[go: up one dir, main page]

JPS60174966A - Magnetic sensor - Google Patents

Magnetic sensor

Info

Publication number
JPS60174966A
JPS60174966A JP59031812A JP3181284A JPS60174966A JP S60174966 A JPS60174966 A JP S60174966A JP 59031812 A JP59031812 A JP 59031812A JP 3181284 A JP3181284 A JP 3181284A JP S60174966 A JPS60174966 A JP S60174966A
Authority
JP
Japan
Prior art keywords
magnetic
detection head
voltage
point
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59031812A
Other languages
Japanese (ja)
Inventor
Shinichi Kamewaka
亀若 真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macome Corp
Original Assignee
Macome Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macome Corp filed Critical Macome Corp
Priority to JP59031812A priority Critical patent/JPS60174966A/en
Publication of JPS60174966A publication Critical patent/JPS60174966A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To obtain a magnetic sensor simple in the manufacture of a magnetic head by arranging the magnetic head so as to run a high frequency current through a ferromagnetic fine wire. CONSTITUTION:As an external magnetic field H is applied to a magnetic detection head 1, a magnetic flux passes through a ferromagnetic fine wire 3 with a high magnetic permeability so that the flux density in the magnetic body 3 rises to lower the magnetic permeability. The change in the magnetic permeability causes the impedance of a detection head 1 to lower with a drop in the magnetic permeability. Thus, the voltage at the point (b) becomes such that the output voltage [voltage at the point (a)] of an oscillator 6 is resistance-divided with a resistance R1 and the impedance of the detection head 1. Therefore, the voltage at the point (b) is detected and rectified with a detection diode D1, a smoothing capacitor C and a smoothing resistance R2 to take out the voltage at the point (c) as output.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、外部磁場(磁界)を検出しうる磁気センサー
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a magnetic sensor capable of detecting an external magnetic field.

(従来技術とその問題点) 従来、磁気センサーとして、可飽和コアに巻線を施゛し
外部磁場によシ可飽和コアが飽和して巻線のりアクタン
ス変化により磁束密度を検出するものがある。この磁気
センサーは、感度がよく安定度もよいが、巻線を施して
いるため比較的長い2次元の検出範囲を持つものは製作
が難しく、もっばら点検出の素子として使われている。
(Prior art and its problems) Conventionally, there is a magnetic sensor that detects magnetic flux density by winding a saturable core, saturating the saturable core by an external magnetic field, and detecting the change in actance of the winding. . Although this magnetic sensor has good sensitivity and stability, it is difficult to manufacture one with a relatively long two-dimensional detection range because it is wound with wire, so it is mainly used as an element for point detection.

また、巻線を施すこと自体コイルの層短絡などが起こシ
易く、そのため生産の自動化が比較的困難でコストが高
くなる欠点がある。
In addition, winding itself tends to cause layer short circuits in the coil, which makes automation of production relatively difficult and increases costs.

ほかに、強磁性体の薄膜に外部磁場を加えると強磁性体
の抵抗が変化する磁気抵抗効果を利用した磁気抵抗素子
が従来からある。これは、構造は本発明と似ているが、
磁気抵抗係数が大変小さく感度が悪い欠点がある。その
ため、強磁性体の膜厚を非常に薄くしなければならず、
比較的長い2次元の磁気センサーを栴成することは困難
であシ、やはシ点検出の素子の段階にある。
In addition, there are conventional magnetoresistive elements that utilize the magnetoresistive effect, in which the resistance of a ferromagnetic material changes when an external magnetic field is applied to a thin film of ferromagnetic material. This is similar in structure to the present invention, but
The disadvantage is that the magnetic resistance coefficient is very small and the sensitivity is poor. Therefore, the film thickness of the ferromagnetic material must be made extremely thin.
It is difficult to create a relatively long two-dimensional magnetic sensor, and it is still at the stage of a point detection element.

(発明の目的) 本発明は、上述の点に鑑み、2次元化が容易で磁気検出
ヘッドの製作が簡単な(コストが安い)磁気センサーを
提供しようとするものである◎(発明の概要) 本発明は、プラスチック又はセラミック等の基板上に7
4−マロイ等の強磁性体の細線をジグデグ状に形成し、
この強磁性体細線の両端又は中点などに高周波電流を流
すだめの電極を設ける。このように構成した磁気検出ヘ
ッドに高周波電流(例えば50kHz −IMHz)を
流し、検波整流したものを出力として取出すようにした
。本発明の磁気センサーは、位置計測を伸しめ、クレー
ン、移動台車、工作機械のテーブル等の位置決め、・臂
レッドの通過(又は在・不在)の検出、ワイヤローノ等
の傷検出などに用いられる。
(Object of the Invention) In view of the above-mentioned points, the present invention aims to provide a magnetic sensor that can be easily made two-dimensional and whose magnetic detection head is easy to manufacture (low cost). (Summary of the Invention) The present invention provides a method for forming 7
4-A thin wire of ferromagnetic material such as Malloy is formed into a zigdeg shape,
Electrodes for flowing high-frequency current are provided at both ends or at the midpoint of this thin ferromagnetic wire. A high frequency current (for example, 50 kHz to IMHz) was passed through the magnetic detection head constructed in this way, and the detected rectified result was taken out as an output. The magnetic sensor of the present invention extends position measurement and is used for positioning cranes, mobile carts, tables of machine tools, etc., detecting passage (or presence/absence) of arm reds, detecting scratches on wire irons, etc.

