[go: up one dir, main page]

JPS60176999A - Substrate crystal material of group iii-v compound semiconductor having half insulating property and its preparation - Google Patents

Substrate crystal material of group iii-v compound semiconductor having half insulating property and its preparation

Info

Publication number
JPS60176999A
JPS60176999A JP59011237A JP1123784A JPS60176999A JP S60176999 A JPS60176999 A JP S60176999A JP 59011237 A JP59011237 A JP 59011237A JP 1123784 A JP1123784 A JP 1123784A JP S60176999 A JPS60176999 A JP S60176999A
Authority
JP
Japan
Prior art keywords
compensating
compound semiconductor
crystal material
impurity
substrate crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59011237A
Other languages
Japanese (ja)
Inventor
Seiji Shinoyama
篠山 誠二
Akinori Katsui
勝井 明憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59011237A priority Critical patent/JPS60176999A/en
Publication of JPS60176999A publication Critical patent/JPS60176999A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain easily the titled material having high specific resistance value in the whole length of substrate crystal material, by adding simultaneously two or more compensating impurities when a remaining carrier is compensated and group III-V compound semiconductor having half insulating properties is grown. CONSTITUTION:In a method wherein a remaining carrier is compensated and group III-V compound semiconductor having half insulating properties is grown, a compensating impurity to form one deep carrier trap level and at least one of other compensating impurities other than this compensating impurity are simultaneously added. This method can be applied to preparation of half-insulating substrate crystal material of InP by liquid capsule pulling method, other substrate crystal material of half-insulating compound semiconductor such as GaAs, Gap, etc. In Bridgman method, etc. besides the liquid capsule pulling method, one compensating impurity to form a deep carrier trap level and at least one of other compensating impurities are selected, and added simultaneously.

Description

【発明の詳細な説明】 技術分野 本発明は、リン化インジウム(InP)、ヒ化ガリウム
(GaAJおよびリン化ガリウム(G、ZP)等の半絶
縁性化合物半導体基板単結晶材料及びその製造方法に関
するものである。
Detailed Description of the Invention Technical Field The present invention relates to semi-insulating compound semiconductor single crystal materials such as indium phosphide (InP), gallium arsenide (GaAJ and gallium phosphide (G, ZP)) and methods for manufacturing the same. It is something.

従来技術 リン化インジウム(InP)、ヒ化ガリウム(GaAr
)およびリン化ガリウム(GaP)等の■−■族半導体
に104Ωに以上の半絶縁性特性を付与した材料は集積
回路用の基板材料として布片である。これらはCr、 
Fa、 Co等のドーピングによって深いキャリアトラ
ップ準位を作り、これにより残留キャリアを補償するこ
とによシ得られている。即ち、これらの補償用不純物を
ドープしない状態で存在する残留キャリア濃度以上の補
償用不純物をドープすることにより実現されてきた。し
かしながら、F、。
Conventional technology Indium phosphide (InP), gallium arsenide (GaAr
) and gallium phosphide (GaP) and other semiconductors of the ■-■ group with semi-insulating properties of 10@4 Ω or more are used as cloth pieces as substrate materials for integrated circuits. These are Cr,
This is achieved by creating a deep carrier trap level by doping with Fa, Co, etc. and compensating for residual carriers. That is, this has been achieved by doping with compensating impurities that have a concentration higher than the residual carrier concentration that exists in a state where these compensating impurities are not doped. However, F.

Cr、 Co等の不純物は母結晶への固溶濃度が低いこ
と(例えばInPでは10”〜10”/’Cm′l) 
、ドープ前の結晶の残留キャリア濃度も十分低くするこ
とは困難(例え′ばInPでは5 X 10′5/cm
”以上)なことから。
Impurities such as Cr and Co should have low solid solution concentrations in the mother crystal (for example, 10" to 10"/'Cm'l for InP).
, it is difficult to make the residual carrier concentration in the crystal before doping sufficiently low (for example, in InP, 5 x 10'5/cm
``From the above).

補償させるためのドーピングの濃度範囲が狭く。The doping concentration range for compensation is narrow.

