[go: up one dir, main page]

JPS60177216A - Device transducing mechanical displacement to electrical signal - Google Patents

Device transducing mechanical displacement to electrical signal

Info

Publication number
JPS60177216A
JPS60177216A JP3205884A JP3205884A JPS60177216A JP S60177216 A JPS60177216 A JP S60177216A JP 3205884 A JP3205884 A JP 3205884A JP 3205884 A JP3205884 A JP 3205884A JP S60177216 A JPS60177216 A JP S60177216A
Authority
JP
Japan
Prior art keywords
light
photointerrupter
emitting element
diaphragm
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3205884A
Other languages
Japanese (ja)
Inventor
Takeshi Kishimoto
剛 岸本
Rikuhei Yasumuro
安室 陸平
Tomoyuki Kawazoe
川添 知幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIRITSU KOGYO KK
Original Assignee
SEIRITSU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIRITSU KOGYO KK filed Critical SEIRITSU KOGYO KK
Priority to JP3205884A priority Critical patent/JPS60177216A/en
Publication of JPS60177216A publication Critical patent/JPS60177216A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0076Transmitting or indicating the displacement of flexible diaphragms using photoelectric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To detect fine displacement under non-contacting state by generating constant photoelectromotive force at the photodetecting element of a photocoupler provided near a photointerrupter which converts two photodetection signals into electrical signals differentially. CONSTITUTION:When a difference in detected pressure is applied to pressure introduction ports 10 and 11, a diaphragm 3 is in a stationary state as long as the sum of force generated at the diaphragm 3 and the elastic force of a spring 6 is equal to the elastic force of a spring 7. The displacement quantity of a light shield plate 13 coupled with the diaphragm 3 is in specific proportional relation with its variation quantity of detected pressure. The photointerrupter 18 and photocoupler 19 are installed closely and thus placed under the same temperature condition, thereby correcting the temperature dependency of the light emitting element 14 and photodetecting elements 15a or 15b of the photointerrupter 18. Consequently, when the mechanical displacement quantity of the light shield plate is constant, the light output voltage e0 of the photodetecting element is a stable output after variation with temperature is compensated completely.

Description

【発明の詳細な説明】 本発明は、機械的微小変位を無接触で電気信号に変換す
る変位検出器に関するものでおる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a displacement detector that converts minute mechanical displacements into electrical signals without contact.

従来は機械変位を電気信号に変換するには摺動抵抗器や
差動変圧器または磁気抵抗素子、静電容量式などが使用
されているが摺動式では摩擦抵抗による精度低下となり
その他の方式では電子回路を含めるとコスト的に高価に
なる欠点があった。
Conventionally, sliding resistors, differential transformers, magnetoresistive elements, capacitance types, etc. have been used to convert mechanical displacement into electrical signals, but sliding types reduce accuracy due to frictional resistance, so other methods have been used. However, if electronic circuits were included, the cost would be high.

本発明はこれらの問題を解決すべく光学系を用い、無接
触、かつ安価な構造で機械的微小変位を検出する変位セ
ンサを提供することを目的とするものである。
SUMMARY OF THE INVENTION In order to solve these problems, it is an object of the present invention to provide a displacement sensor that uses an optical system to detect small mechanical displacements without contact and with an inexpensive structure.

以下本発明の実施例を第1図に基づき説明する。Embodiments of the present invention will be described below with reference to FIG.

第1図は変位センサを応用した圧力センサの縦断側面図
であシ、ダイアフラムを用いて圧力または圧力差を導き
、ダイアフラム膜の微小変位を電気信号に変換する機構
を示したものである。
FIG. 1 is a longitudinal side view of a pressure sensor that uses a displacement sensor, and shows a mechanism for guiding pressure or pressure difference using a diaphragm and converting minute displacement of the diaphragm membrane into an electrical signal.

符号(1)および(2)はダイアフラ゛゛ム′−ケース
、(3)は可撓性を有するダイアフラムである。ダイア
フラム(3)の中央部には、剛性を有する薄板平板状の
センタディスク(4)およQ (51を両側から固定す
る。
Symbols (1) and (2) are diaphragm-cases, and (3) is a flexible diaphragm. A rigid thin plate-shaped center disk (4) and Q (51) are fixed to the center of the diaphragm (3) from both sides.

