JPS6017660A - Hot-water supplier - Google Patents
Hot-water supplierInfo
- Publication number
- JPS6017660A JPS6017660A JP58126501A JP12650183A JPS6017660A JP S6017660 A JPS6017660 A JP S6017660A JP 58126501 A JP58126501 A JP 58126501A JP 12650183 A JP12650183 A JP 12650183A JP S6017660 A JPS6017660 A JP S6017660A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- metal hydride
- heat medium
- pressure side
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 58
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000001257 hydrogen Substances 0.000 claims abstract description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 12
- 229910052987 metal hydride Inorganic materials 0.000 claims description 42
- 150000004681 metal hydrides Chemical class 0.000 claims description 41
- 238000010438 heat treatment Methods 0.000 claims description 10
- 239000000969 carrier Substances 0.000 claims 1
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 239000002184 metal Substances 0.000 abstract description 7
- 229910052751 metal Inorganic materials 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 4
- 150000002739 metals Chemical class 0.000 abstract 3
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- 150000004678 hydrides Chemical class 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- -1 T10 metal hydride Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B17/00—Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
- F25B17/12—Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type using desorption of hydrogen from a hydride
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D17/00—Domestic hot-water supply systems
- F24D17/02—Domestic hot-water supply systems using heat pumps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は金属水素化物と水素ガスとの可逆的な結合と解
離にともなう熱の出入りを利用した給湯器に関し、給湯
はもちろんのこと、家庭暖房用あるいは産業用など、広
く熱を利用する分野全般に利用できるものである。[Detailed Description of the Invention] Industrial Application Field The present invention relates to a water heater that utilizes the heat exchange caused by the reversible bonding and dissociation of metal hydrides and hydrogen gas, and is used not only for hot water supply but also for home heating. Alternatively, it can be used in a wide range of fields that use heat, such as industrial use.
従来例の構成とその問題点
従来、電気、ガス、石油などを燃料とする各種の給湯器
が広く実用化されている。たとえば、75℃程度の給湯
のだめのボイラー、暖房用ボイラー。2. Description of the Related Art Conventional configurations and their problems Conventionally, various types of water heaters that use electricity, gas, oil, etc. as fuel have been widely put into practical use. For example, a boiler for hot water supply and a heating boiler with a temperature of about 75℃.
発電用ボイラーなど、各種用途、燃料に応じて開発され
ている。これらは比較的安価で、しかも便利であるが、
燃料の高価格時代とともに熱効率の向」−が今後ますま
す要求される。しかしなから、たとえば燃焼などによっ
て与えられた熱量の約90%が有効な熱量として利用で
きるのみであり、従来技術では、100%以上はあり得
なかった。They are developed for various uses and fuels, such as boilers for power generation. These are relatively cheap and convenient, but
With the era of high fuel prices, there will be an increasing demand for improved thermal efficiency. However, for example, only about 90% of the heat given by combustion etc. can be used as effective heat, and with the prior art, it was impossible to use more than 100%.
一方、最近、電動圧縮式や吸収式などのヒートポンプ技
術も進んで利用されるようになった。これらを用いれば
、外気熱や地熱などの比較的低温の熱源から熱をくみ上
げ、比較的高温の熱とする(−とによっ″C1利用価値
を高め、有効熱h1の増加か可能と石−って、上記の効
率か理論士、100φ以上と乙、り得る4、ととるか、
上記のようf(%、動圧縮入−\・エンノン圧縮式ヒー
トポンプ、1./、−、Q佳連続式の吸収式ヒ−トポン
プは熱媒や吸収液を循環させるため、ポンプや制御装置
が複雑、高価となり、よ/(圧縮式では、騒音があるな
との欠点が残されている。On the other hand, recently, heat pump technologies such as electric compression type and absorption type have been increasingly used. If these are used, heat can be pumped up from a relatively low-temperature heat source such as outside air heat or geothermal heat, and converted into relatively high-temperature heat (by doing so, it is possible to increase the utilization value of C1 and increase the effective heat h1). So, the above efficiency is 100φ or more, which is 4, which is possible.
