[go: up one dir, main page]

JPS60177207A - Strain measuring device - Google Patents

Strain measuring device

Info

Publication number
JPS60177207A
JPS60177207A JP3261884A JP3261884A JPS60177207A JP S60177207 A JPS60177207 A JP S60177207A JP 3261884 A JP3261884 A JP 3261884A JP 3261884 A JP3261884 A JP 3261884A JP S60177207 A JPS60177207 A JP S60177207A
Authority
JP
Japan
Prior art keywords
laser
strain
light
young
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3261884A
Other languages
Japanese (ja)
Inventor
Akira Ono
明 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3261884A priority Critical patent/JPS60177207A/en
Publication of JPS60177207A publication Critical patent/JPS60177207A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/165Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by means of a grating deformed by the object

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To improve measuring accuracy by disposing a measuring sample between a condenser optical system disposed in proximity with the spot light sources formed by splitting laser light to a plurality and condensing the respective light and a strain detecting means. CONSTITUTION:The laser light 22a oscillated from a laser oscillator 21 is split in two ways by a spectroscope 23 provided forward and the split light are respectively condensed by condenser lenses 24a, 24b. Single mode optical fibers 26a, 26b are provided in such a way that incident ends 25a, 25b are positioned at the focusing points. The laser light 22b, 22c released from the outlet ends 27a, 27b provided in proximity to each other overlap on each other, thus forming a Young's interference fringe. A measuring sample 3 which is the film photographed with grating lines of a test piece is installed in the region 28 where the Young's interference fringe is formed. A Moire fringe is generated by the grating lines and the Young's interference ring on the surface of the sample 3 and the shape thereof is projected as the image conforming to the shape of the grating lines on a screen 33 and is compared with the Moire fringe in the case of having no strain.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はレーザ光におけるヤングの干渉縞を利用して試
料の形状・ひずみなどを測定するひずみ測定装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a strain measuring device that measures the shape, strain, etc. of a sample using Young's interference fringes in a laser beam.

〔発明の技術的背景〕[Technical background of the invention]

光として種々のすぐれた特徴を有するレーザ光は近年そ
の利用範囲がきわめて拡大された。なかでもレーザ光に
よって物体の形状、ひずみ、距離などを計測するレーザ
応用計測の分野はすでに広く利用されているものである
。これらはレーザ光が有する干渉性が良い、エネルギ密
度が高いなどの特質を生かし、高精度な測定が可能とな
っている。また、測定試料に対して非接触で計測できる
という点でも大きな特長を持つ。
BACKGROUND OF THE INVENTION In recent years, the scope of use of laser light, which has various excellent characteristics as light, has been greatly expanded. Among these, the field of laser applied measurement, in which the shape, strain, distance, etc. of an object is measured using laser light, is already widely used. These devices make use of the characteristics of laser light, such as good coherence and high energy density, to enable highly accurate measurements. It also has the great advantage of being able to perform measurements without contacting the measurement sample.

従来よシレーザ光による計測法は種々考案されており、
光の干渉を利用したレーザホログラフィ。
Conventionally, various measurement methods using laser light have been devised.
Laser holography uses optical interference.