(発明の実施例) 第1−1図は、本発明に用いる磁気検出ヘッドの第1の
例を示す斜視図である。図において、(1)は磁気検出
ヘッドを全体として示し、(2)はプラスチック又はセ
ラミック等の基板、(3)はノや一マロイ等の強磁性体
の細線、(4)及び(5)は細線(3)の両端に設けた
電極(端子)、Hは外部磁界を示す。細線(3)は、例
えば01 ミリ角又は直径OJミリ程度のものとし、適
当な方法によシ基板(2)上にジグザグ状に形成する。
(Embodiment of the Invention) FIG. 1-1 is a perspective view showing a first example of a magnetic detection head used in the present invention. In the figure, (1) shows the magnetic detection head as a whole, (2) is a substrate made of plastic or ceramic, (3) is a thin wire made of ferromagnetic material such as ferromagnet or mono-malloy, (4) and (5) are Electrodes (terminals) provided at both ends of the thin wire (3), H indicate an external magnetic field. The thin wire (3) is, for example, about 0.1 mm square or OJ mm in diameter, and is formed in a zigzag shape on the substrate (2) by an appropriate method.

第1−2図は、第1−1図の磁気検出ヘッドを用いる磁
気センサーの代表的構成を示す回路図である。図におい
て、(6)は50 kHz〜IMHzの発振器、R1は
抵抗、Dlは検波用ダイオード、Cは平滑用コンデンサ
、R2は平滑用抵抗を示す。検出ヘッド(1)に外部磁
界Hが加わると、磁束は透磁率μの高い強磁性体の内部
を通シ、この磁性体の内部の磁束密度Bが高まシ透磁率
μが低くなる。その状況を第1−3図、第1−4図に示
す。透磁率μの変化に伴う検出ヘッド(1)のインピー
ダンス変化は第1−5図のようになシ、透磁率μの低下
に従って検出ヘッドのインピーダンスも低下してゆく。
FIG. 1-2 is a circuit diagram showing a typical configuration of a magnetic sensor using the magnetic detection head of FIG. 1-1. In the figure, (6) is a 50 kHz to IMHz oscillator, R1 is a resistor, Dl is a detection diode, C is a smoothing capacitor, and R2 is a smoothing resistor. When an external magnetic field H is applied to the detection head (1), the magnetic flux passes through the inside of a ferromagnetic material with a high magnetic permeability μ, the magnetic flux density B inside this magnetic material increases, and the magnetic permeability μ becomes low. The situation is shown in Figures 1-3 and 1-4. The impedance of the detection head (1) changes as the magnetic permeability μ changes, as shown in FIGS. 1-5, and as the magnetic permeability μ decreases, the impedance of the detection head also decreases.

したがって、第1−2図■点の電圧は、発振器(6)の
出力電圧(0点の電圧)を抵抗R1と検出ヘッド(1)
のインピーダンスとで抵抗分割したものとなシ、0点の
電圧を検波整流した0点の出方電圧Vは第1−β図のよ
うになる。
Therefore, the voltage at point ■ in FIG.
The output voltage V at the 0 point obtained by detecting and rectifying the voltage at the 0 point is as shown in Fig. 1-β.

次に、第1−5図にづいて詳細に説明する・2゜R,L
をそれぞれ検出ヘッド(1)のインピーダンス、純抵抗
、自己インダクタンスとすると、インピーダンス2は次
のように表わせる。
Next, a detailed explanation will be given with reference to Figures 1-5.・2°R,L
Assuming that are the impedance, pure resistance, and self-inductance of the detection head (1), respectively, the impedance 2 can be expressed as follows.

Z=R+L 純抵抗Rは、表皮効果にょる5kin depth (
表皮厚さ)δの関数として次のように表わせる。
Z=R+L Pure resistance R is 5kin depth (
It can be expressed as a function of skin thickness) δ as follows.

L=強磁性体線の全表 ρ=強磁性体線の抵抗率 8−強磁性体線に電流が流れる面積 a=表皮厚さ f−強磁性体線に流れる電流の周波数 μ冨強磁性体線の透磁率 r士強磁性体線の半径 自己インダクタンスLは、次のように表わせる。L=Full table of ferromagnetic wires ρ = resistivity of ferromagnetic wire 8 - Area through which current flows in a ferromagnetic wire a = epidermal thickness f - frequency of the current flowing in the ferromagnetic wire Magnetic permeability of μ-rich ferromagnetic wire Radius of ferromagnetic wire Self-inductance L can be expressed as follows.

r 上式よ、り、RILとも透磁率μの低下に伴い減少して
ゆくことが分かる。L = 04m 、ρ=55μ亡。
r From the above equation, it can be seen that both RIL decreases as the magnetic permeability μ decreases. L = 04m, ρ = 55μ.

r = 6 X 10−5mとすると、第1−5図に示
す透磁率−インピーダンス曲線が得られる。
If r = 6 x 10-5 m, the permeability-impedance curve shown in Figures 1-5 is obtained.

第2−1図は、第1−2図の磁気センサーの応用例を示
す回路図である。本例は、第1−2図の出力の後に電圧
比較回路を含むスイッチンーグ回路(7)を付加し、磁
気近接スイッチとして用いるものである。第2−2図は
その動作説明図であシ、図中Voはスレッショルド・レ
ベルを示す。
FIG. 2-1 is a circuit diagram showing an application example of the magnetic sensor shown in FIG. 1-2. In this example, a switching circuit (7) including a voltage comparison circuit is added after the output shown in FIGS. 1-2, and is used as a magnetic proximity switch. FIG. 2-2 is an explanatory diagram of the operation, and Vo in the figure indicates a threshold level.

