[go: up one dir, main page]

JPS60178673A - avalanche photodiode - Google Patents

avalanche photodiode

Info

Publication number
JPS60178673A
JPS60178673A JP59033467A JP3346784A JPS60178673A JP S60178673 A JPS60178673 A JP S60178673A JP 59033467 A JP59033467 A JP 59033467A JP 3346784 A JP3346784 A JP 3346784A JP S60178673 A JPS60178673 A JP S60178673A
Authority
JP
Japan
Prior art keywords
region
impurity concentration
high concentration
conductivity type
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59033467A
Other languages
Japanese (ja)
Inventor
Masaru Niwa
丹羽 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59033467A priority Critical patent/JPS60178673A/en
Publication of JPS60178673A publication Critical patent/JPS60178673A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F30/00Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
    • H10F30/20Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
    • H10F30/21Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
    • H10F30/22Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
    • H10F30/225Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier working in avalanche mode, e.g. avalanche photodiodes

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To enable the APD having a uniform multiplying region to be obtained by a method wherein the impurity concentration at the center of the first conductivity type region of high concentration is made higher than that in the periphery of this first conductivity type region. CONSTITUTION:The breakdown voltage of both the center of the high concentration region and its periphery is made to have a difference by having a difference in impurity concentration. This difference in withstand voltage can be arbitrary taken according to states of formation of said high concentration region. The method of forming the high concentration region includes: (1) formation by ion implantation after a recess is bored in the substrate by etching, and by heat treatment thereafter and surface etching; (2) formation by setting the injection dosage at a desired value by variation in thickness of a selective injection mask, and thereafter by heat treatment; (3) formation by many times of selective ion implantation and heat treatment thereafter. Then, a P<+> region is formed, and a guard ring is formed if not formed into an element structure. Thus, a distribution of impurity concentration where there is some difference in impurity concentration between the center and the periphery in the region 18, leading to uniform multiplication is formed.

Description

【発明の詳細な説明】 (技術分野) 本発明は半轡俸受元素子の構造に係り、特にアバランシ
フォトタイオード(以下APDと略t!+、Tる)に関
■る。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to the structure of a half-balance receiving element, and particularly to an avalanche photodiode (hereinafter abbreviated as APD).

(従来技術とその問題点) API)4こは8i、Ge、化合物半導体等種々の材料
が用いられる。ここでは話をわかりやすくするためGe
を例に説明する。
(Prior art and its problems) API) Various materials such as 4-8i, Ge, and compound semiconductors are used. Here, to make the discussion easier to understand, Ge
This will be explained using an example.

ゲルマニウムはアバランシフォトタイオード(以下AP
Dと記す)などの光検出器、或いは電子回路素子として
のダイオードやトランジスタなを印加して使用し、その
接合付近での空乏層幅が装置の性能に大きな影曽を与え
る。
Germanium is an avalanche photodiode (AP)
The depletion layer width near the junction has a great influence on the performance of the device.

光ファイバ辿信システム用の受光素子であるゲルマニウ
ムAPDはすでに1.3μm帯では実用化されているが
、更に光ファイバの極小損失領域である1、5μm帯用
の受光素子の開発か急かれている。波長1.5μm帯の
光に対して良好な感度を有するためには空乏層幅をいか
に拡大するかにかかつている。
Germanium APDs, which are light-receiving elements for optical fiber tracking systems, have already been put into practical use in the 1.3 μm band, but there is an urgent need to develop light-receiving elements for the 1.5 μm band, which is the minimum loss region of optical fibers. There is. In order to have good sensitivity to light in the wavelength band of 1.5 μm, it depends on how the width of the depletion layer is expanded.

ゲルマニウムの光吸収係数は波長1.55μmの光に対
してほぼ7X10/α という値であることがわかって
いる。したがって元吸収長として15μm以上が必要で
、智乏層1−が】5μm以下のときは空乏層端より深い
基板内での光吸収が遅い拡散餉、流成分となって光応答
特性の劣化の要因となる。前記により周波数特性を艮く
するためζこはノS乏層幅を15μm以上にして入射光
を空乏層内で十分吸収させることが必要である。これは
他の材料でも同じことが言える。
It is known that the light absorption coefficient of germanium is approximately 7×10/α for light with a wavelength of 1.55 μm. Therefore, the original absorption length needs to be 15 μm or more, and when the depletion layer 1- is less than 5 μm, the light absorption deep within the substrate deeper than the edge of the depletion layer becomes a slow diffusion component and a flow component, which causes deterioration of the photoresponse characteristics. It becomes a factor. In order to improve the frequency characteristics as described above, it is necessary to set the width of the S depletion layer to 15 μm or more so that the incident light is sufficiently absorbed within the depletion layer. The same can be said for other materials.

