[go: up one dir, main page]

JPS60177174A - Surface treatment method for iron-based sintered parts - Google Patents

Surface treatment method for iron-based sintered parts

Info

Publication number
JPS60177174A
JPS60177174A JP3263384A JP3263384A JPS60177174A JP S60177174 A JPS60177174 A JP S60177174A JP 3263384 A JP3263384 A JP 3263384A JP 3263384 A JP3263384 A JP 3263384A JP S60177174 A JPS60177174 A JP S60177174A
Authority
JP
Japan
Prior art keywords
iron
parts
nitriding
based sintered
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3263384A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nakamura
中村 康弘
Minoru Takemura
竹村 年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP3263384A priority Critical patent/JPS60177174A/en
Publication of JPS60177174A publication Critical patent/JPS60177174A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To improve remarkably the wear resistance and corrosion resistance of iron-base sintered parts by heat treating the parts in an atmosphere of steam to form oxide films on the surfaces of the parts before surface nitriding and by carrying out surface nitriding by heating in an atmosphere of gaseous ammonia. CONSTITUTION:Iron-base sintered parts are put in a heating furnace kept at 500-570 deg.C, and steam is introduced into the furnace for 30-90min under 5- 500mm. H2O vapor pressure to form oxide films on the surfaces of the parts before surface nitriding. The introduction of steam into the furnace is then stopped, the inside of the furnace is kept at 500-600 deg.C, and gaseous ammonia is introduced into the furnace under 5-100mm. H2O pressure to carry out the surface nitriding of the iron-base sintered parts.

Description

【発明の詳細な説明】 この発明は、窒化が部品の内部まで進まない。[Detailed description of the invention] In this invention, nitriding does not progress to the inside of the component.

ガス窒化法による鉄系焼結部品の表面処理法に関する。This paper relates to a surface treatment method for iron-based sintered parts using gas nitriding.

従来、鉄系機械部品の耐摩性、耐食性を向上させるため
に、窒化処理が行われている。窒化処理は、その方法に
よシガス窒化法、塩浴窒化法、イオン窒化法に大別され
る。このうち、ガス窒化法には、設備が比較的簡単であ
る。一時に大量の部品の処理ができる。塩浴窒化のよう
にシアン化合物のような有害物を必要としない等の利点
があるので、溶製品に対しては、ガス窒化法が一般的に
行われている。そして、その際ガス窒化法は500〜6
00℃の低温で行われるので、焼入れ等に比較すると、
きわめて変形の少ない表面硬化法である。しかしながら
、焼結部品へのガス窒化法の適用は実用化されていなか
った。これは、焼結部品はその製法に由来して多孔質な
ため、ガス窒化法を適用すると1表面と連通している連
続空孔に沿って1部品内部まで網目状に窒化され、得ら
れた部品は窒化増量による大きな歪みを有するとともに
1本体の鉄系焼結部品も脆化し、その靭性が低下し、実
用に供しないためである。
Conventionally, nitriding treatment has been performed to improve the wear resistance and corrosion resistance of iron-based mechanical parts. The nitriding process is roughly divided into the following methods: gas nitriding, salt bath nitriding, and ion nitriding. Among these, the gas nitriding method requires relatively simple equipment. A large number of parts can be processed at once. Unlike salt bath nitriding, gas nitriding is generally used for molten products because it does not require harmful substances such as cyanide. At that time, the gas nitriding method is 500 to 6
Since it is carried out at a low temperature of 00℃, compared to hardening etc.
This is a surface hardening method that causes extremely little deformation. However, the application of gas nitriding to sintered parts has not been put to practical use. This is because sintered parts are porous due to their manufacturing method, so when gas nitriding is applied, the inside of the part is nitrided in a network along the continuous pores communicating with the surface. This is because the parts have large distortions due to the increased nitridation, and the iron-based sintered part itself also becomes brittle, reducing its toughness and making it unusable.

したがって、この発明の目的は、前記の欠点を解消し、
焼結部品に適したガス窒化法を確立しようとするもので
ある。
It is therefore an object of the invention to overcome the above-mentioned drawbacks and to
The aim is to establish a gas nitriding method suitable for sintered parts.

本発明者らは、鋭意研究の結果。The inventors have made this the result of intensive research.