第2−3図は、第1−2図の磁気センサーの他の応用例
を示す略図である。本例は、磁気検出ヘッド(1)を長
く構成して・やレッド等の移動物体の通過を検出しうる
ようにしたものである。図において、(8ンは移動)や
レット、(9)はノ母レット(8)の裏面に取付けた磁
石、Q□は非磁性体の搬送ベルトを示す〇このように構
成すると、・母レッド(8)がどのような向きであって
も検出ヘッドのダートを通過するときに検出できる◎ 第3−1図は、本発明に用いる磁気検出ヘッドの第2の
例を示すもので同図Aは斜視図、同図Bは側面図である
。上述の検出ヘッドでは外部磁界HのN極とS極の判別
が不可能であったが、検出ヘッド(1)の近傍に適当な
強さのバイアス磁石αめを設けることによシ、外部磁界
の極性の判別が可能となる。第3−2図は、その動作説
明図である。
Figures 2-3 are schematic diagrams showing other applications of the magnetic sensor of Figures 1-2. In this example, the magnetic detection head (1) is configured to be long so as to be able to detect the passage of a moving object such as red or red. In the figure, (8 is moving) and let, (9) is the magnet attached to the back of the motherlet (8), and Q is the non-magnetic conveyor belt. With this configuration, the mother red No matter what direction (8) is, it can be detected when it passes through the dirt of the detection head. ◎ Figure 3-1 shows a second example of the magnetic detection head used in the present invention. is a perspective view, and B is a side view. With the above-mentioned detection head, it was impossible to distinguish between the N pole and the S pole of the external magnetic field H, but by providing a bias magnet α of an appropriate strength near the detection head (1), the external magnetic field can be reduced. It becomes possible to determine the polarity of FIG. 3-2 is an explanatory diagram of the operation.

図中HOはバイアス磁界を示す。このようなバイアス磁
石を設けた検出ヘッドは、N極とS極を判別できる点検
出、線或いは2次元の磁気検出素子として用いられる。
In the figure, HO indicates a bias magnetic field. A detection head provided with such a bias magnet is used as a point detection, line or two-dimensional magnetic detection element capable of distinguishing between north and south poles.

第4−1図は、本発明に用いる磁気検出ヘッドの第3の
例を示す斜視図である。本例は、磁石のN極、S極、無
着磁部の組合わせによる3値の符号化情報をもつ磁石板
又は磁気カードの照合器として用いうるように構成した
ものである。本例では、検出ヘッド(1)は例えば4つ
の部分に分けられ、この各部分に対応してN極、S極及
び無着磁部で符号化(図ではN1無、NX5)されたバ
イアス磁石板又は磁気カード(6)を設ける。検出ヘッ
ド(1)の各部分は、それぞれビット1.ビット2.ビ
ット3.ビット4と呼んでよい。被検出物0は、バイア
ス磁石板0櫓と対応して反対の極性で着磁された磁石板
である。第4−2図は、その動作を示す説明図である。
FIG. 4-1 is a perspective view showing a third example of the magnetic detection head used in the present invention. This example is configured so that it can be used as a verifier for a magnetic plate or magnetic card, which has three-value encoded information based on a combination of the north pole, south pole, and non-magnetized part of the magnet. In this example, the detection head (1) is divided into, for example, four parts, and each part has a bias magnet coded with an N pole, a S pole, and a non-magnetized part (N1 none, NX5 in the figure). A board or magnetic card (6) is provided. Each part of the detection head (1) has a bit 1. Bit 2. Bit 3. It can be called bit 4. The object to be detected 0 is a magnet plate magnetized with the opposite polarity in correspondence with the bias magnet plate 0 turret. FIG. 4-2 is an explanatory diagram showing the operation.

検出対象の磁石板0埠が検出ヘッド(1)に対向して存
在しない場合、各ビット部はバイアス磁石板αりによシ
磁化され、検出ヘッド全体のインピーダンスが低下して
いる。このとき、被検出磁石板(至)を検出ヘッド(1
)のバイアス磁石板α■の反対側において検出ヘッド(
1)と対向させると、被検出磁石板(至)の極性がバイ
アス磁石板(2)による各ビット部の磁化を打ち消すよ
うな向きであれば、検出ヘッドは、全体として外部磁界
による磁化がない状態になシ最もインピーダンスが高く
なる〇こうすると、検出ヘッドは、バイアス磁石板αつ
の着磁符号と反対の着磁符号をもった磁石板α→の近接
によってのみ高インピーダンスとなシ、高インピーダン
スになったときスイッチング回路が働くようにスイッチ
ング回路の電圧比較器のスレッショルド・レベルを設定
することによシ、被検出磁石板α埠の照合出力を得るこ
とができる。
When the magnet plate 0 to be detected does not exist opposite the detection head (1), each bit portion is magnetized by the bias magnet plate α, and the impedance of the entire detection head is reduced. At this time, the detected magnet plate (to) is moved to the detection head (1
) on the opposite side of the bias magnet plate α■.
1), if the polarity of the detected magnet plate (to) is such that it cancels the magnetization of each bit part by the bias magnet plate (2), the detection head as a whole will not be magnetized by the external magnetic field. In this state, the impedance is highest in the state 〇 In this way, the detection head becomes high impedance only by the proximity of the magnet plate α → which has the opposite magnetization sign to the bias magnet plate α. By setting the threshold level of the voltage comparator of the switching circuit so that the switching circuit operates when