第1図は受光面となるpn接合をボロン回のイオン注入
工程と熱処理工程で製造される良く知られた、所謂、ブ
レーナ型APDO)構造図である。
FIG. 1 is a structural diagram of a well-known so-called Brehner type APDO in which a pn junction serving as a light-receiving surface is manufactured by a boron ion implantation process and a heat treatment process.

第1aではn型ゲルマニウム基板11の上に保さ+ 0.3μmn桿度のP 領域12が受光領域としで形成
されている。図中13は絶縁1@、 14 、15はそ
れぞれp 1IIll電極、n1lil電極であり、1
6は低医度領域で成るガードリングである。この構造の
装置Rjこ電極14.15を通して11.12の間fこ
形成されるpn接合に逆方向電圧を#:IJ加して使用
する。この柳嚢のAPI)では空乏層幅の拡大に限界が
あるため良好な感度を有するのはせいぜい1−0−’ 
1.5211mの波長の3tであり、この構造で、より
長波長側の1.5μm帯の光ζこ高感度を持つために必
要な15μm以上の空乏層幅を得ることは困難である。
In 1a, a P region 12 of +0.3 μm n radius is formed on an n-type germanium substrate 11 as a light receiving region. In the figure, 13 is the insulation 1@, 14, and 15 are the p1IIll electrode and the n1lil electrode, respectively.
6 is a guard ring consisting of a low medical grade area. A device having this structure is used by applying a reverse voltage #:IJ to the pn junction formed between Rj and 11.12 through electrodes 14 and 15. With this willow sac API), there is a limit to the expansion of the depletion layer width, so good sensitivity is only 1-0-' at most.
With this structure, it is difficult to obtain a depletion layer width of 15 μm or more, which is necessary to have high sensitivity to light in the 1.5 μm band on the longer wavelength side.

これは次のことによる。pn接合に階段接合近似を考え
るとき、空乏層幅を15μm以上をこするにはn型基板
濃度を3XlO/i以下にしなければならず、その時の
降伏電圧か300V以上となる。このような低濃度基板
ではガードリングの降伏電圧との耐圧差を取ることが困
難で、受光筒内での均一増倍を得ることができない。ま
た、逆方向印加電圧が300V以上必要となれば抵電圧
での動作が必要ナシステムでは実用的でlCいきいう間
鵜か発生する。
This is due to the following. When considering the step junction approximation to the pn junction, in order to make the depletion layer width 15 μm or more, the n-type substrate concentration must be 3XlO/i or less, and the breakdown voltage at that time will be 300V or more. With such a low concentration substrate, it is difficult to obtain a breakdown voltage difference from the breakdown voltage of the guard ring, and uniform multiplication within the photodetector tube cannot be obtained. In addition, if the reverse applied voltage is required to be 300 V or more, operation at a resistive voltage is required, which is practical in a system that requires 1C to occur.

上記の問題を克服するためにドナー不純物をイオン注入
し熱処理工程を経て、所望の比較的不純物濃度の高い領
域17を形成することで第2図に示す、所謂、ハイロー
(H1−Lo )構造の受光素子か作られている。図中
17が比較的不純物濃度の高い領域(以後高僕度領域と
呼ぶ)である。この構造では図中12と17の間lこ形
成されるpn接合近傍6こおいてはTバランシ降伏を起
こすに十分な電界強度が得られかつ低濃度基板(図中1
1)であることによって高速応答の可能び空乏層幅が低
いIEIJ加電圧で得られる。
In order to overcome the above problem, a so-called high-low (H1-Lo) structure shown in FIG. A light receiving element is made. In the figure, reference numeral 17 indicates a region with relatively high impurity concentration (hereinafter referred to as a high concentration region). In this structure, electric field strength sufficient to cause T-balance breakdown can be obtained in the vicinity of the pn junction 6 formed between 12 and 17 in the figure, and the low concentration substrate (1 in the figure
1), a high-speed response and a depletion layer width can be obtained with a low IEIJ applied voltage.