ドツプラ効果を利用したレーザドツプラ流速計などがあ
る。これらのうち、レーザホログラフィのなかには、複
数のレーザ光が重なることによって生じるヤングの干渉
縞を利用して試料の微小なひずみを高精度に測定する装
置がある。例えば、第1図に示すような材料試験片(1
)の引張り試験を行なった時の材料の変形状態を計測す
る場合、試験片(1)の測定部に格子状の線(2)を抽
く。そこで、第2図に示すように試験片(1)の両端部
から弾性限界を超えたPの荷重で引張ると、試験片(1
)には塑性変形が生じひずみが残留し、格子状の線(2
)は第2図に示すように変形する。ここで、この格子状
の線(2)の形状を測定し変形前の形状と比較すれば試
験片(1)の測定部の各位置におけるひずみがわかる、
しかしながら1通常はこの格子状の線(2)の変形機は
非常に微小であって測定困難である。このため上述のヤ
ングの干渉縞を利用したレーザ応用計測が用いられる。
There are laser Doppler current meters that utilize the Doppler effect. Among these, laser holography includes a device that uses Young's interference fringes produced by overlapping multiple laser beams to measure minute strains in a sample with high precision. For example, a material test piece (1
) When measuring the deformation state of the material when a tensile test is performed, a grid line (2) is drawn at the measurement part of the test piece (1). Therefore, as shown in Figure 2, when the test piece (1) is pulled from both ends with a load of P that exceeds the elastic limit, the test piece (1)
) undergoes plastic deformation and strain remains, resulting in grid-like lines (2
) is deformed as shown in FIG. Here, by measuring the shape of this grid-like line (2) and comparing it with the shape before deformation, the strain at each position of the measurement part of the test piece (1) can be found.
However, the deformation of the grid lines (2) is usually very small and difficult to measure. For this purpose, laser applied measurement using the above-mentioned Young's interference fringes is used.

第3図は従来よシ用いられているヤングの干渉縞を利用
したひずみ測定装置である。なお、測定試料(3)は第
3図に示された変形した試験片(1)の測定部をカメラ
によって撮影することによって得られたフィルムであり
、このフィルムに変形した格子状の線(2)が記録され
ている。
FIG. 3 shows a conventional strain measuring device using Young's interference fringes. The measurement sample (3) is a film obtained by photographing the measurement part of the deformed test piece (1) shown in Figure 3 with a camera, and the deformed lattice lines (2 ) are recorded.

(5)はレーザ発振器で一般的にはHe −Ne 、 
Arなどの気体レーザが用いられる。このレーザ発振器
(5)から発振されたレーザ光(6)は2枚の凸レンズ
+7)、 (8)からなる拡大光学系(9)によシビー
ム径を拡大される。この拡大されたレーザ光(6a)は
分光器OIによって2つに分けられV−ザ光(6b)、
 (6C)となシ。
(5) is a laser oscillator, generally He-Ne,
A gas laser such as Ar is used. The beam diameter of the laser beam (6) oscillated from this laser oscillator (5) is expanded by an enlarging optical system (9) consisting of two convex lenses +7) and (8). This expanded laser beam (6a) is divided into two parts by a spectrometer OI, and is divided into two parts: a V-laser beam (6b),
(6C) Tonashi.

さらに平面鏡(11す、 (llb)によってそれぞれ
反射され、再び分光器(L邊によって重ねられる。この
とき、分光器(l渇はレーザ光(ha)、 (llb)
 ノそれぞれの光軸が一致することなく微小角で交差す
るように設置される。このため、レーザ光(6b)、 
(6G)が重なシ合った領域α樟ではそれぞれが十N次
回折光。
Furthermore, they are each reflected by plane mirrors (11 and (llb)) and overlapped again by the spectrometer (L section).
The optical axes of the two are installed so that they do not coincide but intersect at a small angle. For this reason, the laser beam (6b),
(6G) overlaps each other in the area α樟, each of which is the 10Nth order diffracted light.

−N次回折光となって干渉しあい、いわゆるヤングの干
渉縞が形成される。そして、このヤングの干渉縞が形成
された領域(13)にフィルムである測定試料(3)が
配置される。
The -N-order diffracted light interferes with each other, forming so-called Young's interference fringes. Then, a measurement sample (3), which is a film, is placed in the region (13) where the Young's interference fringes are formed.

このように、ヤングの干渉縞の領域(131に測定試料
(3)を置くと、測定試料(3)上にはヤングの干渉縞
と格子状の線(2)によって、いわゆるモアレ縞ができ
る。このモアレ縞は格子状の線(2)の形状に応じて、
変形]7た形状となる。その徒、レーザ光(6b)。
In this way, when the measurement sample (3) is placed in the Young's interference fringe region (131), so-called moiré fringes are formed on the measurement sample (3) by the Young's interference fringes and the grid-like lines (2). These moiré fringes vary depending on the shape of the grid lines (2).
[Deformation] It becomes a 7-shaped shape. That's the laser beam (6b).