ダイアフラムケース(2)の内部には、調整ねじ(9)
の回動によりばね受(8)を介して弾性力が調整される
ばね(6)があり、ダイアフラムケース(1)の内部に
は弾性力が一定のはね(7)が係装されていす。
There is an adjustment screw (9) inside the diaphragm case (2).
There is a spring (6) whose elastic force is adjusted via a spring holder (8) by the rotation of the spring (6), and a spring (7) whose elastic force is constant is fixed inside the diaphragm case (1). .

IJOおよび0.1)は圧力導入口で、ダイアフラム(
3)を介して(12a)および(12b)の圧力室が形
成される。
IJO and 0.1) is the pressure inlet and the diaphragm (
3), pressure chambers (12a) and (12b) are formed.

1ifH1031はセンタディスク(4)の平板中央部
に平板と直角方向に取付けられダイアフラム(3)と連
動する。
1ifH1031 is attached to the central part of the flat plate of the center disk (4) in a direction perpendicular to the flat plate and interlocks with the diaphragm (3).

α菊はレンズによシ集光され、平行またはほぼ平行な赤
外線ビームを発光する素子、(15B)および(15b
)はQ4)から発するビームと対抗する側に遮光板03
の変位方向に沿って近接して設置された受光素子で、発
光素子04、受光素子(15a)および(15b)はダ
イアフラムケース(1)に固定され、遮光板へ3と共に
フォトインクラブタを形成する。
α chrysanthemums are elements (15B) and (15b) that emit parallel or nearly parallel infrared beams that are focused by a lens.
) has a light shielding plate 03 on the side opposite to the beam emitted from Q4).
The light-emitting element 04, the light-receiving elements (15a) and (15b) are fixed to the diaphragm case (1), and together with the light-shielding plate 3, form a photoincluster. do.

(ト)およびqηは、それぞれ発光素子Q4)および受
光素子(15a)、(i5b)に通ずる電線である。
(g) and qη are electric wires leading to the light emitting element Q4) and the light receiving elements (15a) and (i5b), respectively.

第2図は本発明に係わる検出器を用いた電子回路を示し
たものであって、前記フォトインタラプタは第2図の(
へ)に対応する。
FIG. 2 shows an electronic circuit using the detector according to the present invention, and the photointerrupter is shown in FIG.
).

次に上記構成による作動を第1図および第2図の実施例
により説明する。
Next, the operation of the above structure will be explained with reference to the embodiments shown in FIGS. 1 and 2.

第1図において、検出圧力差を圧力導入口0〔およびα
υに加えると圧力室(12a)および(12b)の圧力
差によってダイアフラム(3)に発生する力とはね(6
)の弾性力の和がばね(7)の弾性力と等しいときダイ
アプラム(3)は静止状態にある。
In Figure 1, the detected pressure difference is expressed as pressure inlet 0 [and α
When applied to υ, the force generated on the diaphragm (3) due to the pressure difference between the pressure chambers (12a) and (12b) is
) is equal to the elastic force of the spring (7), the diaphragm (3) is at rest.

この状態から検出圧力が変化するとダイアフラム(3)
の発生力が変化しその発生力変化量をばね(6)および
ばね(7)のばね定数の和で除した分だけダイアプラム
(3)は変位する。
If the detected pressure changes from this state, the diaphragm (3)
The diaphragm (3) is displaced by an amount obtained by dividing the amount of change in the generated force by the sum of the spring constants of the spring (6) and the spring (7).

したがって、第1図の構造においてダイアフラム(3)
と連動された遮光板03の変位量と検出圧力変化量は一
定の比例関係が得られる。
Therefore, in the structure shown in Figure 1, the diaphragm (3)
A certain proportional relationship can be obtained between the displacement amount of the light shielding plate 03 and the detected pressure change amount which are interlocked with each other.

つぎに前述のフォトインタラプタの動作原理について詳
述する。
Next, the operating principle of the photointerrupter described above will be explained in detail.

ダイアフラムケース(1)の中心部に発光素子0局およ
び受光素子(+5a)、(15b)が対向して固定され
、発光素子a菊からの光ビームを遮光する中心位置にセ
ンタディスク(4)と連動する遮光板α3が配置されフ
ォトインタラプタを形成している。
A light emitting element 0 station and light receiving elements (+5a) and (15b) are fixed facing each other in the center of the diaphragm case (1), and a center disk (4) is located at the center position to block the light beam from the light emitting element a chrysanthemum. Interlocking light shielding plates α3 are arranged to form a photointerrupter.