■ 鉄系焼結部品に水蒸気処理を施すと、焼結体表面の
空孔が封じられてしまうような四三酸化鉄の被膜(以下
、酸化被膜とも言う。)が部品表面に形成される(その
とき、同時に表面近傍の部品内部の連続空孔のまわシに
も酸化被膜が形成される)ことにより内部の空孔は孤立
し、その結果として水蒸気処理された部品は30 Ky
/laのガス圧の下でも気密性を保持できること、換言
すれば。
■ When an iron-based sintered part is subjected to steam treatment, a film of triiron tetroxide (hereinafter also referred to as an oxide film) is formed on the part's surface, which seals the pores on the surface of the sintered body ( At the same time, an oxide film is also formed around the continuous pores inside the part near the surface), which isolates the internal pores, and as a result, the steam-treated part becomes 30 Ky
In other words, it is possible to maintain airtightness even under a gas pressure of /la.

次工程のアンモニアガスが部品内部へ侵入することを防
止できること、及び ■ 表面、及び表面近傍の内部の空孔のまわ9に酸化被
膜1kWする前記の水蒸気処理済鉄系焼結部品を、アン
モニアガス中で加熱すると、四三酸化鉄の還元と窒化が
起こり1部品表面にのみ窒化物層を有する鉄系焼結部品
が得られることを知見した。
Ammonia gas in the next step can be prevented from entering the inside of the part; It was discovered that when heated inside, reduction and nitridation of triiron tetroxide occurs, resulting in an iron-based sintered part having a nitride layer only on the surface of one part.

この発明は、上記知見に基いて発明されたものであり、
鉄系焼結部品の表面窒化を行う際に、まず鉄系焼結部品
を水蒸気雰囲気中で加熱処理し。
This invention was invented based on the above knowledge,
When surface nitriding iron-based sintered parts, the iron-based sintered parts are first heat-treated in a steam atmosphere.

部品表面部に酸化被膜を形成させた後、アンモニアガス
啄囲気中で加熱し1表面窒化を行うことを特徴とするも
のである。ここで部品表面部とは。
This method is characterized in that after forming an oxide film on the surface of the component, it is heated in an atmosphere surrounded by ammonia gas to nitride one surface. What is the part surface area here?

部品の表面だけではなく表面近傍の内部の空孔壁をも指
すものとする。
It refers not only to the surface of the component but also to the internal cavity walls near the surface.

以下、この発明の詳細な説明する。The present invention will be described in detail below.

まず、第1工程の水蒸気処理は、第2工程のアンモニア
ガスの内部への侵入を阻止する酸化被膜が生じるような
条件であれば任意の条件で行うことができるが1例えば
、500〜・570 ℃の加熱炉内で、蒸気圧5〜・4
00g水柱の水蒸気を30〜90分導入することにょシ
行われる。そして。
First, the steam treatment in the first step can be carried out under any conditions as long as it forms an oxide film that prevents the ammonia gas from entering the interior in the second step. In a heating furnace at ℃, the vapor pressure is 5 to 4.
This is done by introducing 00 g of water vapor for 30 to 90 minutes. and.

第2工程のアンモニアガスの内部への侵入を阻止するた
めには、酸化被膜の平均の厚さくなお1部品表面に形成
されたものについてであり1表面近傍の内部の空孔壁に
形成されたものは含めない厚さでるる)は9例えば5μ
m 以上が好ましい。
In order to prevent ammonia gas from entering the interior in the second step, the average thickness of the oxide film must be the same as that formed on the surface of one part, and that formed on the walls of the internal pores near the surface of one part. The thickness (not including the material) is 9, for example, 5μ
m or more is preferable.

次に、@2工程の窒化処理は、第1工程の水蒸気処理を
行った加熱炉と同じ炉内で、水蒸気の導入?やめてアン
モニアガスの導入を開始することにより行ってもよいし
、あるいは、水蒸気処理を既に行った加熱炉内で部品が
冷却された後に、別の加熱炉へ導入し、アンモニアガス
を導入することにより行ってもよい。窒化処理は、酸化
被膜の還元と窒化が起こり1表面にのみ窒化物層を有す
る鉄系焼結部品が得られる条件であれば任意の条件で行
うことができるが、加熱炉内の温度は500−600℃
が好ましい。又、アンモニアガスの圧力は5〜・10t
)m水柱が好ましい。そして、窒化処理時間は、加熱温
度及びアンモニアガスの圧力によっても異なるが、30
−120分が好ましい、上記のような条件で形成される
窒化物層の平均の厚さは約5〜30μm である。
Next, the nitriding treatment in step @2 is performed in the same furnace as the one that was used for the steam treatment in step 1, and steam is introduced into the furnace. This can be done by stopping the steam treatment and starting the introduction of ammonia gas, or by introducing the part into another heating furnace and introducing ammonia gas after the part has cooled in the heating furnace where the steam treatment has already been performed. You may go. The nitriding treatment can be carried out under any conditions as long as the oxide film is reduced and nitrided and an iron-based sintered part having a nitride layer on only one surface is obtained, but the temperature in the heating furnace is 500℃. -600℃
is preferred. Also, the pressure of ammonia gas is 5 to 10 tons.
) m water column is preferred. The nitriding time varies depending on the heating temperature and the ammonia gas pressure, but the nitriding time is 30
The average thickness of the nitride layer formed under the above conditions, preferably -120 minutes, is about 5-30 .mu.m.