第4−3図は上記照合器の回路図で、第4−4図は第4
−3図■点における電圧レベルと照合一致の度合との関
係を示す説明図である。被検出磁石板aIを搬送用の・
やレットに取付は着磁符号を検出することにょシ、ノぐ
レットの搬送ラインにおける仕分けが可能となる。また
、磁石板(イ)としてプラスチックと磁性粉末を練シ合
わせた磁気カードを用いれ―、磁気カード照合器を構成
できる。
Figure 4-3 is a circuit diagram of the above-mentioned collation device;
FIG. 3 is an explanatory diagram showing the relationship between the voltage level at point ■ in Figure 3 and the degree of matching. For transporting the detected magnet plate aI.
When attached to the noglet, it is necessary to detect the magnetization code, which enables sorting in the conveyor line of the noglet. In addition, a magnetic card collation machine can be constructed by using a magnetic card made by kneading plastic and magnetic powder as the magnetic plate (a).

第5−1図は、本発明に用いる磁気検出ヘッドの第4の
例を示す斜視図である。本例は、検出ヘッドに中点を設
けてバランス回路を構成し、外部磁界Hに対して差動的
に働かせ、検出ヘッド全体に平行に加わる外部磁界に対
して影響を受けにくくしたものである。第5−2図は、
その電気的接続を示す回路図である。同図において、z
lは第5−1図の電極の一〇間のインピーダンス、z2
は電極■−◎間のインピーダンスを表わす・第5−3図
は、第5−2図のの点及び0点における電圧A′及びB
′の変化を示す。図中、XI 、X2は第5−1図のX
i 、X2にそれぞれ対応する。すなわち、外部磁界H
を第5−1図に示すようにX方向に沿って移動させると
、g5−2図の出力は、gg5−3図のA′とB′の電
圧差として得られ第5−4図のようになる。その出力は
、外部磁界Hが検出ヘッドの中心点◎に対して左右同じ
に加えられるとO電圧、左側のの一■間に大きく加えら
れると正電圧、右側の■−◎間に大きく加えられると負
電圧となる。第5−5図は、検出ヘッドを上記の0点で
左右2つのヘツ、ド素子(11)及び(12)に分割し
た場合を示す。この場合、電極◎とOは短絡して第5−
2図の0点に、■、■は同図のの、0点にそれぞれ接続
する。こうすると、第5−6図に示すように磁石α→が
X方向に涜って移動するとき、第5−4図と同様な出力
が得られる。
FIG. 5-1 is a perspective view showing a fourth example of the magnetic detection head used in the present invention. In this example, a balance circuit is constructed by providing a center point on the detection head, which works differentially with respect to the external magnetic field H, making it less susceptible to the external magnetic field applied in parallel to the entire detection head. . Figure 5-2 shows
It is a circuit diagram showing the electrical connection. In the same figure, z
l is the impedance between the electrodes in Figure 5-1, z2
represents the impedance between the electrodes
′ shows the change in . In the figure, XI and X2 are X in Figure 5-1.
i and X2, respectively. That is, the external magnetic field H
When is moved along the X direction as shown in Figure 5-1, the output in Figure g5-2 is obtained as the voltage difference between A' and B' in Figure 5-3, and as shown in Figure 5-4. become. The output is O voltage when the external magnetic field H is applied equally on both sides of the center point ◎ of the detection head, a positive voltage when a large amount is applied between ◎ on the left side, and a positive voltage when a large amount is applied between ◎ and ◎ on the right side. becomes a negative voltage. FIG. 5-5 shows a case where the detection head is divided into two left and right head elements (11) and (12) at the above-mentioned 0 point. In this case, electrodes ◎ and O are short-circuited and the 5th-
Connect ■ and ■ to the 0 point in Figure 2, respectively. In this way, when the magnet α→ moves in the X direction as shown in FIG. 5-6, an output similar to that shown in FIG. 5-4 can be obtained.

このようにバランス回路を用いた磁気センサーは、大変
安゛定で感度がよく、移動物体に適当な磁石を付けるこ
とによシ高精度の位置決めを行なうことが可能である。
A magnetic sensor using a balance circuit as described above is very stable and sensitive, and can perform highly accurate positioning by attaching an appropriate magnet to a moving object.

第5−7図にその一例を示す。An example is shown in Figures 5-7.

図中、(ロ)は磁石板を示す。磁気検出ヘッド(1)は
、グラスチック・フィルムで強磁性体細線をサンドイツ
チにする構造にすると、Q、5.m程度の厚さとしうる
。出力の0点は特に温度特性や電源電圧変化などに対し
て安定であシ、この点で位置決めを行なうようにするの
が最も高精度となる。こうすると、厚みの薄9い位置検
出装置となシ、ロデットの関節部の角度位置決めなどに
適する。
In the figure, (b) indicates a magnet plate. The magnetic detection head (1) has a structure in which a thin ferromagnetic wire is sandwiched between glass films. The thickness can be approximately 1.0 m. The zero output point is particularly stable against changes in temperature characteristics and power supply voltage, and positioning at this point provides the highest accuracy. This makes it suitable for a thin position detection device and for determining the angular position of a rodet joint.

