[go: up one dir, main page]

JPS60173828A - Forming method of multilayer film - Google Patents

Forming method of multilayer film

Info

Publication number
JPS60173828A
JPS60173828A JP2458784A JP2458784A JPS60173828A JP S60173828 A JPS60173828 A JP S60173828A JP 2458784 A JP2458784 A JP 2458784A JP 2458784 A JP2458784 A JP 2458784A JP S60173828 A JPS60173828 A JP S60173828A
Authority
JP
Japan
Prior art keywords
silicon
silicon oxide
multilayer film
film
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2458784A
Other languages
Japanese (ja)
Inventor
Toshiaki Taniuchi
利明 谷内
Tadashi Serikawa
正 芹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2458784A priority Critical patent/JPS60173828A/en
Publication of JPS60173828A publication Critical patent/JPS60173828A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To form a multilayer film, in which first films consisting of silicon and second films composed of silicon oxide are laminated alternately on a substrate in succession, by using a mixed gas, which contains argon and hydrogen and the range of the molar ratio of hydrogen therein is specified, as an inert gas. CONSTITUTION:First films consisting of silicon and second films composed of silicon oxide are deposited and formed alternately on a substrate in succession by interchangeably sputtering atoms (silicon) constituting a first target and atoms (silicon and oxygen) constituting a second target successively by using the ions of an inert gas from the first target consisting of silicon and the second target composed of silicon oxide, thus shaping a multilayer film. A mixed gas, which contains argon and hydrogen and hydrogen therein extends over 10- 95mol%, is employed as the inert gas for sputtering at that time.

Description

【発明の詳細な説明】 本発明の分野 本発明は、基板上に、シリコンでなる第1の膜と、酸化
シリコンでなる第2のlI’Aとが順次交互に積層され
−Cいる構成の多層膜を形成Jる方法に関し、特にこの
ような構成の多層I+!、!を超格子構造どして有して
いる超格子構造半導体装置を製造りる場合に適用して好
適なものである。
Detailed Description of the Invention Field of the Invention The present invention relates to a structure in which a first film made of silicon and a second film made of silicon oxide are sequentially and alternately laminated on a substrate. Regarding the method of forming a multilayer film, especially the multilayer I+! ,! This is suitable for application when manufacturing a superlattice structure semiconductor device having a superlattice structure.

本発明の青用 従来、基板上に、シリコンでなる第1の膜と、酸化シリ
」ンでなる第2の膜とが順次交互に積層され(−いる(
1“4成の多層膜を超格子構造として有し−Cいる超格
子構造半導体装置が提案されている。
For the blue color of the present invention, conventionally, a first film made of silicon and a second film made of silicon oxide are sequentially and alternately laminated on a substrate.
A semiconductor device with a -C superlattice structure has been proposed, which has a multilayer film of 1"4 as a superlattice structure.

、した、このような超格子(?4造半導体装置の超格子
(14造どしての多層膜を形成する方法とじて、従来、
次に述べる方法が提案されている。
Conventionally, as a method for forming a multilayer film using such a superlattice (?4-structured superlattice (14-structured semiconductor device)),
The following method has been proposed.

リイに4つら、導電性ヂ17ンバ内に、例えばその上方
位置にJ3いて第1及び第2の電極を配し、下方位置に
J3いて第3の電極を配している構成を有り−るスパッ
タリング装置を用い、そして、その導電性チャンバ内に
おいて、第1の電極上にシリコンでなる第1のターグツ
1〜を配し、また、第2の電極上に酸化シリコンでなる
第2のターグツ1−を配し、ざらに、第3の電極上に基
板とを配した状態で、且つ導電性チャンバ内にアルゴン
でなる不活性ガスを導入した状態C・、第1のターグツ
1−を配している第1の電44iと基板を配している第
2の電極とに、導電性チトンバを基準と覆る高周波電源
または直流電源を印加させて、導電性チャンバ内C゛不
話性カスを放電させ、その放電によって得られる不活性
ガスのイオンによって、第1のターグツl−1)t I
ら、ぞれを構成している原子(シリコン)をスパッタリ
ング(放電)さゼて、基板上にシリコンでなる第1の肱
を堆積形成ザることと、第2のターゲットを配している
第1の電極と基板を配し−(いる第2の電極とに、導電
性チャンバを基準とする高周波電源または直流電源を印
加させて、導電性チャンバ内で不活性カスを放電さけ、
その放電によって得られる不活性カスのイオンによって
、第2のターゲットから、それを構成している原子(シ
リコン及び酸素)をスパッタリング(放電)さけて、基
板上に酸化シリコンでなる第2の膜を堆積形成すること
とを順次交互に繰返し0行い、基板上に目的する半導体
装置を形成Jる。
There is a configuration in which the first and second electrodes are arranged in the conductive member 17, for example, the first and second electrodes are arranged in the upper position, and the third electrode is arranged in the lower position. Using a sputtering device, in the conductive chamber, a first target 1 made of silicon is disposed on a first electrode, and a second target 1 made of silicon oxide is disposed on a second electrode. - is arranged, and the substrate is roughly arranged on the third electrode, and an inert gas consisting of argon is introduced into the conductive chamber.C., the first target 1- is arranged. A high frequency power source or a direct current power source covering the conductive titanium as a reference is applied to the first electrode 44i on which the substrate is placed and the second electrode on which the substrate is placed, thereby discharging the non-talking scum in the conductive chamber. and the ions of the inert gas obtained by the discharge cause the first target l-1) t I
The atoms (silicon) constituting each are sputtered (discharged) to deposit a first layer of silicon on the substrate, and a second layer containing a second target is deposited on the substrate. A high frequency power source or a direct current power source with reference to the conductive chamber is applied to the second electrode, in which the first electrode and the substrate are disposed, and the inert scum is discharged in the conductive chamber,
The ions of the inert gas obtained by the discharge avoid sputtering (discharge) the constituent atoms (silicon and oxygen) from the second target and form a second film of silicon oxide on the substrate. The deposition and formation are sequentially and alternately repeated to form a desired semiconductor device on the substrate.