製造のための不純物濃度制御、使用可能な結晶の歩留シ
等の点で問題があった。
There were problems in terms of impurity concentration control during production, yield of usable crystals, etc.

発明の目的 本発明はこれらの従来の問題を解決するためになされた
もので、製造のための不純物濃度制御や使用可能な結晶
の歩留シの問題を解決した半絶縁性■−■族化合物半導
体基板結晶材料及びその製造方法を提供することを目的
になされたものである。
Purpose of the Invention The present invention was made to solve these conventional problems, and is a semi-insulating ■-■ group compound that solves the problems of impurity concentration control for manufacturing and yield of usable crystals. The purpose of this invention is to provide a semiconductor substrate crystal material and a method for manufacturing the same.

発明の構成と作用 本発明は上記目的が、従来の一種の補償用不純物の添加
と異なシ、二種以上の補償用不純物の同時添加を行うこ
とによシ達成できることを見いだしてなされたものであ
シ、以下にInPの場合を例にとり2本発、−の構成と
作用を詳細に説明する。
Structure and Function of the Invention The present invention has been made based on the discovery that the above object can be achieved by simultaneously adding two or more types of compensating impurities, which is different from the conventional addition of one type of compensating impurity. Below, the structure and operation of the two beams will be explained in detail, taking the case of InP as an example.

本発明における補償用不純物の選定には、大きく分けて
2つの手法がある。1つはFa、 Cr、 Co等の深
いトラップを作る不ml)物の中から2種類以上を補償
用不純物として選ぶ方法でアシ、もう一つは浅い準位を
作る不純物と深いトラップを作る不純物を同時に含む様
に2種類以上を補償用不純物として選ぶ方法である。後
者の場合の例として。
There are roughly two methods for selecting compensating impurities in the present invention. One is the method of selecting two or more types of impurities as compensation impurities from among impurities that create deep traps such as Fa, Cr, Co, etc., and the other is impurities that create shallow levels and impurities that create deep traps. In this method, two or more types of impurities are selected as compensating impurities so as to simultaneously contain the following. As an example of the latter case.

F−を同時に添加する組合わせが挙けられる。A combination in which F- is added at the same time is included.

即ち、前者は補償のための深いトラップ密度の上限を2
種類以上の不純物を添加することにょ9増大させる方法
であシ、後者は、浅い不純物準位によシー担残留キャリ
ア濃度を低減させておき。
That is, the former sets the upper limit of the deep trap density for compensation to 2
This is a method of increasing the amount of impurities by adding more than one type of impurity. In the latter method, the concentration of residual carriers is reduced by a shallow impurity level.

この残留キャリアを深いトラップを作る不純物によシ補
償する方法である。
This method compensates for these residual carriers by impurities that create deep traps.

前者の例として第1図にInPにFgとCrを同時に添
加した場合の効果の例を示す。同じ純度の原料的100
gを用い、液体カプセル引上法(融液表面にガラスの成
分をもつ液体をかぶせ蒸発を防いで引上げる。J 、B
JfULLIN 等Journal af Cryst
alGrowth vol、6,41968.281 
)にょシ育成した結晶の比抵抗値の引上軸方向の分布を
示したもので9曲線AはF#を原料に対し、0.01u
tチ添加した場合。
As an example of the former, FIG. 1 shows an example of the effect when Fg and Cr are added to InP at the same time. 100% raw material with the same purity
Liquid capsule pulling method (covering the surface of the melt with a liquid containing a glass component to prevent evaporation and pulling it up. J, B
Journal af Cryst
alGrowth vol, 6, 41968.281
9) Curve A shows the distribution of resistivity values of the grown crystals in the direction of the pulling axis.
When t is added.

曲線BはFe D、01wt%とcr′f:0.1’5
wt%同時に添加した場合である。図の横軸は1−gで
示しである。ここでgは同化率を示す。曲線Aではgが
0.4以下では補償しきれずに低い比抵抗値を示してい
る。
Curve B is Fe D, 01wt% and cr'f: 0.1'5
This is the case when wt% is added at the same time. The horizontal axis of the figure is indicated by 1-g. Here, g indicates the assimilation rate. In curve A, when g is 0.4 or less, it cannot be fully compensated for and shows a low specific resistance value.