As shown above, f(%, dynamic compression entry -\/ennon compression heat pump, 1./, -, Q) Continuous absorption heat pumps circulate the heat medium and absorption liquid, so the pump and control device are It is complicated and expensive, and the compression type still has the disadvantage of being noisy.
そこで、上記の欠点を改善する/でめに、本発明者らは
先に構造が比較的簡単で、加えた熱量以上の有効熱量が
得られ、省エネルギー型である金属水素化物を用いたヒ
ートポンプを提案している。Therefore, in order to improve the above-mentioned drawbacks, the present inventors developed a heat pump using a metal hydride, which has a relatively simple structure, can obtain an effective amount of heat greater than the amount of added heat, and is energy-saving. is suggesting.
しかし、従来のこの装置は、金属水素化物の反応熱を給
湯に利用するだめの熱伝達用熱媒系統が低圧側金属水素
化物用と、高圧側金属水素化物用とが共通であり、熱媒
体として、一般には給湯用の水、そのものを用いてい/
こ。このだめ高温(例えC1,180℃)=1で加熱す
る低圧側熱媒体は高7品の水蒸気となり、高圧なため、
機械的衝撃と高圧破壊の危険性を伴なうと共に、熱交換
効率も低かった0そ(−て、弁の切換えに、し−・て、
低圧側と高圧側を選択するため、出湯温度の差か犬さく
、著しい脈流となるばかりか、ブPなとの故障イ、多か
った○
発明の目的
本発明の目的V」1.3F衡圧のy71.なる金属水素
化物毎に各々別個の熱媒体系路を配備−Jろこと(・(
−よ−・て、金属水素化物利用ヒートポンプ式給湯器の
前記問題点を解決し、安全て、長寿命、熱利用効率の高
い給湯器を提供することである。However, in this conventional device, the heat transfer heat medium system that uses the reaction heat of the metal hydride for hot water supply is common for the low-pressure side metal hydride and the high-pressure side metal hydride. Generally, the water used for hot water supply is used as such.
child. The low-pressure heat medium heated at this high temperature (for example, C1, 180°C) = 1 becomes high-grade water vapor, and is at high pressure, so
In addition to the risk of mechanical shock and high-pressure breakdown, the heat exchange efficiency was also low.
Since the low-pressure side and high-pressure side are selected, not only the difference in outlet temperature causes turbulence and significant pulsation, but also many malfunctions of the valve P are caused. pressure y71. A separate heat transfer path is provided for each metal hydride.
Therefore, it is an object of the present invention to solve the above-mentioned problems of heat pump type water heaters using metal hydrides, and to provide a water heater that is safe, has a long life, and has high heat utilization efficiency.
発明の構成
本発明はモ衡圧の異なった2種類以上の金属水素化物の
水素吸収、放出反応に伴なう反応熱を利用するもので、
熱伝導効率の高い機構を具備し、配管や弁なとの各部の
仕様に無理かなく、安全で、長寿命であり、ンステトと
じで高い給湯能)Jを有する給湯器である。峰の結果、
給湯温度は、従来のヒートポンプでは60’C寸でであ
−)/このv=ru。Structure of the Invention The present invention utilizes the reaction heat accompanying the hydrogen absorption and release reaction of two or more metal hydrides having different moschiometric pressures.
It is a water heater that is equipped with a mechanism with high heat conduction efficiency, has reasonable specifications for each part such as piping and valves, is safe, has a long life, and has a high hot water supply capacity with a single unit. The result of the peak,
The hot water supply temperature in a conventional heat pump is 60'C/this v=ru.