この構造では高濃度領域が受光部となるためその不純物
濃度分布は面内において均一でなければならない。これ
は次のことによる。不純物濃度分布が面内で不均一であ
る場合、この素子に逆方向電圧を印加すると電界は昼潟
度の部分に集中し、例えば第3図に示すように増倍のラ
インスキャンは尖ったものになる。このように増倍が均
一でない素子では実効的な受光面積は小さくなるために
、実際の動作時において、増倍の尖端部ではAPDの最
適増倍率より幾分高い増倍率にすることが必要である。
In this structure, since the high concentration region becomes the light receiving portion, the impurity concentration distribution must be uniform within the plane. This is due to the following. If the impurity concentration distribution is non-uniform in the plane, when a reverse voltage is applied to this element, the electric field will be concentrated in the lagoon region, and for example, as shown in Figure 3, the multiplication line scan will be sharp. become. Since the effective light-receiving area of a device with uneven multiplication becomes small, during actual operation, it is necessary to set the multiplication factor at the peak of the multiplication to a somewhat higher value than the optimum multiplication factor of the APD. be.

この時当然イu号対雑音比はあまり良くLlらない。以
」二のことにより高濃度領域においてはその不純物ざ4
度分45は面内iこおいて均一でなけれはならないが、
現イEの構造では一般に高濃度領域の中・U部に′電界
集中が起き均一な増倍は得られに(い。このことは茜旋
度領域かイオン注入とその恢の熱処理工程で形成された
後の素子製造工程における表面処理などによる実質的な
面内の不均一な不純物濃度分布lこ基因しているき思わ
れる。
At this time, of course, the signal-to-noise ratio is not very good. As a result of the following, the impurity zone 4 is reduced in the high concentration region.
The degree 45 must be uniform across the plane i, but
In the current E structure, the electric field is generally concentrated in the middle/U part of the high concentration region, making it difficult to obtain uniform multiplication. This seems to be due to the substantially in-plane non-uniform impurity concentration distribution due to surface treatment etc. in the element manufacturing process after the manufacturing process.

(発明の目的) 本発明は上記従来法の欠点を克服し、均一な増倍領域を
有するAPDの構造を与えるものである。
(Objective of the Invention) The present invention overcomes the drawbacks of the above-mentioned conventional methods and provides an APD structure having a uniform multiplication region.

(発明の構成) 本発明は第1導電型抵抗半導俸中表面近傍lこ、第2導
電型領域を扁え、さらζこ、前記第1導電型高抵抗半導
体中で、かつ、前記第2導電型領域の受光領域となる部
分に隣接して設けられた高濃度のwJl導電型領域を備
えているアバランシフォトダイオードにおいて、前記高
濃度第14を型領域の中央部の不純物濃度が、当該高濃
度第1導電型領域の周辺部の不純物濃度よりも高い点に
特徴がある。
(Structure of the Invention) The present invention provides a first conductive type resistor semiconductor having a second conductive type region in the vicinity of the surface thereof, and a second conductive type region in the first conductive type high resistive semiconductor and the second conductive type region in the first conductive type high resistance semiconductor layer. In an avalanche photodiode including a high concentration wJl conductivity type region provided adjacent to a portion of the second conductivity type region that becomes a light receiving region, the impurity concentration in the central part of the high concentration 14th type region is The feature is that the impurity concentration is higher than the impurity concentration in the peripheral portion of the high concentration first conductivity type region.

