magnetic field can be realized, and since hydrogen ion implantation, which requires a long implantation time, is not used, the manufacturing time can be significantly shortened, that is, the production time can be significantly reduced. It is possible to improve performance and reduce costs, and the technical and economic effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はバブル用結晶にH+イオンおよびNo+イオン
を注入したそれぞれの場合のΔd/dとΔHKの関係を
示す図、第2図は本発明方法の実施に用いる装置の一例
の略示図、第3図及び第4図は本発明方法の効果を説明
するための図である。 10・・・真空容器、11・・・ウェハー(バブル用結
晶)、12.13・・・電極、16・・・高周波電源。 特許出願人 富士通株式会社 特許出願代理人 弁理士 青 木 朗 弁理士西舘和之 弁理士 内 1)幸 男 弁理士 山 口 昭 之 第1図 歪Ad/d(’10) 第2図 第3図 旨・1譜”:”:;1 第4図 駆動磁界Ho(Oe)
FIG. 1 is a diagram showing the relationship between Δd/d and ΔHK in each case where H+ ions and No+ ions are implanted into the bubble crystal, and FIG. 2 is a schematic diagram of an example of the apparatus used to implement the method of the present invention. FIGS. 3 and 4 are diagrams for explaining the effects of the method of the present invention. 10... Vacuum container, 11... Wafer (bubble crystal), 12.13... Electrode, 16... High frequency power source. Patent applicant Fujitsu Ltd. Patent agent Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney 1) Yukio Patent attorney Akiyuki Yamaguchi Figure 1 Distortion Ad/d ('10) Figure 2 Figure 3・1 stave”:”:;1 Fig. 4 Driving magnetic field Ho (Oe)

Claims (1)

【特許請求の範囲】[Claims] 1、 バブル用結晶に水素イオン以外のイオン種を用い
て且つイオン注入層の結晶格子歪Δd/dが0.8〜2
.5係の範囲の値となるようにイオン注入を行い、そし
てイオン注入後のバブル用結晶を希ガスのプラズマある
いは水素ガスを含む希ガスのプラズマにさらすことを特
徴とするイオン注入・々プルデバイスの作製方法。
1. Ion species other than hydrogen ions are used in the bubble crystal, and the crystal lattice strain Δd/d of the ion implantation layer is 0.8 to 2.
.. An ion implantation/pull device characterized in that ions are implanted so that the value falls within the range of factor 5, and the bubble crystal after ion implantation is exposed to rare gas plasma or rare gas plasma containing hydrogen gas. How to make
JP59035903A 1983-08-30 1984-02-29 Fabrication method of ion implantation bubble device Granted JPS60182090A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59035903A JPS60182090A (en) 1984-02-29 1984-02-29 Fabrication method of ion implantation bubble device
CA000461786A CA1231629A (en) 1983-08-30 1984-08-24 Process for producing ion implanted bubble device
US06/644,963 US4568561A (en) 1983-08-30 1984-08-28 Process for producing ion implanted bubble device
EP84401728A EP0139556B1 (en) 1983-08-30 1984-08-29 Process for producing ion implanted bubble device
DE8484401728T DE3478531D1 (en) 1983-08-30 1984-08-29 Process for producing ion implanted bubble device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59035903A JPS60182090A (en) 1984-02-29 1984-02-29 Fabrication method of ion implantation bubble device

Publications (2)

Publication Number Publication Date
JPS60182090A true JPS60182090A (en) 1985-09-17
JPS6360475B2 JPS6360475B2 (en) 1988-11-24

Family

ID=12454983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59035903A Granted JPS60182090A (en) 1983-08-30 1984-02-29 Fabrication method of ion implantation bubble device

Country Status (1)

Country Link
JP (1) JPS60182090A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521917U (en) * 1991-09-04 1993-03-23 株式会社長田中央研究所 Reverse root canal expander
WO1999039378A1 (en) * 1998-02-02 1999-08-05 S.O.I.Tec Silicon On Insulator Technologies Method for forming cavities in a semiconductor substrate by implanting atoms
JP2003024555A (en) * 2001-07-18 2003-01-28 Nippon Pachinko Buhin Kk Winning device for game machine, and game machine using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049616A (en) * 1983-08-30 1985-03-18 Fujitsu Ltd Fabrication method of ion implantation bubble device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049616A (en) * 1983-08-30 1985-03-18 Fujitsu Ltd Fabrication method of ion implantation bubble device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521917U (en) * 1991-09-04 1993-03-23 株式会社長田中央研究所 Reverse root canal expander
WO1999039378A1 (en) * 1998-02-02 1999-08-05 S.O.I.Tec Silicon On Insulator Technologies Method for forming cavities in a semiconductor substrate by implanting atoms
FR2774510A1 (en) * 1998-02-02 1999-08-06 Soitec Silicon On Insulator PROCESS FOR TREATING SUBSTRATES, ESPECIALLY SEMICONDUCTORS
US6429104B1 (en) 1998-02-02 2002-08-06 S.O.I. Tec Silicon On Insulator Technologies Method for forming cavities in a semiconductor substrate by implanting atoms
JP2003024555A (en) * 2001-07-18 2003-01-28 Nippon Pachinko Buhin Kk Winning device for game machine, and game machine using the same

Also Published As

Publication number Publication date
JPS6360475B2 (en) 1988-11-24

Similar Documents

Publication Publication Date Title
JPS60182090A (en) Fabrication method of ion implantation bubble device
US4476152A (en) Method for production of magnetic bubble memory device
JPS60182091A (en) Fabrication method of ion implantation bubble device
JPS6049616A (en) Fabrication method of ion implantation bubble device
JPH0410544A (en) Manufacturing method of semiconductor device
JPS59152581A (en) Production of bubble device
EP0139556B1 (en) Process for producing ion implanted bubble device
JPH03250622A (en) Forming method for thin semiconductor film
JPS6348817A (en) Epitaxial growth method
CN116721966B (en) Method for improving thickness uniformity of piezoelectric film, piezoelectric substrate and application
JP3037587B2 (en) Sputtering equipment
JPS5928303A (en) Manufacture of contiguous-disk-bubble element
CN103253663A (en) A method for preparing graphene directly on SiO2/Si substrate
JP3041971B2 (en) Method for forming conductive layer of InP
JPS58150188A (en) Manufacture of magnetic bubble element
JPS59227080A (en) Manufacture of ion implanting bubble device
CN118712057A (en) Preparation method of aluminum nitride thin film
JPH0645254A (en) Method and apparatus for manufacturing amorphous silicon film
JPS59178721A (en) Processing of compound semiconductor substrate
JPH0790569A (en) Sputtering device
JPS6196740A (en) Manufacture of semiconductor device
JPS61131285A (en) Magnetic bubble memory element manufacturing method
JPS5966045A (en) surface modification equipment
JPS6242390A (en) Induced anisotropy magnetic field enhancement method
CN119965082A (en) Method for preparing silicon carbide device channel implantation mask