第5図31および第6図すは、フォトインタラプタ部の
原理機構を説明するものである。第6図aは、受光素子
(15a)と(15b)の中央部の大よそ半分の位置に
遮光板a3が配置されているのに対(7第3図1)は、
受光素子(1sa)と(15b)の中央部の大よそ半分
の位置が光ビームが通り、その両側部に遮光板03を配
置する例であり、何i’Lも遮光板03の変位と受光素
子(15a)、(15b)の受光量の関係は同一効果が
得られる。
FIG. 5 and FIG. 6 illustrate the principle mechanism of the photointerrupter section. In Fig. 6a, the light shielding plate a3 is placed at approximately half the center of the light receiving elements (15a) and (15b), whereas in Fig.
This is an example in which the light beam passes through approximately half of the center of the light receiving elements (1sa) and (15b), and the light shielding plate 03 is placed on both sides of the light beam. The same effect can be obtained with respect to the relationship between the amount of light received by the elements (15a) and (15b).

遮光板03が発光素子a局と受光素子(15a)、(1
5b)の光ビームの中央位置に位置しているときは受光
素子(15a)、(15b)のおのおのの受光量は等し
く遮光板に)が中央位置から左右どちらかに変位すると
一方の受光素子に受ける光量は増加し、他方の受光素子
に受ける光量は減少する。
The light shielding plate 03 connects the light emitting element a station and the light receiving element (15a), (1
When the light receiving elements (15a) and (15b) are located at the center position of the light beam (5b), the amount of light received by each of the light receiving elements (15a) and (15b) is equal.When the light receiving element (15a) and (15b) are displaced from the center position to the left or right, one of the light receiving elements receives the same amount of light. The amount of light received increases, and the amount of light received by the other light receiving element decreases.

第4図aは遮光板(ハ)の変位に対する受光素子(15
a)および(15b)の受光量の関係を示す特性図であ
って、Cは遮光板(2)の変位量、QLは受光素子(1
5a)および(15b)の受光量であシ、遮光板(6)
の変位Cがゼロすなわち中立位置にあるとき、受光素子
(15a)と(15b)の受光量は勢しく、遮光板(至
)の変位が最下値εlのとき受光素子(15a)の受光
量は最大値、受光素子(15b)の受光量は最小値を示
す。
Figure 4a shows the light receiving element (15) with respect to the displacement of the light shielding plate (c).
It is a characteristic diagram showing the relationship between the amount of light received in a) and (15b), where C is the amount of displacement of the light shielding plate (2), and QL is the amount of displacement of the light receiving element (15b).
5a) and (15b), light shielding plate (6)
When the displacement C of is zero, that is, at the neutral position, the amount of light received by the light receiving elements (15a) and (15b) is strong, and when the displacement of the light shielding plate (to) is at the lowest value εl, the amount of light received by the light receiving element (15a) is The amount of light received by the light receiving element (15b) is the maximum value, and the amount of light received by the light receiving element (15b) is the minimum value.

遮光板@の変位が中立位置から反対方向に最大値t!た
け変位したとき受光素子(+5a)の受光量は最小値、
受光素子(15b)の受光量は最大値を示す、遮光板(
6)の変位によって受光素子(15a)と(15b)に
発生した電気信号の差を出力として取出すと、第4図す
に示すように、その出力ΔQLは遮光板α撞の変位εと
の間に比例関係を得ることができる。
The displacement of the light shielding plate @ reaches the maximum value t in the opposite direction from the neutral position! The amount of light received by the light receiving element (+5a) is the minimum value when the displacement is
The amount of light received by the light receiving element (15b) shows the maximum value, and the light shielding plate (
6) When the difference between the electrical signals generated in the light receiving elements (15a) and (15b) due to the displacement is extracted as an output, the output ΔQL is the difference between the displacement ε of the light shielding plate α and A proportional relationship can be obtained.

第2図は本発明に係わる電子回路の実施例を示したもの
で以下詳述する。
FIG. 2 shows an embodiment of an electronic circuit according to the present invention, which will be described in detail below.