(発明の作用効果) 以下にn型ゲルマニウム基板を例にとって、本発明の構
造を示す。#!4図(a)は選択イオン注入とその後の
熱処理5こよりn型高濃度領域を形成したものを示すも
のである。この構造では、前記高濃度領域において、そ
の中央部と周辺部で不純物濃度差そ有することで両者の
降伏電圧に差を持たせである。才たこの耐圧差は前記高
濃度領域の形成状態により任意に取ることが可能である
。前記高濃度領域の形成方法としては■基板(図中H)
上にエツチングにより四部を作った後イオン注入を行な
い、その後の熱処理と表面エツチングで形成する方法。
(Operations and Effects of the Invention) The structure of the present invention will be described below by taking an n-type germanium substrate as an example. #! FIG. 4(a) shows an n-type high concentration region formed by selective ion implantation and subsequent heat treatment. In this structure, in the high concentration region, there is a difference in impurity concentration between the central part and the peripheral part, so that there is a difference in breakdown voltage between the two regions. This difference in breakdown voltage can be set arbitrarily depending on the state of formation of the high concentration region. The method for forming the high concentration region is as follows: ■ Substrate (H in the figure)
A method in which the four parts are formed by etching on top, followed by ion implantation, followed by heat treatment and surface etching.

■歳択it入マスクの厚さを変えて注入ドース敵を所望
の値にし、その後熱処理を行なう方法。o複数回の選択
イオン注入とその後の熱処理で形成する方法などがある
。前記のいづれかの方法を使って該高濃度領域を形成す
る際すでにガードリング(図中16)が形成されている
か否かは+ 問題ではない。この後P 領域形成、ガードリングが未
形成ならばガードリングを形成し、第4図(b)の素子
構造とする。本発明の構造では領域】8において中央部
と周辺部で若干不純物濃度差かあり均一増倍の得られる
不純物濃度差布が形成されている。
■ A method in which the implantation dose is adjusted to a desired value by changing the thickness of the mask, and then heat treatment is performed. o There is a method of forming by selective ion implantation multiple times and subsequent heat treatment. When forming the high concentration region using any of the above methods, it does not matter whether the guard ring (16 in the figure) has already been formed or not. Thereafter, a P region is formed, and if a guard ring is not formed, a guard ring is formed to obtain the device structure shown in FIG. 4(b). In the structure of the present invention, there is a slight difference in impurity concentration between the center and the periphery in region 8, forming an impurity concentration difference distribution that provides uniform multiplication.

(実施例) 本発明の実施例について詳述する。第4図(b)の構造
において正味の不純物濃度5 X 1.0 /−のn型
ゲルマニウム基板(図中11)Gこ650℃16時間の
亜鉛熱拡散法によるガードリング(図中16)を形成3 した後、砒素のイオン注入(ドース量1.2刈0/−、
イオン加速エネルギー=130keV)とその後の66
7℃、8時間(8i02保71膜、水素雰囲気中)の活
性化アニール、表面エツチングにより高濃度領域18を
形成する。その後ボロンのイオン注入(ドース取= 3
 xto /cJ、イオン加速エネルギー= 49 k
ey)と、その後の650℃園分(Sin、保護膜、水
素雰囲気中)の活性化アニールでP 領域12を形M、
Tる。表面保護膜として、CVD法により8i0.膜を
付け(図中13)、p111t4&(図中14)トシテ
アルミニウム(AJ)、n1llljt[(図中15)
として金−ゲルマニウム(Au−Ge) をそれぞれ蒸
着する。本実施例により製造したゲルマニウムAPDの
増倍のラインスキャンを第5図に示す。
(Example) Examples of the present invention will be described in detail. In the structure shown in Fig. 4(b), an n-type germanium substrate (11 in the figure) with a net impurity concentration of 5 x 1.0 /- is formed by a guard ring (16 in the figure) by the zinc thermal diffusion method at 650°C for 16 hours. After formation 3, arsenic ion implantation (dose 1.20/-,
ion acceleration energy = 130 keV) and subsequent 66
High concentration region 18 is formed by activation annealing at 7° C. for 8 hours (8i02 film, in hydrogen atmosphere) and surface etching. After that, boron ion implantation (dose control = 3
xto /cJ, ion acceleration energy = 49 k
ey) and subsequent activation annealing at 650°C (Sin, protective film, hydrogen atmosphere) to form the P region 12 into the shape M,
Tru. As a surface protective film, 8i0. Attach a film (13 in the figure), p111t4 & (14 in the figure) toshite aluminum (AJ), n1lllljt [(15 in the figure)
Then, gold-germanium (Au-Ge) is deposited. FIG. 5 shows a line scan of the multiplication of the germanium APD manufactured according to this example.