第6−1図は、−上述した差動アナログ出力タイプの磁
気センサーの応用例を示す斜視図である。
FIG. 6-1 is a perspective view showing an application example of the above-described differential analog output type magnetic sensor.

同図において、第5−5図と対応する部分に同一符号を
付しである。αQは、ワイヤロープで多数の鋼の素線を
撚シ合わせて構成されている。ワイヤロープαQは、長
時間の使用によって疲労し、素線に少こしずつひび割れ
或いは断、線を生じて遂にはワイヤロープそのものが断
線する。かような事態になる前に素碧の断線や疲労状態
を検査し、ワイヤロープの断線を未然に防ぐ必要がある
。本例は、この目的に合うように構成されたものである
。ワイヤロープを軸方向に磁化すると、素線の断線個所
やかなシ疲労している部分で透磁率の急激な変化があり
、その部分からワイヤロープの外側に比較的強い漏れ磁
束が発生することは、よく知られている。従来、この漏
れ磁束を検出する方法として、ワイヤロープに誘導コイ
ルを巻き、この誘導コイルとワイヤロープを相対運動さ
せて漏れ磁束による磁束密度変化を誘導コイルにょシ誘
導起電圧として検出する方法がある。この場合、ワイヤ
ロープと誘導コイルは比較的早い速度で相対運動させる
必要がちシ、静止状態に近い低速での検出は不可能であ
る。この方式で静止状態に近い低速検出をするには電磁
石を用いワイヤロープに交流磁化を施す必要があるが、
消費電力が大きく装置が大きくなくなるなどの欠点があ
る。そこで、感磁性素子を複数個ワイヤロープの周囲に
配置し漏れ磁束を検出する方式が考えられたが、ワイヤ
ロープは撚シ線であるため表面の凹凸が著しく磁化によ
る磁束の流れも複雑で、感磁性素子の配置を撚シのピッ
チに合わせるか、或いはできるだけ密に多数の感磁性素
子を配置するなどしてS/N比(漏れ磁束による信号と
撚シに起因する磁束の乱れによる信号との比)を高める
工夫がなされた。
In this figure, parts corresponding to those in FIG. 5-5 are given the same reference numerals. αQ is constructed by twisting together a large number of steel wires using wire rope. The wire rope αQ becomes fatigued by long-term use, and the wires gradually crack or break, forming lines, and eventually the wire rope itself breaks. Before such a situation occurs, it is necessary to inspect the wire rope for wire breakage and fatigue to prevent wire rope breakage. The present example is constructed to suit this purpose. When a wire rope is magnetized in the axial direction, there is a sudden change in magnetic permeability at the point where the strands are broken or where the wire is fatigued, and a relatively strong leakage magnetic flux is generated from that point to the outside of the wire rope. ,well known. Conventionally, a method for detecting this leakage magnetic flux is to wind an induction coil around a wire rope, move the induction coil and the wire rope relative to each other, and detect changes in magnetic flux density due to the leakage flux as electromotive force induced in the induction coil. . In this case, the wire rope and the induction coil must be moved relative to each other at relatively high speeds, and detection at low speeds close to stationary conditions is not possible. In order to perform low-speed detection near a stationary state using this method, it is necessary to apply AC magnetization to the wire rope using an electromagnet.
There are drawbacks such as high power consumption and the size of the device. Therefore, a method of detecting leakage magnetic flux by placing multiple magnetically sensitive elements around the wire rope was considered, but since the wire rope is a twisted wire, the surface is extremely uneven and the flow of magnetic flux due to magnetization is complicated. By adjusting the arrangement of the magnetically sensitive elements to the pitch of the twist, or by arranging a large number of magnetically sensitive elements as densely as possible, the S/N ratio (signal due to leakage magnetic flux and signal due to disturbance of magnetic flux caused by twisting) can be improved. Efforts were made to increase the ratio of

しかし、感磁性素子が狭い範囲の磁束を検出子る点検出
素子である限!1.87N比の向上には限界があった。
However, as long as the magnetically sensitive element is a point detection element that detects magnetic flux in a narrow range! There was a limit to the improvement of the 1.87N ratio.

第6−1図の例は、かかる点検出素子を用いたワイヤロ
ープ・テスターの欠点を克服するものである。 ゛ 本例では、薄く構成した検出ヘッド素子(11)。
The example of Figure 6-1 overcomes the drawbacks of wire rope testers using such point sensing elements.゛In this example, the detection head element (11) is configured thinly.

(12)を図のようにワイヤロープα・の周囲に配置す
る。検出素子(11)と(1−)は、ワイヤロープの軸
方向の磁界に対して差動的に働く構成とする。ワイヤロ
ープの移動に伴い素線の断線による漏れ磁束が検出素子
(ll) 、(1g )の中を通過すると、検出、素子
(11)の所では正の出力電圧、検出素子(12)の所
では負の出力電圧を得る。その様子を第6−2及び第6
−3図に示す。同図において、αのはワイヤロープ磁化
用の永久磁石、Qlは漏れ看磁束を示す。本例によれば
、検出素子(Il) −(1g )が差動で働きワイヤ
ロープの周囲に沿って連続した感磁性を示すので、ワイ
ヤロープの撚シによる漏れ磁束は#1ぼ完全に平均化さ
れ、またワイヤロープの振動による漏れ磁束の検出感度
差も平均化されて、素線の断線個所や疲労個所を極めて
よいS/N比で検出することが可能となる。
(12) is placed around the wire rope α as shown in the figure. The detection elements (11) and (1-) are configured to act differentially with respect to the magnetic field in the axial direction of the wire rope. When leakage magnetic flux due to wire breakage passes through the detection elements (11) and (1g) as the wire rope moves, a positive output voltage is detected at the detection element (11), and a positive output voltage is generated at the detection element (12). So we get a negative output voltage. The situation is shown in Parts 6-2 and 6.
- Shown in Figure 3. In the figure, α indicates a permanent magnet for wire rope magnetization, and Ql indicates leakage magnetic flux. According to this example, since the detection element (Il) - (1g) works differentially and exhibits continuous magnetic sensitivity along the periphery of the wire rope, the leakage magnetic flux due to the twisting of the wire rope is almost completely averaged. Furthermore, the difference in detection sensitivity of leakage magnetic flux due to vibration of the wire rope is also averaged, making it possible to detect wire breakage and fatigue points with an extremely good S/N ratio.

