JPS60174855A - Heat and corrosion resistant steel wire having high strength and ferromagnetism - Google Patents
Heat and corrosion resistant steel wire having high strength and ferromagnetismInfo
- Publication number
- JPS60174855A JPS60174855A JP59032097A JP3209784A JPS60174855A JP S60174855 A JPS60174855 A JP S60174855A JP 59032097 A JP59032097 A JP 59032097A JP 3209784 A JP3209784 A JP 3209784A JP S60174855 A JPS60174855 A JP S60174855A
- Authority
- JP
- Japan
- Prior art keywords
- strength
- steel wire
- heat
- ferromagnetism
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Soft Magnetic Materials (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
この発明は、特に温間強度にすぐれた高強度強磁性の耐
熱耐食性鋼線に関する。
近時、地下深部の地層状況を探査する作業が多く行われ
るようになってきた。
第1図は、例えば地熱発電用井戸における検層ケーブル
の使用状況を示した説明図である。図に見る如く、地中
深く竪に掘削した井戸(1)底付近の温泉脈(2)等を
探査するための探査器(3)全地表から井戸(1)内に
吊シ下げるために、検層ケーブル(4)が用いられてい
る。このような検層ケーブルには耐熱耐食性鋼線が用い
られるが、使用環境が高温で亜硫酸ガス等腐食性の強い
ガスに曝されるうえに、井戸の深さが10Kmと深いた
めに地表近くでは自重だけで80〜に近い応力が加わる
ことになるので、前記検層ケーブルに対しては高い耐食
性と高度の温間強度が要求される。さらにケーブル自体
を磁気探査システムの一部として使うために強磁性であ
ることが要求される。
上記の他に油井用の探査ケーブルの例もあるが、これも
上記と略々同様の環境での使用となる。
このような使用環境に十分に対応し得る鋼線の特性の条
件をまとめると次の■〜■の通シとなる。
■ 400℃で80%以上の強度を維持し得るとと
■ ステンレス鋼レベルの耐潰性を有することの 強磁
性であること
検層ケーブル用として従来知られるのは、フェライト系
およびオーステナイト系ステンレス鋼さらにはインコネ
ル等の超合金等である・が、これらは上記要求に照らし
てみるとまず第1に、強度の点で不十分である。第2図
は従来の耐熱耐食性鋼線の代表例とされる5uisao
4オーヌテナイトステンレス鋼の伸線材の400℃での
引張強さと加熱時間との関係を示した図であるが、伸線
加工度が0%の曲線[F]においては引張シ強さは60
〜徒下と低く、伸線加工度80%の曲線(Q)において
も加熱時間が8時間を越えると80z以下に低下してい
る。
このように従来から有るステンレス鋼等の耐熱耐食性合
金では上記のの条件を満足する強度が得られず、更にま
たフェライト系を除いては磁性を持っていないし、いず
れもMOr糸の高合金で高価なためコスト高となるとい
う問題もあった。
なお、かかる温間強度にすぐれた耐熱耐食性鋼線の重要
は地熱発電井戸、油井掘削用に限らず、今後各方面の地
下探査に益々広範囲に拡がることが予想され、このよう
なことからも現在、その開発が急務とされている。
したがって本発明は、上記の〜■の条件に適合する特性
を備えた耐熱耐食性鋼線を得ることを目的とするもので
ある。
゛本発明者らは、このような目的に対しては合金鋼にス
テンレス鋼を合せたクラッド構造が有効と考え、そのよ
うなりラッド構造の採用を前提に、種々突験、研究を行
った結果、芯材の成分組成を適正に選定するとともにク
ラツド材としてオーステナイトステンレス鋼を採用する
ならば、先述のの要求を満たす強度特性と強磁性を有し
しかもオーステナイトステンレス鋼と同様高耐食性のク
ラツド鋼線を得ることが可能であることを見い出した。
すなわち本発明の要旨とするところは、C0,7〜1.