(6C)は結像レンズ(I4Jによって集光され、?c
の集光点において微小孔を有するビンホール(イ)に通
され。
(6C) is focused by the imaging lens (I4J, ?c
The light is passed through a bottle hole (A) with a microscopic hole at the focal point of the light.

レーザ光(6b)からの十N次回折光とレーザ光(6C
)の−N次回折光のみがスクリーンθeに写されるよう
になる。スクリーン00に写された像は上述のように測
定試料(3)に写された格子状の線(2)の形状に応じ
たモアレ縞を観測することができる。測定試料(3)に
写された格子状の線(2)のひずみが微小であってもス
クリーン(tf9 K写されたモアレ縞の像はびずみが
大きくなった状態で現われるのでひずみの形状。
The 10Nth order diffracted light from the laser beam (6b) and the laser beam (6C
) only the -Nth order diffracted light is reflected on the screen θe. As described above, moiré fringes can be observed in the image captured on the screen 00 according to the shape of the grid lines (2) captured on the measurement sample (3). Even if the distortion of the lattice-like lines (2) printed on the measurement sample (3) is minute, the image of the moiré fringes printed on the screen (TF9K) appears with increased distortion, so the shape of the distortion.

分布が測定可能となる。Distribution becomes measurable.

〔背景技術の問題点〕[Problems with background technology]

従来よシ5光学系を用いた計測方法は光学系全体を高精
度に正確に調整する必要があった。これは、光軸などが
微小でもずれているとスクリーンに写される像が全体的
にゆがんでし甘い正確な測定が不可能となってしまうか
らである。このため。
Conventional measurement methods using five optical systems require highly accurate adjustment of the entire optical system. This is because if the optical axis or the like is even slightly shifted, the image projected on the screen will be distorted as a whole, making accurate measurement impossible. For this reason.

光学系の調整が非常にめんどうかつ困難であった。Adjusting the optical system was extremely troublesome and difficult.

また、上述の従来例のように分光器θ0)、(121,
平面鏡(Ila)、 (llb)を用いた場合、これら
の反射面にわずかの凹凸があってもレーザ光(,6b)
、 (6りによるヤングの干渉縞はそれらの影響でゆが
んでしまい、正確な測定は不可能となってしまう。
In addition, as in the conventional example described above, the spectrometers θ0), (121,
When plane mirrors (Ila) and (llb) are used, the laser beam (,6b) is
, (Young's interference fringes due to the 6th wave are distorted by these influences, making accurate measurement impossible.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述の点に着目してなされたもので、比
較的光学系の調整が容易で、像のゆがみがなく正確な測
定ができるひずみ測定装置を提供するにある。
An object of the present invention has been made in view of the above-mentioned points, and it is an object of the present invention to provide a strain measuring device whose optical system can be adjusted relatively easily and which can perform accurate measurements without image distortion.

〔発明の概要〕[Summary of the invention]