以下、実施例及び比較例によりこの発明の構成及び効果
を詐細に説明する。
Hereinafter, the structure and effects of the present invention will be explained in detail using Examples and Comparative Examples.

実施例及び比較例 下記に示す鉄系焼結リング及び鉄系焼結体を。Examples and comparative examples The iron-based sintered ring and iron-based sintered body shown below.

バッチ式水蒸気処理炉にょシ、温度570’C,蒸気圧
401113水柱、処理時間30分あるいは60分で水
蒸気処理し、そ、れぞれ平均の厚さ5μm あるいは8
μm の酸化被膜を形成の後、バッチ式9化処理炉によ
りアンモニアガス(圧力5ぬ水柱)中。
Batch type steam treatment furnace, temperature 570'C, steam pressure 401113 water columns, treatment time 30 minutes or 60 minutes, respectively, average thickness 5μm or 8
After forming an oxide film of μm, it was placed in ammonia gas (pressure: 5 mm water column) in a batch-type 9-treatment furnace.

温度570℃0表記載の処理時間で窒化処理を行なった
The nitriding treatment was carried out at a temperature of 570° C. for the treatment time shown in the table.

又、比較のために、上記の鉄系焼結リング及び鉄系焼結
体を、水蒸気処理をしないことを除いては、上記と同様
に表面処理を行なった。
For comparison, the above iron-based sintered ring and iron-based sintered body were subjected to surface treatment in the same manner as above, except that they were not subjected to steam treatment.

得られた表面処理済の鉄系焼結リングの真円度及び表面
処理済の鉄系焼結体の衝撃値を測定し。
The roundness of the obtained surface-treated iron-based sintered ring and the impact value of the surface-treated iron-based sintered body were measured.

その値をそれぞれ第1表及び第2表に示した。The values are shown in Tables 1 and 2, respectively.

更に1表面処理済の鉄系焼結り/グについて。Furthermore, regarding surface-treated iron-based sinter/g.

それぞれ形成された窒化物層の平均の厚さを、3係ナイ
タ一ル腐食液でエツチングした試料の光学顕微鏡による
組織写真から算出した。その結果を第3表に示す。
The average thickness of each formed nitride layer was calculated from an optical microscopic photograph of the structure of a sample etched with a trivalent nital etchant. The results are shown in Table 3.

鉄系焼結リング及び鉄系焼結体:共に見掛は密度が6−
417cdでFe−1,5重量%Cu−41,5重1■
の組成ヲ有し、それぞれ外径72m、内径55m。
Iron-based sintered ring and iron-based sintered body: Both have an apparent density of 6-
417cd Fe-1.5wt% Cu-41.5wt 1■
They each have an outer diameter of 72 m and an inner diameter of 55 m.

高さ10mのリング、及び10簡×10纂×55勝の直
方体を共に約114L1℃、還元性雰囲気で焼結し、焼
結リングについては、外径を機械カロエし。
A ring with a height of 10 m and a rectangular parallelepiped with dimensions of 10 strips x 10 strips x 55 strips were both sintered at about 114L1°C in a reducing atmosphere, and the outer diameter of the sintered ring was mechanically etched.

真円度(1,020WILに揃えたもの第1表 表面処
理後のリング外径の真円匿(瓢)第2表 表面処理後の
衝撃値(K9/ m )第3表 形成された窒化物層の
平均の厚さくμm)以上の結果から1次のことがわかる
Roundness (aligned to 1,020WIL Table 1) Roundness of ring outer diameter after surface treatment (roundness) Table 2 Impact value after surface treatment (K9/m) Table 3 Formed nitride The average thickness of the layer is μm) From the above results, the first order can be understood.

水蒸気処理しないで、そのまま窒化処理すると第3表記
載のように部品内部まで窒化物層が形成されるため、第
1表から明きらかなように、T4e円度の悪化が著しい
。これに対して、窒化処理の前に水蒸気処理する本発明
の方法によれば、窒化が部品内部まで進まない(第3表
参照)ので、焼結部品でも変形ケおさえることができる
(第1表参照)。同様に、衝撃値の低下に対しでも、第
2表記載のように、これを大いに防止する効果がある。
If the parts are nitrided without steam treatment, a nitride layer is formed inside the parts as shown in Table 3, and as is clear from Table 1, the T4e roundness is significantly deteriorated. On the other hand, according to the method of the present invention in which steam treatment is performed before nitriding, nitriding does not progress to the inside of the part (see Table 3), so even sintered parts can be prevented from deforming (see Table 1). reference). Similarly, as shown in Table 2, there is an effect of greatly preventing a decrease in impact value.