1%、Si0.2−2.0%、Mn 0.4−2.03
’6、erO65〜2,0%、AtO,1%以下、Mo
0.80%以下を含み、残部はFeおよび不可避的不純
物よシなる組成の芯材とオーステナイトステンレス鋼の
クラツド材からなる高強度強磁性を有する#J熱熱良食
性鋼線にある。
上記芯材の成分組成は、具体的にはクラツド鋼線として
、400℃での温間強度80〜と強磁性を確保するもの
である。すなわち本発明の鋼線は、芯材によシ強度と磁
性を確保しつつこれを包囲するオーステナイトステンレ
ス鋼のクラツド材によって耐食性を維持するようにした
ものである。
第4図は本発明範囲の成分組成からなる合金鋼(D 芯
材トS+U S B 04オーヌテナイトステンレス鋼
からなるクラツド材の組合せで、クラツド比率を種々に
変えた供試鋼線(伸線加工度80%、径IM/ )の4
00℃での負荷応力と加熱時間との関係を示し、(ト)
、(ト)、(G)は傘径0に占めるクラツド材の厚み(
δ)の割合、すなわちクラツド比率(2a/D)(第3
図(断面図)参照〕が異なるもので、(ト)はクラツド
比率20%、(ト)は同じく40%、CG)は同じく5
0%、の各場合を表わす。
同図において、クラツド比率が概ね40%以下の場合に
、400℃における強度として8ozが確保されている
。
この40%以下のクラツド比率では、芯材のもつ本来の
磁性が損われることがなく、クラツド鋼線は全体として
強磁性を示す。
このように本発明によれば、所期の目的である400℃
における強ff80〜とともに、強磁性そしてステンレ
ス鋼レベルの耐食性を同時に確保することができるもの
である。なお、この種の鋼線は一般に、冷間加工(伸線
)ままの状態で突際使用に供するから、強度としてはそ
の最終の冷間伸線における加工度の影響をも受けること
になる。
したがって、本発明の適用に当シ鋼線の強度に関しては
、上記クラツド比率だけでなく、最終の伸線で与える加
工度をも考慮に入れなければならない。頭記した検層ケ
ーブル用としては、最終の伸線加工度は80%曲後(7
5〜85嵩)が通例であるが、この条件を前提とすると
、400℃における温間強度で8ozを示す特性は先述
したとおシフラッド比率を40%以下に設定することに
よ多安定的に得ることができる。
次に不発明において芯材の成分を上記のように限定した
理由を説明する。
C:強度を確保するのに最も重要な成分で、0.7%未
満では最終目標である400℃で8oz以上の温間強度
を確保できず、また1、1%を越えると伸線性が劣化す
るので0.7〜1.1%とした。
Sl:高温強度を高めるのに有効な成分であるが、0.
2%以下になると焼入れ性が不足し、また2、0%を越
えると延性の劣化が著るしくなる。
Mn:焼入れ性が向上するので引張強さの強化に有効で
あるが、0.4%未満では焼入れ性が不足し、また2、
0%を越えるとパーライトが逆に粗大化するので0.2
〜2,0%とした。
Cr:高温強度の確保に必要な成分であシ、0.5%未
満では強度が不足し、また2、0′)oを越えて添加し
ても必要以上に強度が上シ過ぎかえって加工しにくくな
るため0.5〜2.0%とした。
MO=焼入れ性を補うためとP’pCrの偏析による延
性劣化を防止するためにCrの濃度等に応じて必要量を
添加するよう0.8%以下とした。
At:製鋼段階で脱酸剤として添加されるが、Nと化合
物を形成し、時効現象抑制に効果がある。
しかし0.1%を越えをと延性の劣化をもたらすので0
.1%以下とした。
なお、クラツド材のステンレス鋼をオーヌテナイトヌテ
ンレヌ鋼に限定したのは、フエフィi系ヌテンレス鋼は
475℃脆性という特性があるので、温間強度の確保を
重視する本発明鋼線のクラツド材としては適当でないか
らである。
以下、実施例を掲げて不発明の効果を明らかにする。
第 1 表
第1表に示す成分の5US804 ステンレス鋼をクラ
ツド材とし第2表に示す種々の成分の合金鋼を芯材とし
て、第5図の製造工程で不発明例および比較例の各種の
ステンレスクラッドの供試鋼線を製造した。クラッドビ
レットの作製に当っては、芯材ビレットおよびクラッド
パイプの寸法を、それぞれ目標とするクラッド比率とな
るように選定した。例えば20!Xのクラッド比率を目
標とする場合は、80w1!fの芯材ビレットと肉厚、
10am。
外径10(1!/のクラッドパイプ”を用いてクラッド
ビレットとした。また最終の鋼線寸法をすべて径1.0
M/l!:L、1.0w1fヘノ伸線加工度は80%と
した。前記工程中の熱処理(1)は溶体化加熱(100
0℃X’1hr)→恒温変態処理(600℃鉛浴X’8
m1n浸漬)熱処理(2)はパテンティング処理(95
0℃X16 min→600℃鉛浴X 3 min浸漬
)である。
上記本発明例と比較例の供試鋼線の機械的性質とともに
磁性の有無を調査して第2表に示した。
第2表に示すA−E群に分けて結果を説明する。
A群の供試鋼線では、芯材のC含有量の影響を調べた。
本発明範囲の下限を下欄ると強度が不足し、上限を越え
ると伸線性が劣化する。
B群の供試鋼線では、芯材の81含有量の影響を調べた
。本発明範囲の下限を下欄ると強度が不足し、上限を越
えると延性が低下する。
0群の供試鋼線では、芯材のMn含有量の影響を調べた
。本発明範囲を下欄ると強度が不足し、上限を越えると
延性が低下する他、強度も十分なものが得られない。
D群の供試鋼線では、芯材のCr含有量の影響を調べた
。本発明範囲の下限を下欄ると強度が不足し、上限を越
えると伸線性が劣化する。
E群の供試鋼線では、クラツド比率が鋼線の特性に及ぼ
す影響について調べた。クラツド比率が大きくなるにつ
れ温間強度は低下する傾向にあシ、この例The present invention relates to a high-strength ferromagnetic heat-resistant and corrosion-resistant steel wire with particularly excellent warm strength. Recently, much work has been carried out to explore the geological conditions deep underground. FIG. 1 is an explanatory diagram showing how a logging cable is used in, for example, a well for geothermal power generation. As shown in the figure, a well excavated vertically deep underground (1), a probe for exploring hot spring veins near the bottom (2), etc., (3) a probe suspended from the entire ground surface into the well (1), A logging cable (4) is used. Such logging cables use heat-resistant and corrosion-resistant steel wires, but