本発明はレーザ光を分光器によって複数に分割し、それ
ぞれを集光し点光源にした後に例えば単−モード光ファ
イバで伝達することによってそれぞれの点光源を互いに
近接した位置に配置し、ヤングの干渉縞を作り、この領
域に測定試料を置いてひずみを測定するひずみ測定装置
である。
The present invention splits laser light into a plurality of parts using a spectrometer, focuses each into a point light source, and then transmits the light through a single-mode optical fiber, so that the point light sources are placed close to each other. This is a strain measurement device that creates interference fringes and measures strain by placing a measurement sample in this area.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を図面を用いて説明する。第4図は本
実施例を示す平面図である。CI’0はレーザ発振器で
、とのレーザ発振器(21)から発振するレーザ光(2
2a)は前方に設けられた分光器(ハ)で2方向に分割
される。この2方向に分割された1/−ザ光(22b)
、 (22c)はそれぞれ集光レンズ(24a)、 (
24b)で集光さ115点光源となった集光点において
、入射端(25a)、 (25b)が位置するように単
一モード光ファイバ(26a)、 (26b)が備えら
れている。この単一モード光ファイバ(26a)、 (
26b)の内部における芯径は約5)imとなっている
。このため、出口端(27a)、 (27b)では入射
端(25a)、 (25b) (7)それぞれから伝達
しだレーザ光(22b)、 (22C)は可干渉性を保
つため、あたかも理想的な点光源として考えられる。出
口端(27a)、 (27b)は互いに近接して設けら
れており、出口端(27a)、 (27b)から放出す
るレーザ光(22b)、 (22C)は互いに重なり合
い、それぞれが十N次回折光、−N次回折光となって、
いわゆるヤングの干渉縞を形成する。このとき、出口端
(27a)、 (27b)からノL/−ザ光(22b)
、 (22C)の光軸は本実施例では平行となっている
が、途中で交差してもよい。このヤングの干渉縞が形成
される領域(2)に第2図で示されるような試験片(1
)の格子状の線(2)を撮影したフィルムである測定試
料(3)が設置される。このとき、測定試料(3)の格
子状の線(2)が写された部分が領域(2)内に入るよ
うにすることは言うまでもない。測定試料(3)の後方
にはひずみを検出するひずみ検出手段が設けられ、以下
の構成と々っている。測定試料(3)の背後は出口端(
27a)。
An embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a plan view showing this embodiment. CI'0 is a laser oscillator, and the laser beam (2) oscillated from the laser oscillator (21) is
2a) is divided into two directions by a spectrometer (c) provided in front. 1/-the light (22b) divided into two directions
, (22c) are condensing lenses (24a), (22c), respectively.
Single-mode optical fibers (26a) and (26b) are provided so that the incident ends (25a) and (25b) are located at the condensing point where the light is condensed into a 115-point light source (24b). This single mode optical fiber (26a), (
The core diameter inside 26b) is approximately 5) im. Therefore, at the exit ends (27a), (27b), the laser beams (22b), (22C) transmitted from the input ends (25a), (25b), (7), respectively, maintain coherence, making it seem like an ideal state. It can be considered as a point light source. The exit ends (27a), (27b) are provided close to each other, and the laser beams (22b), (22C) emitted from the exit ends (27a), (27b) overlap each other, and each is a 1Nth-order diffracted beam. , becomes -Nth order diffracted light,
This forms so-called Young's interference fringes. At this time, the light from the exit end (27a), (27b) to the light (22b)
, (22C) are parallel in this embodiment, but may intersect in the middle. In the region (2) where Young's interference fringes are formed, a test piece (1
) A measurement sample (3), which is a film photographing the grid-like lines (2), is installed. At this time, it goes without saying that the portion of the measurement sample (3) where the grid lines (2) are photographed should fall within the area (2). Strain detection means for detecting strain is provided behind the measurement sample (3), and has the following configuration. Behind the measurement sample (3) is the outlet end (
27a).

(27b)からの拡がったレーザ光(:22b)、 (
22C)を集光する視野レンズ(2→が設けられ、後方
には、さらにレーザ光(22b)、 (22C)を集光
し、像を結像レンズ(7)が設けられている。この結像
レンズ(至)によって集光されたレーザ光(22b)、
 (22C)はこの集光点において設けられたピンホー
ル0υの微小孔04に通される。このピンホール01)
はレーザ光(22b )、 (22C)すなわち、+N
次回折光、 −N次回折光のみを微小(1内に通すよう
に位置調整されるもので、ピンホールGυ後方に設けら
れたスクリーン(ハ)に写される像を鮮明にするだめの
ものである。なお、スクリーン(至)Kは測定試料(3
)にFJj、われるモアレ縞が像として写される。
Laser light (:22b) spread from (27b), (
A field lens (2→) is provided to condense the laser beams (22C), and an imaging lens (7) is provided at the rear to condense the laser beams (22b) and (22C) and form an image. a laser beam (22b) focused by an image lens (to);
(22C) is passed through a minute hole 04 with a pinhole size of 0υ provided at this focal point. This pinhole 01)
is the laser beam (22b), (22C), that is, +N
The position is adjusted so that only the -Nth order diffracted light passes through the small (1), and it is used to sharpen the image reflected on the screen (C) installed behind the pinhole Gυ. .The screen (to) K is the measurement sample (3
), the moiré fringes that appear in FJj are captured as an image.