て約76℃と高く、従−)で利用可能分野か広い3、作
用例を記せけ、例えば、・く−すの+’;:”l焼を間
欠的に行ない、燃焼時には、加熱されていない高平衡汁
側の金属水素化物で発生ずる水素吸収熱を引用し7、燃
焼を中断した時は加熱側の金属水素化物の水素吸収熱お
よびその與熱を利用する。従って、加熱は間欠的である
が、得られる給湯は約75℃で連続的であって、燃料の
大幅な減少か可能となるO
実施例の説明
第1図はガスバーナを熱源とじ7.27!l′i類の金
属水素化物を用いた給湯器の一実施例の断1m概略図を
示す。図中1は、低圧側金属水素化物2として、T10
.3 + ZrO,7+”1.210r0.61 co
o、2を約1.8に9入れた金属水素化物容器であり、
3は高圧側金属水素化物(M2R)4とLCT lo
、 e 、 Z ro 、4. Mn1.2Cr o
、4. COo 、2を約3.8に1)入れた金属水素
化物容器である。これら容器1および2の内部には、そ
れぞれ熱交換器12および13か配設さオ〜t1熱交換
器12の中には高温用熱媒体としてのシリコーンlイル
14が、熱交換器13の中には低温用熱媒体としての水
15が各々流れる。シリコグオイル14の流路は、3方
切換弁8と8′ににつ−C1加熱槽θ側と貯湯槽7側に
間欠的に切換えられる。加熱槽6には、都市ガス16を
熱源とし、ノ・−す5によって、間欠的あるいは連続的
に、約180’に加熱されたオイルか6(!たされ、と
のオーイルによ−・て、低圧側金属水素化物2を間欠的
に加熱シ1.ている。10.11は共に熱媒体循環用ポ
ンプてあり、ポンプ1oは、加熱槽6あるいは貯湯槽7
・\熱媒体を輸送し寸だポンプ11←1高圧用金属水素
化物が発熱反応を行なっている時のみ、貯湯槽T・\熱
媒体を輸送する。金属水素化物容器1と3中の水素は低
圧側金属水素化物の温度のト1;に対応し7て、可逆的
に水素移動管9を通−・て移動1゛る。−:ltだファ
ン21は、水素が高圧(Ill金属水素化物4から低圧
側金属水素化物2へ移動する際にの力動作し、水素化物
4の吸熱効果に、1、る(:〜、11度の低]ζを抑制
している。−走た22,2乞は多孔質フィルターで、金
属水素化物粉末か流失−するのをl!/j 11シてい
る。The temperature is as high as about 76℃, and it can be used in a wide range of fields.3. Give an example of its action, for example: ・Kusu no +'; When combustion is interrupted, the heat of hydrogen absorption of the metal hydride on the heating side and its heat are used. Therefore, heating is performed intermittently. However, the resulting hot water supply is continuous at approximately 75°C, making it possible to significantly reduce the amount of fuel used. A 1-meter cross-section schematic diagram of an example of a water heater using a hydride is shown. In the figure, 1 is a T10 metal hydride as the low-pressure side metal hydride 2.
.. 3 + ZrO, 7+”1.210r0.61 co
It is a metal hydride container containing approximately 1.8 to 9 o, 2,
3 is the high pressure side metal hydride (M2R) 4 and LCT lo
, e, Z ro, 4. Mn1.2Cr o
,4. It is a metal hydride container containing 1) COo, 2 to about 3.8. Heat exchangers 12 and 13 are disposed inside these containers 1 and 2, respectively. Water 15 as a low-temperature heat medium flows through each. The flow path of the silicone oil 14 is intermittently switched between the -C1 heating tank θ side and the hot water storage tank 7 side by means of the three-way switching valves 8 and 8'. The heating tank 6 uses city gas 16 as a heat source, and is intermittently or continuously heated to about 180° by oil 6 (! , the metal hydride 2 on the low pressure side is intermittently heated. 10 and 11 are both heat medium circulation pumps, and the pump 1o is the heating tank 6 or the hot water storage tank 7.
・\Pump 11 to transport the heat medium←1 Only when the high-pressure metal hydride is undergoing an exothermic reaction, the hot water storage tank T\transports the heat medium. The hydrogen in the metal hydride containers 1 and 3 is reversibly transferred through the hydrogen transfer tube 9 in response to the temperature of the metal hydride on the low pressure side. The fan 21 operates with force when hydrogen moves from the high-pressure metal hydride 4 to the low-pressure metal hydride 2, and due to the endothermic effect of the hydride 4, the fan 21 [low degree] ζ is suppressed.- The run 22,2 is a porous filter, which prevents the metal hydride powder from being washed away.