端子(イ)および端子翰は、安定化電源でありそれぞれ
正電圧、負電圧の端子を示す、勾は演算増巾器、@は直
流増巾器、(2)、炒9.(ハ)、(ハ)、(ホ)は抵
抗を示す。0力は、トランジスタ、O榎は前記フォトイ
ンクラブタの機構部で、発光素子0尋および受光素子(
15a)、(15b)を含むまた0呻は発光素子(19
a)および受光素子(19b)を一体化したもので上記
フォトインタラプタ(至)の発光素子と受光素子と同等
機能および同等特性を肩する信号検出器即ちフォトカプ
ラである、以下αIはフォトカプラと呼称し説明する。
Terminal (a) and terminal wire are stabilized power supplies and indicate positive voltage and negative voltage terminals, respectively.The gradient is an operational amplifier, and @ is a direct current amplifier.(2), 9. (c), (c), and (e) indicate resistance. 0 is a transistor, O is a mechanical part of the photo ink converter, and a light emitting element and a light receiving element (
15a) and (15b) are also light emitting elements (19
It is a signal detector, that is, a photocoupler, which integrates a) and a light receiving element (19b) and has the same function and characteristics as the light emitting element and light receiving element of the photointerrupter (to).Hereinafter, αI will be referred to as a photocoupler. Name and explain.

抵抗(イ)および抵抗(イ)は直列に接続されてその接
続点は演算増巾器翰の非反転入力端子に接続され抵抗(
財)の片端は端子(ホ)の正電圧端子に接続し、抵抗(
財)の他端は端子翰の負電圧端子に接続されている。
The resistor (A) and the resistor (A) are connected in series, and their connection point is connected to the non-inverting input terminal of the operational amplifier wire.
One end of the terminal (E) is connected to the positive voltage terminal of the terminal (E), and the resistor (
The other end of the terminal wire is connected to the negative voltage terminal of the terminal wire.

フォトインタラプタ(至)の受光素子(15a)。A light receiving element (15a) of a photointerrupter (to).

(15b)は互いにアノード端子とカソード端子が逆方
向に並列接続され、その一端は端子(ホ)の負電圧端子
に接続され他の一端は増巾器(イ)の入力端子に接続さ
れている。なお抵抗(ハ)は受光素子(15a)、(1
5b)の両端に接続した負荷抵抗である。
(15b) has an anode terminal and a cathode terminal connected in parallel in opposite directions, one end of which is connected to the negative voltage terminal of terminal (E), and the other end connected to the input terminal of the amplifier (A). . Note that the resistance (c) is the light receiving element (15a), (1
5b) is a load resistor connected to both ends of the resistor.

またフォトカプラDIの受光素子(t9b)は、そのカ
ソード端子を端子翰の負電圧端子に接続し、アノード端
子は演算増巾器(ホ)の反転入力端子に接続されている
。抵抗(ハ)は、受光素子(19b)の負荷抵抗で並列
に接続されている。
The light receiving element (t9b) of the photocoupler DI has its cathode terminal connected to the negative voltage terminal of the terminal wire, and its anode terminal connected to the inverting input terminal of the operational amplifier (e). The resistor (c) is connected in parallel with the load resistor of the light receiving element (19b).

演算増中器翰の出力端子は抵抗(ハ)を介してトランジ
スタ@力のベースに接続され、トランジスタ(ロ)のコ
レクタは端子(ハ)の正電圧端子に接続され、エミッタ
は発光素子(19a)および発光素子Q→が直列に接続
されて端子(ホ)の負電圧端子に接続されているので、
発光素子(19a)とθ→は同一電流が流れる。
The output terminal of the arithmetic intensifier is connected to the base of the transistor via the resistor (c), the collector of the transistor (b) is connected to the positive voltage terminal of the terminal (c), and the emitter is connected to the light emitting element (19a). ) and the light emitting element Q→ are connected in series and connected to the negative voltage terminal of the terminal (E), so
The same current flows through the light emitting element (19a) and θ→.

以上の回路において電源電圧をVとし、演算増巾器翰の
非反転入力可、圧をV+、とすると、鳥 V s = −VがかかりトランジスタのエミッタR+
 +R2 電流を制御することによシ発光素子(19a)に電流を
変えて、受光素子(19b)の光出力電圧Vpが演算増
巾器(ホ)の反転入力端子にかかるため、負帰還がかか
ることによって、Vp=Vsになるよう制御される。
In the above circuit, if the power supply voltage is V, the non-inverting input of the operational amplifier is possible, and the voltage is V+, then V s = -V is applied to the emitter of the transistor R+
+R2 By controlling the current, the current is changed to the light emitting element (19a), and the optical output voltage Vp of the light receiving element (19b) is applied to the inverting input terminal of the operational amplifier (e), so negative feedback is applied. By this, control is made so that Vp=Vs.