このような構成による装置によって、測定試峯5(3)
に写された格子状の線(2)のひずみが測定され2すな
わち、測定試料(3)の面上には格子状の線(2)Jヤ
ングの干渉縞によってモアレ縞が生じ、この4アレ縞の
形状が格子状の線(2)の形状に応じだ像Jなってスク
リーンOQに写し出される。このときσモアレ縞は格子
状の線(2)のひずみが微小であっ1°も大きくひずん
でスクリーン(ハ)に写し出されるぐで、その形状を測
定し、ひずみのない場合のモラレ縞と比較することによ
ってひずみが測定でき2のである。なお、スクリーン(
至)の代わりに力、メラを設置し、モアレ縞を撮影しそ
の写真を用いて(。
With a device having such a configuration, measurement test peak 5 (3)
The strain of the lattice-like lines (2) captured in 2 is measured, and moiré fringes are generated on the surface of the measurement sample (3) by the lattice-like lines (2) J-Young's interference fringes. The shape of the stripes corresponds to the shape of the grid lines (2) and is projected onto the screen OQ as an image J. At this time, the σ moiré fringes are created by the slight distortion of the grid lines (2), which are distorted by as much as 1° and projected on the screen (c).The shape is measured and compared with the moire fringes without distortion. By doing this, the strain can be measured. In addition, the screen (
Instead of (To), set up a camera, take a picture of the moiré fringes, and use that photo (.

ずみを測定してもよい。You may also measure the force.

上述の装置では、集光光学系としてレーザ光(22b)
、 (22C)を集光レンズ(24a)、 (24b)
で集光したのち単一モード光ファイバ(26a)、 (
26b)を用いたため、出口端(z7a)、 (27b
)では理想的な点光源となり、出口端(27a)、 (
27b) カら1jllJ定試料(3)ifの距離を十
分に長くとればヤングの干渉縞は理想的に真直な縞とな
る。よってひずみの測定はこの真直な縞を基準として比
較することができ、基準の縞が曲線である場合と比較し
て容易かつ高精度な測定が可能となる。また、単一モー
ド光ファイバ(26a)、 (26b)は柔軟性に富む
ノテ、出口端(27a)。
In the above-mentioned apparatus, a laser beam (22b) is used as a condensing optical system.
, (22C) with condensing lenses (24a), (24b)
After condensing the light with a single mode optical fiber (26a), (
26b), the outlet end (z7a), (27b
) becomes an ideal point light source, and the exit end (27a), (
27b) If the distance from 1jllJ constant sample (3) if is sufficiently long, Young's interference fringes become ideally straight fringes. Therefore, strain can be measured using the straight stripes as a reference, and measurement can be performed more easily and with higher precision than when the reference stripes are curved lines. In addition, the single mode optical fibers (26a) and (26b) have flexible exit ends (27a).

(27b)のそれぞれの間隔、相対角度を自由に変える
ことができ、全体の光学系の調整が容易となる利点があ
る。このため、光学系の調整不十分による像全体のゆが
みを解消することができた。さらに、上述の装置では平
面鏡などの高精度な反射鏡を用いることがないので安価
な装置として提供することができる。
(27b) and the relative angle can be freely changed, which has the advantage of making it easy to adjust the entire optical system. Therefore, it was possible to eliminate the distortion of the entire image due to insufficient adjustment of the optical system. Furthermore, since the above-described device does not use a highly accurate reflecting mirror such as a plane mirror, it can be provided as an inexpensive device.