第7−1図は、第5−1図の磁気検出ヘッドを長い(5
00cym〜1m)線状に形成した場合の例を示す図で
ある。この場合、強磁性体細線(3)の折返しピッチが
これまでのように等ピッチであれば、検出ヘッド(1)
の全長に比べ磁石αりの幅が小さいとき、磁石α)によ
シ磁化される部分はごく一部となシ、磁化による検出ヘ
ッド(1)のインピーダンス低下は一定のままの状態が
続き、磁石αつの位置と出力電圧の関係は同図の下方に
示すようになる。細線(3)の折返しピッチを第7−2
図に示すように検出ヘッド(1)の中心から両側に向っ
て徐々に粗から密゛になるように構成すると、磁石α場
によシ磁化される部分の幅は一定で娶るが、折返しピッ
チの密な所ではインピーダンスの低下が大きく、同図の
下方に示すように検出ヘッド(1)の全長に亘って直線
的な単調増加特性を得ることができる。このような磁気
センサーは、磁石を取付けた可動物の位置計測の外、重
量物のサー?位置決めに好適である。
Figure 7-1 shows the magnetic detection head of Figure 5-1 with a long
00cym to 1m) is a diagram showing an example of a case where it is formed in a linear shape. In this case, if the folding pitch of the ferromagnetic thin wire (3) is equal as before, the detection head (1)
When the width of the magnet α is small compared to the total length of the magnet α, only a small portion is magnetized by the magnet α), and the impedance reduction of the detection head (1) due to magnetization remains constant. The relationship between the position of the magnet α and the output voltage is shown in the lower part of the figure. The folding pitch of thin wire (3) is 7-2.
As shown in the figure, if the detection head (1) is configured so that it gradually becomes denser from coarser to both sides from the center, the width of the part magnetized by the magnetic α field is constant, but the folding pitch is The impedance decreases greatly in areas where the detection head (1) is dense, and as shown in the lower part of the figure, a linear monotonically increasing characteristic can be obtained over the entire length of the detection head (1). In addition to measuring the position of movable objects with attached magnets, such magnetic sensors can also be used to monitor heavy objects. Suitable for positioning.

第7−3図は、その応用例を示す略図である。本例は、
クレーンなどの重量移動体6!メに第7−2図の如き磁
気検出ヘッド(1)を取付け、各停止位置に磁石(20
1) 、 (202)、(20g )、・−・を埋設し
たものである。第7−4図は、第7−2図の検出ヘッド
(1)の他の応用例を示す略図である、。本例は、無人
台車(財)にこの検出ヘッド(1)を取付け、床面又は
床下に埋設した帯状のゴム磁石に)に無人台車(イ)の
走行軸センターが一致するようにサーがじて、無人台車
を誘導するものである。
Figure 7-3 is a schematic diagram showing an example of its application. In this example,
Heavy moving objects such as cranes 6! A magnetic detection head (1) as shown in Figure 7-2 is attached to the main body, and a magnet (20
1), (202), (20g), ... are buried. FIG. 7-4 is a schematic diagram showing another example of application of the detection head (1) of FIG. 7-2. In this example, this detection head (1) is attached to an unmanned trolley (foundation), and the sensor is adjusted so that the center of the traveling axis of the unmanned trolley (a) matches the belt-shaped rubber magnet buried on the floor or under the floor. This guides the unmanned trolley.

本発明による磁気センサーは、磁気スケールの読取シに
も使用することができる。第8−1図は、磁気スケール
の一例を示す略図である。本例は、保持力の高いバリウ
ム・フェライト等の磁性粉と塩化ビニール等の樹脂を混
合したゴム磁石又はプラスチック磁石(財)を鉄の基台
(ハ)に貼り合わせ声ものに、N極とS極を交互に着磁
して格子縞の磁気目盛を0.8龍ピツチ(λ)で構成し
たものである。第8−2図は、本発明を磁気スケール読
取シヘッドに適用した例を示す平面図である。本例では
、磁気センサーを2組用いそれぞれチャンネル1(C)
11’)及びチャンネル2 (CH2)で表わし、図示
のような折返しピッチで構成した。いま、チャンネ・ル
ーのみを考え検出ヘッド(1)を第8−3図のように磁
気スケール上に近接して移動させると、検出ヘッド■−
◎間のインピーダンスは、第8−4図の実線で示すよう
に、磁気スケールの目盛ピッチλに対する(第8−4図
の点線)。したがって、チャンネル1のセンサー出力と
して、第8−5図に示す信号が得られる。チャンネル2
についても同様に得られるが、チャンネル2は、チャン
ネルlの位相に−はど遅れた位相の正弦波を出力する。
The magnetic sensor according to the invention can also be used for reading magnetic scales. FIG. 8-1 is a schematic diagram showing an example of a magnetic scale. In this example, a rubber magnet or a plastic magnet (goods) made of a mixture of magnetic powder such as barium ferrite with high holding power and resin such as vinyl chloride is attached to an iron base (c). The S poles are alternately magnetized and the checkered magnetic scale is constructed at 0.8 dragon pitch (λ). FIG. 8-2 is a plan view showing an example in which the present invention is applied to a magnetic scale reading head. In this example, we use two sets of magnetic sensors, each with channel 1 (C).
11') and channel 2 (CH2), and was configured with a folding pitch as shown in the figure. Now, considering only the channels and moving the detection head (1) close to the magnetic scale as shown in Figure 8-3, the detection head ■-
The impedance between ◎ and ◎ is shown by the solid line in Fig. 8-4, with respect to the scale pitch λ of the magnetic scale (dotted line in Fig. 8-4). Therefore, the signal shown in FIG. 8-5 is obtained as the channel 1 sensor output. channel 2
Similarly, channel 2 outputs a sine wave whose phase lags the phase of channel l by -.