これは、発光素子と受光素子は半導体が用いられている
ため、周囲温度の変化によって光ビームの強さと受光素
子の起電力は通常変動するため、温度依存性を補償する
ための制御回路を形成しているhkである。
This is because semiconductors are used for the light-emitting element and the light-receiving element, so the intensity of the light beam and the electromotive force of the light-receiving element usually fluctuate due to changes in ambient temperature, so a control circuit is formed to compensate for temperature dependence. This is hk.

従ってフォトインクラブタ[相]側と7オトカプラ09
を近傍に設置することによって同一温度条件下にするこ
とによりフォトインタラプタ0榎の発光素子041と受
光素子(+5a)iたは(15b)の温度依存性をも補
正されるため遮光板a3の機械変位量が一定位置にある
とき、受光素子の光出力譬座 po HrA偵 +y 
ヒ 1 加重1 ム云−在≧ノー1/r 嬬諧 −4安
定な出力を得ることが可能となる。
Therefore, the photo ink club [phase] side and 7 Oto coupler 09
The temperature dependence of the light-emitting element 041 and the light-receiving element (+5a) i or (15b) of the photointerrupter 0 Enoki can also be corrected by placing them nearby and under the same temperature conditions. When the amount of displacement is at a constant position, the optical output of the light receiving element is +y
hi 1 weight 1 mu yen - present ≧ no 1/r yi -4 It becomes possible to obtain a stable output.

光出力電圧eoを増巾器■で増巾してその出力を電圧出
力vIもしくは電流出力1.とじて発信させれば、 ’A (If ) CcEψ(圧力差Δp)となる圧力
検出器が得られるものである。
The optical output voltage eo is amplified by an amplifier ■ and the output is converted into a voltage output vI or a current output 1. If the signal is stopped and transmitted, a pressure sensor is obtained in which 'A (If) CcEψ (pressure difference Δp) is obtained.

勿論遮光板の変位による出力VIcr)%性を反転させ
るにはフォトインタラプタ0跨の受光素子(15a)、
(15b)の両端子の極性を1(転するが、フォトイン
タ2ブタに)の構造を第6図a、b方式を逆にして使用
してもよいのは当然のことである。
Of course, in order to reverse the output VIcr)% due to the displacement of the light shielding plate, the light receiving element (15a) across the photointerrupter 0,
It goes without saying that the structure in which the polarity of both terminals in (15b) is 1 (inverted, but the photointerceptor is 2-pole) may be used by reversing the systems a and b in FIG.

第5図は第2図の電気回路の中のフォトカプラ09とフ
ォトインタラプタ(至)の部分について発光素子α掩と
(19a)を兼用した他の実施例にもとづbた電気回路
図を示す。
FIG. 5 is an electric circuit diagram b based on another embodiment in which the photocoupler 09 and photointerrupter (19a) in the electric circuit of FIG. 2 are also used as light emitting elements α and (19a). show.

すなわち、フォトインタラゲタQ41の発光素子0→の
光ビームが受光素子(tsa)、(15b)の受光にさ
またけない光ビーム内に受光素子(19b)を1!iJ
#l−て益4−去梁白4)μ尋を轡工(19kl−1’
 −y −J−kカプラを構成させると、第2図におけ
る発光素子(19a)は不要となり発光素子α荀で兼用
することも可能であり、第5図の電気回路がなシたつ。
That is, the light-receiving element (19b) is placed within the light beam so that the light beam from the light-emitting element 0→ of the photo interrogator Q41 does not interfere with the light reception by the light-receiving element (tsa), (15b). iJ
#l-te benefit 4-Leo Liang Bai 4) μ fathom 轡工(19kl-1'
When the -y-Jk coupler is configured, the light emitting element (19a) in FIG. 2 becomes unnecessary, and the light emitting element α can also be used, and the electric circuit in FIG. 5 is eliminated.