なお、ヤングの干渉縞を形成するには他にパイプリズム
、分割レンズといったものがあ如、これらを用いてもよ
いが、それぞれの光の収差により。
In addition, to form Young's interference fringes, other methods such as a pipe rhythm or a split lens may be used, but depending on the aberration of each light.

比較基準とする場合の線形状が真直でなくなる場合があ
り、あま)好ましくない。
The line shape when used as a comparison standard may not be straight, which is not desirable.

〔発明の効果〕 以上説明したように本発明のひずみ測定装置では光学系
全体の調整が容易で、糧々の物体のひずみ状態を高精度
に測定することが可能となった。
[Effects of the Invention] As explained above, in the strain measuring device of the present invention, the entire optical system can be easily adjusted, and the strain state of everyday objects can be measured with high precision.

また、高精度な反射鏡を使用しないで光学系を形成する
ことができるので、安価な装置を提供することができる
Furthermore, since the optical system can be formed without using a highly accurate reflecting mirror, an inexpensive device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は測定する試験片を示す正面図、第2図は試験片
にひずみが生じた場合を示す正面図、第3図は従来例を
示す平面図、第4図は本発明の一実施例を示す平面図で
ある。 2工・・・レーザ発振器、23・・・分光器。 24a、 24b・・・集光レンズ。 26a、 26b・・・単一モード光ファイバ。 29・・・視野レンズ、30・・・結像レンズ。 31・・・ピンホール、33・・・スクリーン。 第1図 第2図 ↑P 邑−\
Fig. 1 is a front view showing a test piece to be measured, Fig. 2 is a front view showing a case where strain occurs in the test piece, Fig. 3 is a plan view showing a conventional example, and Fig. 4 is an embodiment of the present invention. FIG. 3 is a plan view showing an example. 2nd grade...Laser oscillator, 23...Spectrometer. 24a, 24b... Condensing lens. 26a, 26b...Single mode optical fiber. 29... Field lens, 30... Imaging lens. 31...pinhole, 33...screen. Figure 1 Figure 2 ↑P Ou-\

Claims (3)

【特許請求の範囲】[Claims] (1)レーザ発振器と、とのレーザ発振器からのレーザ
光を複数個に分割する分割手段と、この分割したレーザ
光のそれぞれを集光することによって点光源を形成しこ
れら点光源をそれぞれ近接して配置する集光光学系と、
上記点光源からのレーザ光の照射方向に設けられたひず
み検出手段とを具備し、測定試料を上記点光源とひずみ
検出手段との間に配置して測定することを特徴とするひ
ずみ測定装置。
(1) A laser oscillator, a dividing means for dividing the laser beam from the laser oscillator into a plurality of parts, and a point light source is formed by focusing each of the divided laser beams, and these point light sources are brought close to each other. a condensing optical system arranged at
A strain measuring device comprising: a strain detecting means provided in the direction of irradiation of laser light from the point light source, and measuring a sample by placing it between the point light source and the strain detecting means.
(2)集光光学系は上記分割手段によって分割されたレ
ーザ光をそれぞれ集光する複数個の集光レンズと、この
集光レンズによって集光されたレーザ光をそれぞれ近接
した位置に伝達する複数個の単一モード光ファイバとか
らなることを特徴とする特許請求の範囲第1項記載のひ
ずみ測定装置。
(2) The condensing optical system includes a plurality of condensing lenses that respectively condense the laser beams split by the splitting means, and a plurality of condensing lenses that transmit the laser beams condensed by the condensing lenses to respective adjacent positions. 2. The strain measuring device according to claim 1, comprising: single mode optical fibers.
(3)ひずみ検出手段は上記測定試料の背後に位置する
視野レンズと、との視野レンズを通過したレーザ光を集
光する結像レンズと、微小孔を有するとともに上記レー
ザ光の集光点付近に位置しこのレーザ光が上記微小孔内
を通るように設けられたピンホールと、上記レーザ光を
受け測定結果を写し出すスクリーンとからなることを特
徴とする特許請求の範囲第1項記載のひずみ測定装置。
(3) The strain detection means has a field lens located behind the measurement sample, an imaging lens that focuses the laser light that has passed through the field lens, and a microhole near the focal point of the laser light. The strain relief device according to claim 1, comprising: a pinhole located in the microhole so that the laser beam passes through the microscopic hole; and a screen that receives the laser beam and displays the measurement results. measuring device.
JP3261884A 1984-02-24 1984-02-24 Strain measuring device Pending JPS60177207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3261884A JPS60177207A (en) 1984-02-24 1984-02-24 Strain measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3261884A JPS60177207A (en) 1984-02-24 1984-02-24 Strain measuring device