′一方1曲%Bでは結晶のトップ(g=0) がらほぼ
一様に107Ωcm 以上の良好な半絶縁性を示してい
る。
'On the other hand, at 1% B, the top of the crystal (g=0) almost uniformly exhibits good semi-insulating properties of 107 Ωcm or more.

第2図は、ZnとF#を同時に添加した場合の例をオす
。曲線A′は図1の曲線Aと同じデータを示しテイル。
FIG. 2 shows an example in which Zn and F# are added at the same time. Curve A' shows the same data as curve A in FIG.

曲線B′はFgをD−01wt%とZnを4X10−5
wt%同時に添加した場合でオリ、この場合も結晶、の
トップ(g=0)から107Ωcm以上のほぼ一様な高
い比抵抗値を示した。
Curve B' shows Fg at D-01wt% and Zn at 4X10-5.
When wt% was added at the same time, a substantially uniform high specific resistance value of 107 Ωcm or more was exhibited from the top of the crystal (g=0) in this case as well.

なお1本発明について説明の都合上液体カプセル引上法
によるInPの半絶縁性基板結晶材料について示したが
1本発明は同様にGaAsやGaP等の他の半絶縁性化
合物半導体基板結晶材料の製造にも適用できるものであ
り、また、 m−v族化合物半導体結晶の製法は、前記
液体カプセル引上法に限るものでないことはもちろんで
あシ、ブリッジマン法等他の公知の各種■−■族化合物
半導体基板結晶材料の製造過程において、1mの深いキ
ャリアトラップ準位を形成する補償用不純物と該補償用
不純物以外の少なくとも1種の他の補償用不純物を前記
選定手法のいずれかにょシ選定し、これらを同時に添加
すれば良い。
For convenience of explanation, the present invention has been described using a semi-insulating substrate crystal material of InP using the liquid capsule pulling method, but the present invention is also applicable to the production of other semi-insulating compound semiconductor substrate crystal materials such as GaAs and GaP. In addition, the method for producing m-v group compound semiconductor crystals is of course not limited to the liquid capsule pulling method described above, but also various other known methods such as the Bridgman method. In the manufacturing process of the group compound semiconductor substrate crystal material, a compensating impurity forming a 1 m deep carrier trap level and at least one other compensating impurity other than the compensating impurity are selected by one of the above selection methods. However, these may be added at the same time.

発明の効果 以上、具体例にょシ説明したように1本発明において二
種類以上の補償用不純物を同時に添加することによ凱比
較的容易に従来よシ高い比抵抗値を基板結晶材料の全長
に渡って実現することができ、半絶縁性化合物半導体基
板結晶材料及びその製造方法として極めて有用である。
More than the effects of the invention, as explained in the specific example, in the present invention, by adding two or more types of compensating impurities at the same time, it is relatively easy to achieve a higher specific resistance value than in the past over the entire length of the substrate crystal material. It is extremely useful as a semi-insulating compound semiconductor substrate crystal material and its manufacturing method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来及び本発明の一実施例のInP単結晶の
引上軸に添った比抵抗値分布を示す図。 第2図は、従来及び本発明の他の実施例のInP単結晶
の引上軸に添った比抵抗値分布を示す図。 A、A’ ・=曲線(I’s O,01wtf= 添加
) E ・・・曲線(−Fg O,01wt%、 Cr
 O,13wt5A同時添加)Bl ・、、曲線(Pg
 O,01wt%、 Zn 4x 1CJ−’wt%同
時添加)。 特許出願人 日本電信電話公社 代理人 弁理士玉蟲久五部 (外2名)第1図 第?図
FIG. 1 is a diagram showing specific resistance value distributions along the pulling axis of InP single crystals of conventional and one embodiment of the present invention. FIG. 2 is a diagram showing specific resistance value distributions along the pulling axis of InP single crystals of conventional and other embodiments of the present invention. A, A' ・= curve (I's O, 01 wtf= addition) E ... curve (-Fg O, 01 wt%, Cr
O, 13wt5A simultaneous addition) Bl ・,, curve (Pg
O, 01 wt%, Zn 4x 1CJ-'wt% simultaneous addition). Patent applicant Nippon Telegraph and Telephone Public Corporation agent Patent attorney Gobe Tamamushi (2 others) Figure 1 ? figure