っまシ、本発明磁気センサーを2組用いることによシ、
90度位相差の2相のスケール目盛読取出力が得らたと
きQ、4111の周期をもつことになJ)、1/4内挿
によシ分解能QJfil+の磁気スケール製置を構成で
きる。
However, by using two sets of magnetic sensors of the present invention,
When a two-phase scale reading output with a phase difference of 90 degrees is obtained, it has a period of Q and 4111 (J), and a magnetic scale with a resolution of QJfil+ can be constructed by 1/4 interpolation.

(発明の効果) 以上説明したとおシ、本発明による磁気センサーは、2
次元化が容易で磁気検出ヘッドの製作が簡単な(コスト
が安い)ほか、極めて応用範囲が広いという長所がある
。特に、ワイヤロープ等の傷検出に用いるときは、消費
電力が少な(S/N比が向上する効果がある。
(Effects of the Invention) As explained above, the magnetic sensor according to the present invention has two
It has the advantage of being easy to dimension, making the magnetic detection head simple (low cost), and having an extremely wide range of applications. In particular, when used for detecting flaws in wire ropes, etc., power consumption is low (the S/N ratio is improved).

【図面の簡単な説明】[Brief explanation of drawings]

第1−1図は本発明に用いる磁気検出ヘッドの第1の例
を示す斜視図、第1−2図は第1−1図の磁気検出ヘッ
ドを用いる磁気センサーの代表的構成を示す回路図、第
1−3図ないし第1−6図はその動作説明用特性図、第
2−1図は第1−2図の磁気センサーの応用例を示す回
路図、第2−2図はその動作説明図、第2−3図は第1
−2図の磁気センサーの他の応用例を示す略図、第3=
)図は本発明に用いる磁気検出ヘッドあ第2の例を示す
図、第3−2図はその動作説明図、第4−1図は本発明
に用いる磁気検出−\ラドの第3の例を示す斜視図、第
4−2図はその動作説明図、第4−3図は第4−1図の
磁気検出ヘッドを照合器に用いた例を示す回路図、第4
−4図はその動作説明図、第5−1図は本発明に用いる
磁気検出ヘッドの第4の例を示す斜視図、第5−2図は
その電気的接続を示す回路図、第5−3図及び第5−4
図はその動作説明図、第5−5図は第5−1図の磁気検
出ヘッドの変形例を示す斜視図、第5−6図はその動作
説明図、湧5−7図は第5−1図の磁気検出ヘッドの使
用例を示す図、第6−1図は第5−5図の磁気検出ヘッ
ドの応用例を示す斜視図、第6−2図及び第6−3図は
その動作説明図、第7−1図は第5−1図の磁気検出ヘ
ッドを線状に形成した場合の例を示す図、第7−2図は
第7−1図の磁気検出ヘッドの変形例を示す図、第7−
3図は第7−2図の磁気検出ヘッドの応用例を示す図、
第7−4図は第7−2図の磁気検出ヘッドの他の応用例
を示す図、第8−1図は磁気スケールの一例を示す図、
第8−2図は本発明を磁気スケール読取シヘッドに適用
した例を示す平面図、第8−3図はその使用状況を示す
図、第8−4図ないし第8−6図はその動作説明図でお
る◎(1)・・・磁気検出ヘッド、(2)・・・基板、
(3)・・・強磁性体の細線、(4) + (5)−■
、■、■、 @) 、 @・・・高周波電流を流すため
の電極、H・・・外部磁場。 第1−3図 差1−4図 第1−6図 運1−20 ψ>i&益牢
Fig. 1-1 is a perspective view showing a first example of the magnetic detection head used in the present invention, and Fig. 1-2 is a circuit diagram showing a typical configuration of a magnetic sensor using the magnetic detection head shown in Fig. 1-1. , Figures 1-3 to 1-6 are characteristic diagrams for explaining its operation, Figure 2-1 is a circuit diagram showing an application example of the magnetic sensor in Figure 1-2, and Figure 2-2 is its operation. Explanatory diagram, Figures 2-3 are the first
- Schematic diagram showing another application example of the magnetic sensor in Figure 2, 3rd =
) is a diagram showing a second example of the magnetic detection head used in the present invention, Figure 3-2 is an explanatory diagram of its operation, and Figure 4-1 is a third example of the magnetic detection head used in the present invention. FIG. 4-2 is a diagram illustrating its operation, FIG. 4-3 is a circuit diagram showing an example in which the magnetic detection head of FIG. 4-1 is used as a collation device, and FIG.
Fig. 5-4 is an explanatory diagram of its operation, Fig. 5-1 is a perspective view showing a fourth example of the magnetic detection head used in the present invention, Fig. 5-2 is a circuit diagram showing its electrical connection, and Fig. 5- Figure 3 and 5-4
5-5 is a perspective view showing a modification of the magnetic detection head of FIG. 5-1, FIG. 5-6 is an explanatory diagram of its operation, and FIG. Figure 6-1 is a perspective view showing an application example of the magnetic detection head shown in Figure 5-5, and Figures 6-2 and 6-3 show its operation. An explanatory diagram, FIG. 7-1 is a diagram showing an example of the magnetic detection head of FIG. 5-1 formed in a linear shape, and FIG. 7-2 is a diagram showing a modification of the magnetic detection head of FIG. 7-1. Figure 7-
Figure 3 is a diagram showing an application example of the magnetic detection head in Figure 7-2;
FIG. 7-4 is a diagram showing another application example of the magnetic detection head of FIG. 7-2, FIG. 8-1 is a diagram showing an example of a magnetic scale,
Fig. 8-2 is a plan view showing an example in which the present invention is applied to a magnetic scale reading head, Fig. 8-3 is a diagram showing its usage situation, and Figs. 8-4 to 8-6 are explanations of its operation. In the diagram ◎ (1)... Magnetic detection head, (2)... Substrate,
(3)...Thin wire of ferromagnetic material, (4) + (5)-■
, ■, ■, @), @... Electrode for flowing high frequency current, H... External magnetic field. Figure 1-3 Difference 1-4 Figure 1-6 Luck 1-20 ψ>i & gain