they are used in high-temperature environments where they are exposed to highly corrosive gases such as sulfur dioxide gas, and the wells are as deep as 10 km, so they cannot be used near the surface. Since a stress close to 80° is applied due to its own weight alone, the logging cable is required to have high corrosion resistance and a high degree of warm strength. Furthermore, the cable itself is required to be ferromagnetic in order to be used as part of a magnetic exploration system. In addition to the above, there is also an example of an exploration cable for oil wells, but this is also used in almost the same environment as the above. The conditions for the characteristics of steel wires that can sufficiently cope with such usage environments are summarized as follows. ■ It can maintain more than 80% of its strength at 400℃ ■ It is ferromagnetic and has crush resistance comparable to that of stainless steel Ferritic and austenitic stainless steels are conventionally known for use in logging cables. Furthermore, there are superalloys such as Inconel, etc. However, in light of the above requirements, first of all, these are insufficient in terms of strength. Figure 2 shows 5uisao, which is a typical example of conventional heat-resistant and corrosion-resistant steel wire.
4 is a diagram showing the relationship between the tensile strength at 400°C and heating time of a drawn wire material of autenite stainless steel. In the curve [F] where the degree of wire drawing is 0%, the tensile strength is 60%.
Even in the curve (Q) with a degree of wire drawing of 80%, it decreases to 80z or less when the heating time exceeds 8 hours. In this way, conventional heat-resistant and corrosion-resistant alloys such as stainless steel cannot provide the strength that satisfies the above conditions, and furthermore, except for ferritic alloys, they do not have magnetism, and all of them are high alloys made of MOr threads and are expensive. Therefore, there was also the problem of high costs. The importance of such heat-resistant and corrosion-resistant steel wires with excellent warm strength is not limited to geothermal power generation wells and oil well drilling, but is expected to expand to a wider range of underground exploration in various fields in the future. , its development is urgently needed. Therefore, the object of the present invention is to obtain a heat-resistant and corrosion-resistant steel wire having characteristics that meet the above-mentioned conditions.゛The present inventors believe that a clad structure combining alloy steel and stainless steel is effective for such purposes, and have conducted various experiments and research on the premise of adopting such a clad structure. If the composition of the core material is appropriately selected and austenitic stainless steel is used as the cladding material, the cladding steel wire will have strength characteristics and ferromagnetism that meet the above-mentioned requirements, and will also have the same high corrosion resistance as austenitic stainless steel. We found that it is possible to obtain That is, the gist of the present invention is that C0,7 to 1.