Claims (1)

【特許請求の範囲】 (]> 1種の深い一キャリアトラップ準位を形成する
補償用不純物と該補償用不純物以外の少なくとも1種の
他の補償用不純物が共にドープされていることを特徴と
する半絶縁性m −v族化合物半導体基板結晶材料。 (2) 残留キャリアを補償して半絶縁性■−■族化合
物半導体結晶を育成する方法において、1種の深いキャ
リアトラップ準位を形成する補償用不紛物と該補償用不
純物以外の少なくとも1種の他の補償用不純物を同時に
添加することを特徴とする半絶縁性■−■族化合物半導
体基板結晶材料の製造方法。
[Claims] (]> A compensation impurity forming one type of deep one-carrier trap level and at least one other compensation impurity other than the compensation impurity are doped together. (2) In a method of growing a semi-insulating m-v group compound semiconductor crystal by compensating for residual carriers, a type of deep carrier trap level is formed. 1. A method for producing a semi-insulating ■-■ group compound semiconductor substrate crystal material, which comprises simultaneously adding a compensating impurity and at least one other compensating impurity other than the compensating impurity.
JP59011237A 1984-01-24 1984-01-24 Substrate crystal material of group iii-v compound semiconductor having half insulating property and its preparation Pending JPS60176999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59011237A JPS60176999A (en) 1984-01-24 1984-01-24 Substrate crystal material of group iii-v compound semiconductor having half insulating property and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59011237A JPS60176999A (en) 1984-01-24 1984-01-24 Substrate crystal material of group iii-v compound semiconductor having half insulating property and its preparation

Publications (1)

Publication Number Publication Date
JPS60176999A true JPS60176999A (en) 1985-09-11

Family

ID=11772324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59011237A Pending JPS60176999A (en) 1984-01-24 1984-01-24 Substrate crystal material of group iii-v compound semiconductor having half insulating property and its preparation

Country Status (1)

Country Link
JP (1) JPS60176999A (en)

Similar Documents

Publication Publication Date Title
DE3514294A1 (en) SEMI-INSULATING GALLIUM ARSENIDE CRYSTALS DOPED WITH INDIUM AND METHOD FOR THEIR PRODUCTION
JPS60176999A (en) Substrate crystal material of group iii-v compound semiconductor having half insulating property and its preparation
CA1234036A (en) Lpe growth on group iii-v compound semiconductor substrates containing phosphorus
US7192481B2 (en) Radiation detector
JPS62275099A (en) Semi-insulating indium phosphide single crystal
JPH0543679B2 (en)
JPS6325297A (en) Manufacture of single crystal 3-5 semi-insulating substance by doping
JPS58156598A (en) Method for crystal growth
JPS62256793A (en) Method for pulling compound semiconductor single crystal
JP2736343B2 (en) Method for producing semi-insulating InP single crystal
JPS61111998A (en) Manufacture of single crystal of gallium arsenide
JPH0529639B2 (en)
JPS6296388A (en) Quartz glass crucible for pulling up silicon single crystal
JPS6355195A (en) Method for growing inorganic compound single crystal
JPH0670973B2 (en) Compound semiconductor epitaxial wafer
CA1271393A (en) Method of manufacturing a semi-insulating single crystal of gallium indium arsenide
JPS61156821A (en) Liquid phase growth method
JPH0524117B2 (en)
RU2035799C1 (en) Heterostructure based on indium arsenide-antimonide-bismuthide and process of its manufacture
JP3451658B2 (en) Growth method of mixed crystal semiconductor single crystal
JPS626336B2 (en)
RU2064541C1 (en) Method of preparing heterostructures on the basis of semiconducting compounds a*991*991*991b*99v
EP0263543A1 (en) Process for producing a single crystal of a III-V semiconducting compound using the Czochralski method by liquid encapsulation
JPS5587423A (en) Semiconductor device
JPS62246899A (en) Method for growing compound semiconductor crystal