フォトインタラプタ(至)の構造は必ずしも差動的にし
なくてもよいが、変位検出系において中立点におけるゼ
ロ点の安定性を考慮すると差動式の方が有利である。つ
まりフォトインタラシタ(ト)とフォトカプラα呻は近
傍に設置しても過渡的または定常的に完全に温度条件が
相等しい条件は得がたいが、差動式とすれば、たとえ過
渡的に温度バランスがくずれたとしても中立点における
出力信号はゼロ電圧を維持することができることが本発
明の主眼とするところである。
Although the structure of the photointerrupter does not necessarily have to be differential, a differential type is more advantageous in consideration of the stability of the zero point at the neutral point in the displacement detection system. In other words, even if the photointeracitor (g) and the photocoupler α are installed close together, it is difficult to achieve completely equal temperature conditions either transiently or steadily. The main objective of the present invention is that even if the voltage is distorted, the output signal at the neutral point can maintain zero voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による装置に用いるフォトインタラプ
タの縦断側面図、第2図はこの発明による機械的変位を
霜、気佃号に変換する装置の電気回路図、第3図a及び
、bはフォトインタラプタ部分の略図的拡大側面図、第
4図a及びbはフォトインタラプタによる変位を電気信
号に変換するときの特性図である。 図面中符号 (t) 、 (2)はダイアフラムケース、(3)はダ
イアフラム、(至)は遮光板、a<は発光素子、(15
a)。 (15b)は受光素子、(ト)はフォトインタラゲタ、
(燵はフォトカプラ、(1)は演算槽中器、鋤は増巾器
である。 特許出願人 精立工業株式会社 才1図 B 才3図0 才3図り 〜ンE 第4図0 才4図b
Fig. 1 is a longitudinal cross-sectional side view of a photointerrupter used in the device according to the present invention, Fig. 2 is an electrical circuit diagram of the device according to the invention for converting mechanical displacement into frost and air, and Figs. 3a and 3b are FIGS. 4a and 4b, which are schematic enlarged side views of the photointerrupter portion, are characteristic diagrams when the displacement by the photointerrupter is converted into an electrical signal. In the drawing, symbol (t), (2) is a diaphragm case, (3) is a diaphragm, (to) is a light shielding plate, a< is a light emitting element, (15)
a). (15b) is a light receiving element, (g) is a photo interrogator,
(The lamp is a photocoupler, (1) is a calculation tank middle device, and the spade is a widening device. Patent applicant: Seiryu Kogyo Co., Ltd. Figure 4b

Claims (1)

【特許請求の範囲】[Claims] 平行またはほぼ平行な赤外線ビームを発する発光素子と
、その光軸と対抗する側に近接して設置した2個の受光
素子と、上記発光素子と該受光素子との中間位置に、光
軸と直角方向に機械的変位をする遮光板を投置し、上記
2個の受光素子が受ける光量が遮光板の機械的変位によ
・つて一方は増加し、他方は減少するように2個の受光
素子を配置して、22の受光信号を差動的に電気信号に
変換するフォトインタラプタの機構と、そのフォトイン
タラプタの近傍に発光素子と受光素子で形成されたフォ
トカブ2を設けて、フォトインタラプタと7オトカズラ
の発光素子を直列に接続するか或は兼用させ、フォトカ
プラの受光素子に発生する光起電力が一定になる如く、
フォトインタラプタおよびフォトカプラの発光素子への
電流を制御する電子回路を設けた機械的変位を電気信号
に変換する装置。
A light-emitting element that emits parallel or nearly parallel infrared beams, two light-receiving elements installed close to each other on the side opposite to the optical axis, and a light-emitting element located at an intermediate position between the light-emitting element and the light-receiving element perpendicular to the optical axis. A light-shielding plate that is mechanically displaced in the direction of A photointerrupter mechanism for differentially converting the received light signals of 22 into electrical signals is provided, and a photocube 2 formed of a light emitting element and a light receiving element is provided near the photointerrupter. The light-emitting elements of Otokazura are connected in series or used in combination, so that the photovoltaic force generated in the light-receiving element of the photocoupler is constant.
A device that converts mechanical displacement into an electrical signal and includes an electronic circuit that controls the current flowing to the light-emitting element of a photointerrupter and photocoupler.
JP3205884A 1984-02-22 1984-02-22 Device transducing mechanical displacement to electrical signal Pending JPS60177216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3205884A JPS60177216A (en) 1984-02-22 1984-02-22 Device transducing mechanical displacement to electrical signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3205884A JPS60177216A (en) 1984-02-22 1984-02-22 Device transducing mechanical displacement to electrical signal