Publications (1)

Publication Number Publication Date
JPS60177207A true JPS60177207A (en) 1985-09-11

Family

ID=12363837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3261884A Pending JPS60177207A (en) 1984-02-24 1984-02-24 Strain measuring device

Country Status (1)

Country Link
JP (1) JPS60177207A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4850693A (en) * 1988-05-23 1989-07-25 The United States Of America As Represented By The United States Department Of Energy Compact portable diffraction moire interferometer
JPH0552540A (en) * 1991-02-08 1993-03-02 Hughes Aircraft Co Interferometer laser surface roughness meter
KR100470933B1 (en) * 2002-01-15 2005-03-08 (주) 인텍플러스 Phase shifting point diffraction interferometer using angled end-face optical fiber source
JP2021105696A (en) * 2019-12-27 2021-07-26 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィック Method and device for imaging eye blood flow over entire region in visual field

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4850693A (en) * 1988-05-23 1989-07-25 The United States Of America As Represented By The United States Department Of Energy Compact portable diffraction moire interferometer
JPH0552540A (en) * 1991-02-08 1993-03-02 Hughes Aircraft Co Interferometer laser surface roughness meter
KR100470933B1 (en) * 2002-01-15 2005-03-08 (주) 인텍플러스 Phase shifting point diffraction interferometer using angled end-face optical fiber source
JP2021105696A (en) * 2019-12-27 2021-07-26 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィック Method and device for imaging eye blood flow over entire region in visual field

Similar Documents

Publication Publication Date Title
JPH05146406A (en) Device and method to perform mapping for topography of objective
US5076695A (en) Interferometer
US20170122803A1 (en) System and method for analyzing a light beam guided by a beam guiding optical unit
US4118106A (en) Fiber optic phase correction using holograms
US5410397A (en) Method and apparatus for holographic wavefront diagnostics
JPS61178635A (en) Interference apparatus for measuring wave front aberration
US6909510B2 (en) Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses
WO2003067182A1 (en) Shearing interference measuring method and shearing interferometer, production method of projection optical system, projection optical system, and projection exposure system
JPS60177207A (en) Strain measuring device
JP2000097622A (en) Interferometer
US20100110445A1 (en) Slit aperture for diffraction range finding system and method for using the slit aperture to form a focused image
JP3461566B2 (en) Interferometer for measuring cone shape
JP2001241916A (en) Optical system for grazing incidence interferometer and device using the same
CN118816703B (en) An optical zoom Fizeau interferometer
JP3003964B2 (en) Measurement interferometer
JP2000097657A (en) Interferometer
JP2000097664A (en) Shearing interferometer
JPH02259512A (en) Integrated interference measuring instrument
JP3212353B2 (en) Positioning method and positioning screen for test sample during cylindrical surface measurement
JPH0210208A (en) Minute angle measuring apparatus
JP2000097651A (en) Method and device for measuring shape of aspheric surface
JP2621792B2 (en) Method and apparatus for measuring spatial coherence
Lindlein et al. Optical measurement methods for refractive microlenses and arrays
JPH0540025A (en) Shape measuring instrument
Page Interferometry