17と18は共に貯湯槽7中に設(#)られた熱交換器
で市水導入口19から入−りだ水を交互に加熱する働き
をしている。このように導入された市水け、主として2
種類の金属水素化物により、交互に加熱されて約75℃
の湯となり、2系統の独立した熱媒伝達系によって、輸
送され、貯湯槽7に貯湯され、必要時に温水供給口2o
から外部へ供給される。Both 17 and 18 are heat exchangers installed in the hot water tank 7 and serve to alternately heat the water that enters from the city water inlet 19. The municipal drainage introduced in this way is mainly 2
Heated alternately to approximately 75°C with different metal hydrides.
The hot water is transported by two independent heat transfer systems, stored in the hot water storage tank 7, and supplied to the hot water supply port 2o when necessary.
is supplied to the outside.
第2図は、第1図に示した実施例の金属水素化物の作動
状態を示しだ水素圧一温度線図であり、バーナから18
0℃の熱を供給し、低圧側金属水素化物(MlH)と高
圧側金属水素化物(M2R)から約75℃の温水を連続
的に得る反応を示している。FIG. 2 is a hydrogen pressure-temperature diagram showing the operating state of the metal hydride of the example shown in FIG.
It shows a reaction in which heat at 0°C is supplied and hot water at about 75°C is continuously obtained from the metal hydride on the low pressure side (MlH) and the metal hydride on the high pressure side (M2R).
寸だ、第3図は、本実施例の各部の運転モードの一例を
示した図である。ガスバーナの燃焼は約30秒間隔であ
り、18ol/hの連続給湯で20℃の水が何度寸で上
列するかを調べた結果、図のように低圧金属水素化物側
と高圧金属水素化物側とを交互に切換えることにより、
約75℃の湯か連続的に得られた。FIG. 3 is a diagram showing an example of the operation mode of each part of this embodiment. The combustion of the gas burner is approximately 30 seconds apart, and as a result of investigating how many degrees of water at 20°C rises to the top during continuous hot water supply at a rate of 18 ol/h, we found that the low-pressure metal hydride side and the high-pressure metal hydride side as shown in the figure. By switching alternately between the
Hot water of approximately 75°C was obtained continuously.
熱交換器17によって最高約75℃の熱か、壕だ、熱交
換器18によって、最高180℃の熱が供給されるが、
第1図の如く貯湯槽を設ければこの温度差は実用上問題
ではない。The heat exchanger 17 supplies heat of up to about 75°C, and the heat exchanger 18 supplies heat of up to 180°C.
If a hot water storage tank is provided as shown in FIG. 1, this temperature difference will not be a practical problem.
本願発明は、実施例に示したように、低圧側金属水素化
物と、高圧側金属水素化物とで、別個の熱媒体伝送系路
を採用しているため、従来のもののように、給湯に使用
する水目体の温度が上下することはなく、あるいは水が
沸騰して高圧、高温の水蒸気となることもない。また、
熱媒体循環用ポンプ、配管および3方切換弁などの温度
変化も、従来と比較して大幅に小さくなっているため、
安全性や信頼性の点で著しく特性が向上した。As shown in the examples, the present invention employs separate heat medium transmission lines for the low-pressure side metal hydride and the high-pressure side metal hydride. The temperature of the body of the water does not rise or fall, nor does the water boil into high-pressure, high-temperature water vapor. Also,
Temperature changes in the heat medium circulation pump, piping, three-way switching valve, etc. are also significantly smaller than in the past.
Characteristics have significantly improved in terms of safety and reliability.
本給湯器を約1000時間繰返し使用した場合の性能比
較において、本発明は熱媒伝達経路において、はとんど
故障が見られず給湯能力も低下せず、長寿命化が達成で
きだが、従来のものは熱媒体のもれや、ポンプの作動不
能など、故障が発生した。才だ、燃焼させた都市ガスの
総発熱量に対して、給湯として利用できる熱量の比(c
op)は約1.3となり、従来の装置より約10%向上
し、省エネルギーが達成された。In a performance comparison when this water heater was repeatedly used for approximately 1000 hours, the present invention was able to achieve a longer service life with almost no failures in the heat medium transfer path and no decrease in hot water supply capacity. Some malfunctions occurred, such as heating medium leaking or pumps not working. The ratio of the amount of heat that can be used for hot water supply to the total amount of heat generated from the combusted city gas (c
op) was approximately 1.3, an improvement of approximately 10% over the conventional device, and energy savings were achieved.