1%, Si0.2-2.0%, Mn 0.4-2.03
'6, erO65~2.0%, AtO, 1% or less, Mo
The #J thermally erodible steel wire has high strength ferromagnetism and is composed of a core material with a composition of Fe and unavoidable impurities and a cladding material of austenitic stainless steel. Specifically, the composition of the core material is such that, as a clad steel wire, a warm strength of 80 or more at 400° C. and ferromagnetism are ensured. That is, the steel wire of the present invention ensures strength and magnetism through the core material and maintains corrosion resistance through the austenitic stainless steel cladding surrounding the core material. Figure 4 shows test steel wires (drawn wires) with various cladding ratios using combinations of alloy steel (core material D) and cladding material consisting of USB 04 autenite stainless steel having compositions within the scope of the present invention. Machining rate 80%, diameter IM/ ) 4
The relationship between load stress and heating time at 00℃ is shown, (g)
, (G), and (G) are the thicknesses of the clad material in the umbrella diameter of 0 (
δ), that is, the cladding ratio (2a/D) (third
(See figure (cross-sectional view)) are different, (G) is 20% clad ratio, (G) is 40%, and CG) is 5%.
0%. In the figure, when the cladding ratio is approximately 40% or less, a strength of 8 oz at 400° C. is ensured. At this clad ratio of 40% or less, the original magnetism of the core material is not impaired, and the clad steel wire exhibits ferromagnetism as a whole. As described above, according to the present invention, it is possible to achieve the desired temperature of 400°C.
It is possible to simultaneously secure ferromagnetic properties and corrosion resistance on a stainless steel level. In addition, since this type of steel wire is generally used for final use in the state of cold working (wire drawing), its strength is also affected by the degree of working in the final cold drawing. Therefore, with regard to the strength of the steel wire for application of the present invention, it is necessary to take into consideration not only the above-mentioned cladding ratio but also the working degree given in the final wire drawing. For the above-mentioned logging cable, the final wire drawing degree is 80% after bending (7
5 to 85 bulk), but assuming this condition, the property of exhibiting a warm strength of 8 oz at 400°C can be stably obtained by setting the shuffled ratio to 40% or less, as described above. be able to. Next, the reason why the components of the core material are limited as described above in the invention will be explained. C: The most important component for ensuring strength. If it is less than 0.7%, it will not be possible to secure the final target warm strength of 8 oz or more at 400°C, and if it exceeds 1.1%, the drawability will deteriorate. Therefore, it was set at 0.7 to 1.1%. Sl: An effective component for increasing high-temperature strength, but with a content of 0.
If it is less than 2%, hardenability will be insufficient, and if it exceeds 2.0%, the deterioration of ductility will be significant. Mn: Improves hardenability and is effective in strengthening tensile strength; however, if it is less than 0.4%, hardenability is insufficient;
If it exceeds 0%, pearlite will become coarser, so 0.2
~2.0%. Cr: A necessary component to ensure high-temperature strength. If it is less than 0.5%, the strength will be insufficient, and if it is added in excess of 2,0'), the strength will be higher than necessary and it will be difficult to process. The content was set at 0.5% to 2.0% because it becomes difficult. MO = 0.8% or less was added in a necessary amount depending on the concentration of Cr in order to compensate for hardenability and to prevent deterioration of ductility due to segregation of P'pCr. At: Added as a deoxidizing agent during the steelmaking stage, it forms a compound with N and is effective in suppressing aging phenomena. However, if it exceeds 0.1%, it will cause deterioration of ductility.
.. It was set to 1% or less. The stainless steel for the cladding material was limited to autenite Nutenrenu steel because the Huefi i-based nutenless steel has the characteristic of being brittle at 475°C, so the cladding material for the steel wire of the present invention, which emphasizes ensuring warm strength, was selected as the cladding material. This is because it is not appropriate. Below, examples will be given to clarify the effects of non-invention. Table 1 Using 5US804 stainless steel with the ingredients shown in Table 1 as the cladding material and alloy steels with the various ingredients shown in Table 2 as the core material, various stainless steels of uninvented examples and comparative examples were manufactured in the manufacturing process shown in Figure 5. A test steel wire with cladding was manufactured. In producing the clad billet, the dimensions of the core billet and clad pipe were selected so as to achieve the target clad ratio. For example, 20! If you aim for a cladding ratio of X, 80w1! f core material billet and wall thickness,
10am. A clad billet was made using a clad pipe with an outer diameter of 10 (1!/).Also, the final steel wire dimensions were all 1.0 in diameter.