Claims (1)

【特許請求の範囲】[Claims] 基板上に強磁性体の細線をジグデグ状に形成して磁気検
出ヘッドとし、上記強磁性体の細線に高周波電流を流し
ておき、外部磁場の印加によシ上記強磁性体の細線のイ
ンピーダンスが変化することを利用して外部磁場を検出
する磁槃センサー。
A magnetic detection head is formed by forming thin ferromagnetic wires on a substrate in a zig-deg shape, a high frequency current is passed through the thin ferromagnetic wires, and the impedance of the thin ferromagnetic wires is changed by applying an external magnetic field. A magnetoresistive sensor that detects external magnetic fields by using changes in the magnetic field.
JP59031812A 1984-02-22 1984-02-22 Magnetic sensor Pending JPS60174966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59031812A JPS60174966A (en) 1984-02-22 1984-02-22 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59031812A JPS60174966A (en) 1984-02-22 1984-02-22 Magnetic sensor

Publications (1)

Publication Number Publication Date
JPS60174966A true JPS60174966A (en) 1985-09-09

Family

ID=12341499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59031812A Pending JPS60174966A (en) 1984-02-22 1984-02-22 Magnetic sensor

Country Status (1)

Country Link
JP (1) JPS60174966A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297546A (en) * 1988-05-26 1989-11-30 Idemitsu Eng Co Ltd Method of diagnosing deterioration of conductive material
EP1018653A1 (en) * 1999-01-08 2000-07-12 Tokin Corporation Magnetic sensor having soft magnetic metallic element formed in zigzag shape

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297546A (en) * 1988-05-26 1989-11-30 Idemitsu Eng Co Ltd Method of diagnosing deterioration of conductive material
EP1018653A1 (en) * 1999-01-08 2000-07-12 Tokin Corporation Magnetic sensor having soft magnetic metallic element formed in zigzag shape
US6366084B1 (en) 1999-01-08 2002-04-02 Tokin Corporation Magnetic sensor having soft magnetic metallic element formed in zigzag shape

Similar Documents

Publication Publication Date Title
US6002250A (en) Electronic linear scale using a self-contained, low-power inductive position transducer
Mohri et al. Magneto-inductive effect (MI effect) in amorphous wires
US6160395A (en) Non-contact position sensor
JP3028377B2 (en) Magnetoresistive proximity sensor
CN100454024C (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
KR20050109506A (en) Magnetoresistive sensor for determining an angle or a position
US9678177B2 (en) Magnetic sensor device for suppressing magnetic saturation
JPH0570082B2 (en)
CN112378994A (en) Electromagnetic detection probe for deep defects of metal component based on TMR magnetoresistive sensor array
JP3487452B2 (en) Magnetic detector
JPH05264699A (en) Field measuring apparatus
US20050140363A1 (en) Sensor for detection of the orientation of a magnetic field
CN110441718B (en) Broadband induction type magnetic field sensor
US4303886A (en) Magnetic field strength measuring apparatus
JPS60174966A (en) Magnetic sensor
CN107462304A (en) Liquid level sensor
CN101688850A (en) Magnetic detection element and detection method
JPH11183632A (en) Magnetic metallic sensor
RU1824603C (en) Contactless current sensor
JP2003177167A (en) Magnetic sensor
JPH03296615A (en) Detecting apparatus of position of moving body
SU1307322A1 (en) Eddy-current transducer with rotary field
JP4286686B2 (en) Sensor for detecting conductor defects in electric wires
JP2012073034A (en) Power measuring device and power measuring method
JPH03131717A (en) Linear position detector