寸だ、前記実施例では、低圧側と高圧側釜1種iH種の
金属水素化物を各々1個の容器に入れて使用したが、低
圧側2錘、高圧側2種計4個で作動させたり、あるいは
中間の水素圧を有する第3の種類の金属水素化物を使用
し、低圧側と中間圧側、中間圧側と高圧側を前記2種類
の場合と同様に作動させ、これらを組合せた金属水素化
物ヒートポンプ式給湯器も、本発明の展開として当然効
果大なるものである。寸だ、貯湯槽において加熱された
湯を直接あるいは間接的に用いて暖房することもできる
。In the above example, the metal hydride of the low pressure side and the high pressure side were placed in one container, respectively, but it was operated with 2 spindles on the low pressure side and 2 types on the high pressure side, totaling 4. Alternatively, a third type of metal hydride having an intermediate hydrogen pressure is used, and the low pressure side and the intermediate pressure side, and the intermediate pressure side and the high pressure side are operated in the same manner as the above two types, and a combination of these metal hydrogen Naturally, chemical heat pump type water heaters are also highly effective as a development of the present invention. In fact, it is also possible to use hot water heated in a hot water tank directly or indirectly to heat the room.
発明の効果
以」二のように、本発明は、個々の金属水素化物毎に、
別個の独立しだ熱媒輸送系路を設け、温度に応じた最適
な熱媒体を使用しうるため、熱媒体温度の上下差や、圧
力差が小さく、熱媒体のガス化も起こらない。従って、
(1)装置を構成している各部の部品に故障が少なく、
システムとして長寿命である。Effects of the Invention As described in Section 2, the present invention provides the following effects for each individual metal hydride:
Since a separate and independent heat medium transport system is provided and the optimum heat medium depending on the temperature can be used, the difference in the temperature of the heat medium and the pressure difference are small, and gasification of the heat medium does not occur. Therefore, (1) there are fewer failures in the parts that make up the device;
The system has a long lifespan.
■ 安全性が高い。■ Highly safe.
(3)熱伝達効率が高く、高い給湯能力か得られる。(3) High heat transfer efficiency and high hot water supply capacity.
(4)成績係数が大きい・(4) Large coefficient of performance
第1図は本発明給湯器の一実施例の断面概略(ヌ1、第
2図は第1図給湯器の金属水素化物の作動状態を示しだ
水素圧一温度線図、第3図は第1図の実施例の各部の運
転モード図である。
2・・・・・低圧(l]11金属水素化物、4・・・・
・高圧側金属水素化物、6・・・・・・加熱槽、7・・
・・貯湯槽、12゜13.17,18・・・・・・熱交
換器、14・・・低温用熱媒体としての水、15・・・
・・高温用熱媒体としてのシリコンオイル。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図
一一−A膚(でン
温度 J′OOy丁 (K)−
第 3 図
口烈出力Figure 1 is a cross-sectional schematic diagram of one embodiment of the water heater of the present invention. It is an operation mode diagram of each part of the example of Fig. 1. 2...Low pressure (l) 11 Metal hydride, 4...
・High pressure side metal hydride, 6... Heating tank, 7...
...Hot water tank, 12゜13.17,18...Heat exchanger, 14...Water as a heat medium for low temperature, 15...
...Silicone oil as a heat medium for high temperatures. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 11 - Temperature J'OOy (K) - Figure 3
Claims (3)
る容器と、前記容器を相互に連結する手段と、低平衡圧
側金属水素化物を間けっ的に加熱する手段と、貯湯槽と
、前記容器と前記貯湯槽間を熱結合する熱媒回路を具備
し、低圧側金属水素化物と前記貯湯槽間および高平衡圧
側金属水素化物と前記貯湯槽間を別個の熱媒回路とする
ことを特徴とする給湯器。(1) A container containing a metal hydride and having different hydrogen equilibrium pressures, a means for interconnecting the containers, a means for intermittently heating the metal hydride on the low equilibrium pressure side, a hot water storage tank, and the container. and a heat medium circuit for thermally coupling between the metal hydride and the hot water storage tank, and separate heat medium circuits are provided between the metal hydride on the low pressure side and the hot water storage tank and between the metal hydride on the high equilibrium pressure side and the hot water storage tank. water heater.