M/l! :L, 1.0w1f wire drawing degree was 80%. The heat treatment (1) in the step is solution heating (100
0°C x'1hr) → Isothermal transformation treatment (600°C lead bath x'8
m1n immersion) heat treatment (2) is patenting treatment (95
0°C x 16 min → 600°C lead bath x 3 min). The presence or absence of magnetism as well as the mechanical properties of the test steel wires of the above-mentioned examples of the present invention and comparative examples were investigated, and the results are shown in Table 2. The results will be explained by dividing into groups A to E shown in Table 2. For the test steel wires of Group A, the influence of the C content of the core material was investigated. If it is below the lower limit of the present invention range, the strength will be insufficient, and if it exceeds the upper limit, the wire drawability will deteriorate. In the test steel wires of Group B, the influence of the 81 content in the core material was investigated. If the lower limit of the present invention range is below, the strength will be insufficient, and if the upper limit is exceeded, the ductility will decrease. For the test steel wires of group 0, the influence of the Mn content of the core material was investigated. If the range is below the range of the present invention, the strength will be insufficient, and if it exceeds the upper limit, the ductility will decrease and sufficient strength will not be obtained. For the test steel wires of Group D, the influence of the Cr content in the core material was investigated. If it is below the lower limit of the present invention range, the strength will be insufficient, and if it exceeds the upper limit, the wire drawability will deteriorate. For the test steel wires of Group E, the influence of the cladding ratio on the properties of the steel wires was investigated. As the cladding ratio increases, the warm strength tends to decrease;
【最終伸線加
工度80%】では40(1−78ozの温間強度を得る
にはクラツド比率で約40%以上が必要である。
以上の説明から明らかなように、本発明の鋼線は、40
0℃での温間強gFsozと強磁性に加えステンレス鋼
レベルの耐食性を備えるよう構成でき、しかも従来の耐
熱耐食性鋼線に比較してコストも安くつくので、地熱発
電用井戸や油井用の検層ケーブル用材料としての実用性
に極めてすぐれた鋼線である。[Final wire drawing degree: 80%] In order to obtain a warm strength of 40 (1-78 oz), a cladding ratio of approximately 40% or more is required.As is clear from the above explanation, the steel wire of the present invention , 40
It can be configured to have a strong warm gFsoz and ferromagnetic properties at 0°C, as well as corrosion resistance comparable to that of stainless steel, and is cheaper than conventional heat-resistant and corrosion-resistant steel wires, making it suitable for geothermal power generation wells and oil well inspections. This steel wire has excellent practicality as a material for layered cables.
第1図は地熱発電用井戸における検層ケーブルの使用状
況を示した説明図、第2図はSUS’804オース゛テ
ナイトスtンレス鋼伸線材の400℃での引張強さと加
熱時間との関係を示した図、第3図はステンレスクラツ
ド鋼線の断面図、第4図はクラット比率を種々に変えて
伸線加工度80%で径1.0 M$に伸線したステンレ
スクラツド鋼線の400℃での負荷応力と加熱時間の関
係を示した図、第5図は本発明の効果を確認するだめの
試験に用いたクラッド鋼線の製造手順を示す工程図であ
る。
1:井戸、2:温泉風、8:探査器、4:検層ケ−プル
第 1 図
第2図
→加軸# M(Hr)
第 3 図Figure 1 is an explanatory diagram showing how logging cables are used in wells for geothermal power generation, and Figure 2 shows the relationship between tensile strength at 400°C and heating time of SUS'804 austenitic stainless steel wire rod. Figure 3 is a cross-sectional view of a stainless clad steel wire, and Figure 4 is a cross-sectional view of a stainless clad steel wire drawn to a diameter of 1.0 M$ with a wire drawing degree of 80% with various crat ratios. FIG. 5 is a diagram showing the relationship between applied stress and heating time at °C, and is a process chart showing the manufacturing procedure of a clad steel wire used in a test to confirm the effects of the present invention. 1: Well, 2: Hot spring wind, 8: Exploration device, 4: Logging caple Fig. 1 Fig. 2 → Added axis # M (Hr) Fig. 3
Claims (1)
%、Mn9.4〜2.0%、Or 0.5〜2.0%、
A70.13’6以下、Mo 0.80%以下を含み、
残部がFeおよび不可避的不純物からなる組成の芯材と
これを包囲するオーステナイトステンレス鋼のクラツド
材からなることを特徴とする高強度強磁性を有する耐熱
耐食性鋼線。(1) Co, r ~ l, 1%, S'10.2 ~ 2.0
%, Mn 9.4-2.0%, Or 0.5-2.0%,
Contains A70.13'6 or less, Mo 0.80% or less,