Publications (1)

Publication Number Publication Date
JPS60177216A true JPS60177216A (en) 1985-09-11

Family

ID=12348273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3205884A Pending JPS60177216A (en) 1984-02-22 1984-02-22 Device transducing mechanical displacement to electrical signal

Country Status (1)

Country Link
JP (1) JPS60177216A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174218U (en) * 1986-04-25 1987-11-05
FR2616903A1 (en) * 1987-06-19 1988-12-23 Messerschmitt Boelkow Blohm OPTO-ELECTRIC POSITIONING SOCKET
US4812635A (en) * 1986-09-05 1989-03-14 Bbc Brown Boveri Ag Optoelectronic displacement sensor with correction filter
EP1293764A3 (en) * 2001-09-13 2005-07-06 Prettl, Rolf Optical pressure measuring arrangement
KR100652296B1 (en) * 2000-12-28 2006-11-29 동부일렉트로닉스 주식회사 Exhaust Status Display Device of Semiconductor Manufacturing Equipment
JP2008133676A (en) * 2006-11-29 2008-06-12 Comany Inc Coping mounting structure for low partition, and coping receptacle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825762B1 (en) * 1970-06-02 1973-07-31
JPS5395664A (en) * 1977-02-01 1978-08-22 Agency Of Ind Science & Technol Contactless position setter
JPS5411761A (en) * 1977-06-28 1979-01-29 Meiyo Electric Displacementtelectrical quantity conversion system
JPS5724529B2 (en) * 1972-03-03 1982-05-25

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825762B1 (en) * 1970-06-02 1973-07-31
JPS5724529B2 (en) * 1972-03-03 1982-05-25
JPS5395664A (en) * 1977-02-01 1978-08-22 Agency Of Ind Science & Technol Contactless position setter
JPS5411761A (en) * 1977-06-28 1979-01-29 Meiyo Electric Displacementtelectrical quantity conversion system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174218U (en) * 1986-04-25 1987-11-05
US4812635A (en) * 1986-09-05 1989-03-14 Bbc Brown Boveri Ag Optoelectronic displacement sensor with correction filter
FR2616903A1 (en) * 1987-06-19 1988-12-23 Messerschmitt Boelkow Blohm OPTO-ELECTRIC POSITIONING SOCKET
KR100652296B1 (en) * 2000-12-28 2006-11-29 동부일렉트로닉스 주식회사 Exhaust Status Display Device of Semiconductor Manufacturing Equipment
EP1293764A3 (en) * 2001-09-13 2005-07-06 Prettl, Rolf Optical pressure measuring arrangement
JP2008133676A (en) * 2006-11-29 2008-06-12 Comany Inc Coping mounting structure for low partition, and coping receptacle

Similar Documents

Publication Publication Date Title
US6248989B1 (en) Tilt detecting device
US20090177436A1 (en) Position Detecting Device and Position Detecting Method
JP2009020101A (en) Coriolis type fluid flowmeter
JPS60177216A (en) Device transducing mechanical displacement to electrical signal
JPH0953984A (en) Luminance detection circuit
US4930134A (en) Precision temperature sensor
US4938062A (en) Barometric meter
US4518877A (en) Precision absolute value amplifier for a precision voltmeter
EP1014098B1 (en) Direct current meter with passive input and galvanic insulation, particularly for high voltage
SU602775A1 (en) Photoelectric device for measuring displacements
RU27220U1 (en) PHOTO RECEIVER
US4529928A (en) Automatic control circuit for a current translating device
JP2918738B2 (en) Photoelectric conversion circuit for distance measuring device
JPS639167B2 (en)
JPS61102817A (en) Photoelectric switch
SU1349671A1 (en) Photodetector device
SU1204967A1 (en) Device for measuring temperature
SU1555782A1 (en) Dc-to-dc voltage converter
SU1102020A1 (en) Optronic amplifier
SU647529A1 (en) Displacement-to-elecrtic signal photoelectric transducer
SU1288503A1 (en) Device for converting linear displacements
JPH0693623B2 (en) Photoelectric switch
SU1548673A1 (en) Photodetector
SU1286062A2 (en) Photodetector device
JPS5847670B2 (en) Cairo