なる物質からなることを特徴とする特許請求の範囲第1
項記載の給湯器。(2) Claim 1, characterized in that the heat carriers flowing through mutually independent heat carrier paths are made of different materials.
Water heater as described in section.
か水であることを特徴とする特許請求の範囲第2項記載
の給湯器0(3) Water heater 0 according to claim 2, characterized in that the heat medium flowing in the heat medium system path for the high-pressure metal hydride is water.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58126501A JPS6017660A (en) | 1983-07-12 | 1983-07-12 | Hot-water supplier |
US06/612,784 US4589479A (en) | 1983-05-23 | 1984-05-22 | Hot water supply unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58126501A JPS6017660A (en) | 1983-07-12 | 1983-07-12 | Hot-water supplier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6017660A true JPS6017660A (en) | 1985-01-29 |
JPH0419457B2 JPH0419457B2 (en) | 1992-03-30 |
Family
ID=14936767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58126501A Granted JPS6017660A (en) | 1983-05-23 | 1983-07-12 | Hot-water supplier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6017660A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4939223A (en) * | 1988-10-05 | 1990-07-03 | Nippon Steel Chemical Co., Ltd. | Silicon-modified polyimides |
KR100386470B1 (en) * | 2000-10-20 | 2003-06-02 | 한국에너지기술연구원 | Heat pump system using a metal hydride and apparatus |
JP2009525493A (en) * | 2005-12-30 | 2009-07-09 | データロジック・エス・ペー・アー | Laser light beam focusing apparatus and method |
-
1983
- 1983-07-12 JP JP58126501A patent/JPS6017660A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4939223A (en) * | 1988-10-05 | 1990-07-03 | Nippon Steel Chemical Co., Ltd. | Silicon-modified polyimides |
KR100386470B1 (en) * | 2000-10-20 | 2003-06-02 | 한국에너지기술연구원 | Heat pump system using a metal hydride and apparatus |
JP2009525493A (en) * | 2005-12-30 | 2009-07-09 | データロジック・エス・ペー・アー | Laser light beam focusing apparatus and method |
Also Published As
Publication number | Publication date |
---|---|
JPH0419457B2 (en) | 1992-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4143814A (en) | Control and transfer of energy | |
CN112146074A (en) | Fused salt energy storage thermal power frequency modulation and peak shaving system and method | |
JP6011280B2 (en) | Hot water storage water heater | |
JPS6017660A (en) | Hot-water supplier | |
US4589479A (en) | Hot water supply unit | |
KR100832851B1 (en) | Heat storage system for latent heat storage type fuel cell using phase change material | |
CN212132376U (en) | High-temperature heat storage and release system | |
CN201166447Y (en) | Hot water generating device and heat pump hot water system with same | |
CN110173749B (en) | Off-peak electricity heat storage house type heating system | |
JP2004111209A (en) | Fuel cell power generation system | |
CN117248979A (en) | Multi-temperature-zone heat storage power generation system and operation method | |
CN114198904B (en) | Gas Heating Hot Water Boiler | |
CN113587662B (en) | Aluminum electrolytic cell waste heat recovery system and electrolytic aluminum system | |
JP6647030B2 (en) | Pure hydrogen type hot water storage unit | |
JP5982635B2 (en) | Heat pump water heater | |
JPH0412379B2 (en) | ||
CN215983289U (en) | Circulating system for realizing cold, heat and electricity triple supply by coupling biomass energy with solar energy | |
JPS59219648A (en) | Hot water supply system | |
CN117419274B (en) | A hydrogen storage system with vortex tube, control method and control device | |
JPS59215536A (en) | Hot water supply device | |
CN112880229A (en) | Circulating system for realizing cold, heat and electricity triple supply by coupling biomass energy with solar energy | |
CN221648758U (en) | Air-energy instant water heater | |
CN222228636U (en) | Peak regulating system based on fused salt heat storage coupling nuclear power | |
CN214009333U (en) | Heat supply heating device based on solar energy coupling electricity auxiliary direct heating energy storage | |
JPH02110263A (en) | Heat-utilizing system utilizing hydrogen storage alloy and operation thereof |