A heat-resistant and corrosion-resistant steel wire having high-strength ferromagnetism, characterized in that it consists of a core material whose composition is composed of Fe and unavoidable impurities, and a cladding material of austenitic stainless steel surrounding the core material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59032097A JPS60174855A (en) | 1984-02-21 | 1984-02-21 | Heat and corrosion resistant steel wire having high strength and ferromagnetism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59032097A JPS60174855A (en) | 1984-02-21 | 1984-02-21 | Heat and corrosion resistant steel wire having high strength and ferromagnetism |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60174855A true JPS60174855A (en) | 1985-09-09 |
Family
ID=12349387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59032097A Pending JPS60174855A (en) | 1984-02-21 | 1984-02-21 | Heat and corrosion resistant steel wire having high strength and ferromagnetism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60174855A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0450715U (en) * | 1990-09-04 | 1992-04-28 | ||
EP0800781A2 (en) * | 1996-04-09 | 1997-10-15 | Sunstar Inc. | Interdental brush wire and interdental brush |
-
1984
- 1984-02-21 JP JP59032097A patent/JPS60174855A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0450715U (en) * | 1990-09-04 | 1992-04-28 | ||
EP0800781A2 (en) * | 1996-04-09 | 1997-10-15 | Sunstar Inc. | Interdental brush wire and interdental brush |
EP0800781A3 (en) * | 1996-04-09 | 1999-02-03 | Sunstar Inc. | Interdental brush wire and interdental brush |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2105368A (en) | Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking | |
US20080216928A1 (en) | Seamless steel pipe for line pipe and a method for its manufacture | |
AU734607B2 (en) | Method for manufacturing self-hardening steel wire, reinforcing wire and application to a flexible duct | |
BG62783B1 (en) | Martensitic stainless steel and articles manufactured from it | |
JP6700364B2 (en) | Cold rolled steel wire with high fatigue strength and resistance to hydrogen embrittlement and reinforcement of flexible conduits in which it is incorporated | |
CN102400057A (en) | Low alloy steel for carbon dioxide corrosion resistant oil well pipe and manufacturing method thereof | |
WO2021131445A1 (en) | High-strength stainless steel seamless pipe for oil wells | |
JPS60174855A (en) | Heat and corrosion resistant steel wire having high strength and ferromagnetism | |
JPS6039150A (en) | Steel for pipe for oil well with superior resistance to stress corrosion cracking | |
JPH01279710A (en) | Manufacture of high strength steel wire having excellent resistance to cracking induced by hydrogen | |
JPS5920427A (en) | Steel wire for steel core of steel reinforced al twisted wire and its production | |
JPS5811492B2 (en) | Manufacturing method of high-tensile and high-ductility wire and steel bars for high-strength bolts | |
JPS581168B2 (en) | Greta Line Pipe Hot Coil Size Seizou Hohou | |
JPS5940220B2 (en) | Low alloy steel with excellent sulfide corrosion cracking resistance | |
JPS61284558A (en) | Manufacturing method of Ni-based alloy with excellent hydrogen cracking resistance | |
JPH06212358A (en) | Nonmagnetic pc steel wire and its production | |
JP2001181793A (en) | High strength direct patenting wire and method of manufacturing the same | |
CA1075048A (en) | Low permeability, nonmagnetic alloy steel | |
JPH11269608A (en) | Cr-containing steel tube excellent in carbon dioxide corrosion resistance and sour resistance | |
JPS60228655A (en) | Steel material having superior resistance to hydrogen induced cracking | |
JP3216824B2 (en) | High strength low thermal expansion alloy | |
JPS6210240A (en) | Seamless oil country tubular steel with excellent corrosion resistance and crushing strength | |
JPS58133350A (en) | Steel for oil well excellent in sulfide stress corrosion crack resistance | |
JPH0711388A (en) | High strength nonmagnetic reinforcing material for prestressed concrete | |
JPS63274731A (en) | Alloy having excellent sour resistance |