測定は波長1.55μmのレーザ光lこ対して行なりた
もので受光面内で均一な増倍が得られている。本実施例
による素子の降伏電圧は90Vであり、これは受光部周
辺部におけるpn接合での電界強度が降伏電界強度に達
したことによるものである。実際、受光部中央部と周辺
部の降伏電圧差は約5vと思われる。
The measurement was performed using a laser beam with a wavelength of 1.55 μm, and uniform multiplication was obtained within the light receiving surface. The breakdown voltage of the device according to this example was 90 V, and this is because the electric field strength at the pn junction in the peripheral area of the light receiving portion reached the breakdown electric field strength. In fact, the difference in breakdown voltage between the central part and the peripheral part of the light receiving part is thought to be about 5V.

以上実施例として、ゲルマニウムを用いて説明したがガ
リウム砒素系、ガリウムアンチモン糸等の他の半導体材
料lこ適用できることは言うまでもない。
Although germanium was used in the above embodiments, it goes without saying that other semiconductor materials such as gallium arsenide and gallium antimony threads may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来より知られているp n Ii造のAPD
o)断面図。第2図は比較的不純物濃度の高い領域を有
するAPI)の断面図。第3図はw、2図の構造のAP
Dで得られる増倍のラインスキャンを示T図。第4図(
a)、は本発明のAPDを作製する主要工程における断
面園、同図(b)は本発明のAPDの断面図。第5図は
本発明のAPDで得られた増倍のラインスキャンを示す
図。 11 nゲルマニウム基板 12 高濃度p領域 13 表面保護膜 14 pullt極 15 n(llllt極 16 カードリング I7 高濃度n領域 18 高一度n領域 /312 tit 1312 M 千 4 ml (0,) (bン
Figure 1 shows a conventionally known APD made of pn II.
o) Cross-sectional view. FIG. 2 is a cross-sectional view of an API (API) having a region with relatively high impurity concentration. Figure 3 shows the AP with the structure shown in Figure 2.
T diagram showing the multiplication line scan obtained in D. Figure 4 (
Figure a) is a cross-sectional view of the main steps of manufacturing the APD of the present invention, and Figure (b) is a cross-sectional view of the APD of the present invention. FIG. 5 is a diagram showing a multiplication line scan obtained by the APD of the present invention. 11 n germanium substrate 12 high concentration p region 13 surface protective film 14 pull pole 15 n

Claims (1)

【特許請求の範囲】[Claims] 少なくとも第l導電型高低抗半導俸中表面近傍に、第2
導゛α型領域を備え、さらOこ、前記第1導電型高抵抗
半導俸中で、かつ、前Mf第2導電型領域の受光領域と
なる部分に隣接して設けられた高濃度の第14電型領域
を備えているアバランシフォトダイオードにおいて、前
記高#度第1導電型領域の中央部の不純物濃度が、当該
高濃度第1導′iIt型領域の周辺部の不純物濃度より
も低いことを41(!:Tるアバランシフォトダイオー
ド。
At least the second conductivity type is located near the surface of the high-low resistance semiconductor layer of the first conductivity type.
A high-concentration semiconductor layer is provided in the first conductivity type high-resistance semiconductor layer and adjacent to the light-receiving area of the former Mf second conductivity type region. In the avalanche photodiode having a 14th conductivity type region, the impurity concentration in the central part of the high concentration first conductivity type region is higher than the impurity concentration in the peripheral part of the high concentration first conductivity type region. Avalanche photodiode with a low value of 41 (!:T).
JP59033467A 1984-02-24 1984-02-24 avalanche photodiode Pending JPS60178673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59033467A JPS60178673A (en) 1984-02-24 1984-02-24 avalanche photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59033467A JPS60178673A (en) 1984-02-24 1984-02-24 avalanche photodiode

Publications (1)

Publication Number Publication Date
JPS60178673A true JPS60178673A (en) 1985-09-12

Family

ID=12387348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59033467A Pending JPS60178673A (en) 1984-02-24 1984-02-24 avalanche photodiode

Country Status (1)