このように、この発明によって焼結部品のガス9化処理
が可能となった点で、この発明の工業的意義は太きい。
As described above, the present invention has great industrial significance in that it has made it possible to perform gas 9ization treatment on sintered parts.

出願人 三菱金穐株式会社 代理人 富 1)和 夫外1名Applicant: Mitsubishi Kinko Co., Ltd. Agent: Tomi 1) Kazu, 1 other person

Claims (1)

【特許請求の範囲】[Claims] 鉄系焼結部品の表面窒化を行う際に、まず鉄系焼結部品
を水蒸気雰囲気中で加熱処理し1部品表面部に酸化被膜
を形成させた後、アンモニアガス雰囲気中で加熱し0表
面窒化を行うことを特徴とする鉄系焼結部品の表面処理
法。
When performing surface nitriding on iron-based sintered parts, first heat-treat the iron-based sintered part in a steam atmosphere to form an oxide film on the surface of the part, then heat it in an ammonia gas atmosphere to completely nitride the surface. A surface treatment method for iron-based sintered parts.
JP3263384A 1984-02-24 1984-02-24 Surface treatment method for iron-based sintered parts Pending JPS60177174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3263384A JPS60177174A (en) 1984-02-24 1984-02-24 Surface treatment method for iron-based sintered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3263384A JPS60177174A (en) 1984-02-24 1984-02-24 Surface treatment method for iron-based sintered parts

Publications (1)

Publication Number Publication Date
JPS60177174A true JPS60177174A (en) 1985-09-11

Family

ID=12364252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3263384A Pending JPS60177174A (en) 1984-02-24 1984-02-24 Surface treatment method for iron-based sintered parts

Country Status (1)

Country Link
JP (1) JPS60177174A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228929A (en) * 1990-05-15 1993-07-20 Wladyslaw Panasiuk Thermochemical treatment of machinery components for improved corrosion resistance
JP2013533379A (en) * 2010-06-04 2013-08-22 ホガナス アクチボラグ (パブル) Nitrided sintered steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312735A (en) * 1976-07-22 1978-02-04 Midland Ross Corp Surface hardening of metallic sintered compacts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312735A (en) * 1976-07-22 1978-02-04 Midland Ross Corp Surface hardening of metallic sintered compacts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228929A (en) * 1990-05-15 1993-07-20 Wladyslaw Panasiuk Thermochemical treatment of machinery components for improved corrosion resistance
JP2013533379A (en) * 2010-06-04 2013-08-22 ホガナス アクチボラグ (パブル) Nitrided sintered steel

Similar Documents

Publication Publication Date Title
DE69507977T2 (en) Chromium-containing aluminized steel alloys and process for their manufacture
JPH0571661B2 (en)
US4738730A (en) Steam sealing for nitrogen treated ferrous part
CN111906315A (en) Powder metallurgy method
CN110919007A (en) Manufacturing process of 17-4PH stainless steel MIM part
JP2005503488A (en) Heat treatment method for workpieces made of steel that is stable against temperature changes
JPS60177174A (en) Surface treatment method for iron-based sintered parts
JP2015025161A (en) Surface hardening method of iron or iron alloy and apparatus of the same, and surface hardening structure of iron or iron alloy
JPH0371508B2 (en)
JP3193320B2 (en) Heat treatment method for machine parts
JP3677460B2 (en) Steel manufacturing method
JPH0649924B2 (en) Method for applying a nitride layer to a member made of titanium and titanium alloy
JPS60177175A (en) Surface treatment method for iron-based sintered parts
JPH02200758A (en) Annealing method for titanium alloy ultra-thin coil
US5292555A (en) Process for applying nitride layers to titanium
JPS6169957A (en) Posttreatment in nitriding
SE1650705A1 (en) Method of treating a workpiece comprising a titanium metal and object
JPS59123714A (en) Production of steel material where temperature at which coarse grain of austenite crystal is formed is high
KR100526389B1 (en) Method for heat treatment in gasnitriding
JPS5839733A (en) Enhancing method for resistance of austenite stainless steel pipe to oxidation due to steam at high temperature
JPH04187704A (en) Manufacture of aluminum powder compression compact
KR100522919B1 (en) Low distortion treatment method of high speed tool steel with corrosion-resistance and abrasion-resistance
JP2003013199A (en) Method for modifying surface of steel material
JPH04198403A (en) Method for steam-treating powder sintered product
JPS62103303A (en) Manufacturing method of metal chromium rolled body