Country Link
JP (1) JPS60178673A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949144A (en) * 1985-09-24 1990-08-14 Kabushiki Kaisha Toshiba Semiconductor photo-detector having a two-stepped impurity profile
WO2011087068A1 (en) * 2010-01-15 2011-07-21 浜松ホトニクス株式会社 Avalanche photodiode and method for producing same
WO2020121857A1 (en) * 2018-12-12 2020-06-18 浜松ホトニクス株式会社 Photodetector and method for manufacturing photodetector
US11513002B2 (en) 2018-12-12 2022-11-29 Hamamatsu Photonics K.K. Light detection device having temperature compensated gain in avalanche photodiode
US11561131B2 (en) 2018-12-12 2023-01-24 Hamamatsu Photonics K.K. Determination method and light detection device
US11901379B2 (en) 2018-12-12 2024-02-13 Hamamatsu Photonics K.K. Photodetector
US12080822B2 (en) 2018-12-12 2024-09-03 Hamamatsu Photonics K.K. Photodetector and method for manufacturing photodetector
US12113088B2 (en) 2018-12-12 2024-10-08 Hamamatsu Photonics K.K. Light detection device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949144A (en) * 1985-09-24 1990-08-14 Kabushiki Kaisha Toshiba Semiconductor photo-detector having a two-stepped impurity profile
WO2011087068A1 (en) * 2010-01-15 2011-07-21 浜松ホトニクス株式会社 Avalanche photodiode and method for producing same
JP5600690B2 (en) * 2010-01-15 2014-10-01 浜松ホトニクス株式会社 Avalanche photodiode and manufacturing method thereof
WO2020121857A1 (en) * 2018-12-12 2020-06-18 浜松ホトニクス株式会社 Photodetector and method for manufacturing photodetector
JPWO2020121857A1 (en) * 2018-12-12 2021-11-04 浜松ホトニクス株式会社 Photodetector and manufacturing method of photodetector
US11513002B2 (en) 2018-12-12 2022-11-29 Hamamatsu Photonics K.K. Light detection device having temperature compensated gain in avalanche photodiode
US11561131B2 (en) 2018-12-12 2023-01-24 Hamamatsu Photonics K.K. Determination method and light detection device
US11901379B2 (en) 2018-12-12 2024-02-13 Hamamatsu Photonics K.K. Photodetector
US11927478B2 (en) 2018-12-12 2024-03-12 Hamamatsu Photonics K.K. Light detection device
US12080822B2 (en) 2018-12-12 2024-09-03 Hamamatsu Photonics K.K. Photodetector and method for manufacturing photodetector
US12113088B2 (en) 2018-12-12 2024-10-08 Hamamatsu Photonics K.K. Light detection device

Similar Documents

Publication Publication Date Title
US4127932A (en) Method of fabricating silicon photodiodes
US4142200A (en) Semiconductor photodiodes
GB1573309A (en) Semiconductor devices and their manufacture
JPS6146078B2 (en)
JP2003168818A (en) Forward mesa avalanche photodiode and method of manufacturing the same
US4326211A (en) N+PP-PP-P+ Avalanche photodiode
US3371213A (en) Epitaxially immersed lens and photodetectors and methods of making same
JPS60178673A (en) avalanche photodiode
JP2001267620A (en) Semiconductor light receiving element
JPS63955B2 (en)
EP0001139A1 (en) Radiation-sensitive avalanche diode and method of manufacturing same
CA1078948A (en) Method of fabricating silicon photodiodes
US4518255A (en) Temperature tracking range finder
JPS60211886A (en) Manufacturing method of avalanche photodiode
JPS6244704B2 (en)
US3582830A (en) Semiconductor device intended especially for microwave photodetectors
KR102078316B1 (en) Structure and Fabrication Method of Photo Detector Device using Two Dimensional Doping Technology
JPS60178674A (en) Manufacturing method of avalanche photodiode
KR100399050B1 (en) Avalanche optical detecting device for high speed optical communications and methood for fabricating the same
JPH0382085A (en) Semiconductor photodetector and its manufacturing method
JPS60211885A (en) Manufacturing method of avalanche photodiode
JP2000323741A (en) Fabrication of drift type silicon radiation detector having p-n junction
JPS63224372A (en) Manufacture of semiconductor photodetector
JPH04246867A (en) Semiconductor photodetector
JPS6146076B2 (en)