このような多層II9の形成法によれば、スパッタリン
ク装置の1つの導電性ヂA・ンバ内で、ぞれを聞りるこ
となしに、シリコンでなる第1の膜と、酸化シリコンで
゛なる第2の股とを、順次交互に、連続的に、堆積形成
ηることができるので、層数の多い多層膜を容易に形成
Jることがてさる、という特徴を有りる。
According to such a method of forming the multilayer II9, the first film made of silicon and the first film made of silicon oxide are formed in one conductive member of the sputter link device without hearing each other. Since the second crotch can be deposited and formed sequentially and alternately, a multilayer film with a large number of layers can be easily formed.

しかしながら、上述した不活性ガスとしてアルゴンを用
いる従来の多層膜の形成法の場合、多層膜を、その相隣
るシリ、コンでなる第1の膜と、酸化シリコンでなる第
2の膜との間の境界がより高い鮮明度を有し、且つシリ
コンでなる第1の膜及び酸化シリコンでなる第2の膜の
厚さがより高い均一性を有するものに形成されるのに一
定の限1哀を有していた。
However, in the case of the conventional multilayer film formation method using argon as the inert gas mentioned above, the multilayer film is formed by forming a multilayer film between the adjacent first film made of silicon and silicon and the second film made of silicon oxide. Within a certain limit 1, the boundaries between the first film of silicon oxide and the second film of silicon oxide are formed to have a higher definition and a higher uniformity in thickness. He had sadness.

ちなみに、上述した不活性ガスとしてアルゴンを用いる
従来の多層膜の形成法によって、シー−−リコンでなる
第1の膜と、酸化シリコンでなる第2の膜とが、それら
の厚さの和を約91111とりる厚さに、順次交互に、
それぞれ40枚づつ積層されている構成の多層膜を形成
し、その多層膜につい−C1その相隣るシリコンでなる
第1の膜と、酸化シリコンでなる第2の膜との間の境界
の鮮明度を調べる!こめに、低角度X線回折特性を測定
したところ、その特性が、横軸を回折角2θ(度)どじ
、枢軸に強度(X10’CPS)としている第1図に示
Jにうに、相隣るシリコンでなる第′1の膜と、酸化シ
リ」ンでなる第2の膜との間の境界の鮮明度をシリコン
でなる第′1の膜及び酸化シリコ1ンー(・なる第2の
膜の厚さとどもに示1回析スペク1ヘルを、実質的に、
観察し得41いbのとして得られた。
By the way, by the conventional multilayer film formation method using argon as the inert gas mentioned above, the first film made of silicon silicon and the second film made of silicon oxide have a thickness equal to the sum of their thicknesses. To a thickness of about 91111, alternately,
A multilayer film with 40 layers each is formed, and for the multilayer film - C1 the sharpness of the boundary between the adjacent first film made of silicon and the second film made of silicon oxide. Check the degree! When we measured the low-angle X-ray diffraction characteristics, we found that the characteristics were similar to those shown in Fig. The sharpness of the boundary between the first film made of silicon and the second film made of silicon oxide is With the thickness of 1 diffraction spec 1 Her, substantially,
Obtained as 41b.

本発明の開示 にって、本発明は、基板上に、シリ」ンでなる第1の膜
と、酸化シリコンでなる第2の膜とが順次交互に積層さ
れている構成の多層膜を、その相隣るシリコンでなる第
1の膜と、酸化シリコンでなる第2の膜との間の境界が
、上述した不活1イ1ガスどしてアルゴンを用いる従来
の多層膜の形成法の場合に比しより高い鮮明度を有し、
11つシリコンでなる第1の膜及び酸化シリコンC・ム
る第2の膜の厚さが、上述した従来の多層11分の形成
法の場合に比しより高い均−外布するbのとして、容易
に、形成づることができる、新規な多層膜の形成法を提
案せんとするものひある。
According to the disclosure of the present invention, the present invention provides a multilayer film having a structure in which a first film made of silicon and a second film made of silicon oxide are sequentially and alternately laminated on a substrate. The boundary between the adjacent first film made of silicon and the second film made of silicon oxide is formed using the conventional multilayer film formation method using argon as the inert 1-1 gas described above. It has higher clarity than in the case of
As the thickness of the first film made of 11 silicon and the second film made of silicon oxide is higher and more uniform than in the case of the above-mentioned conventional multi-layer 11-minute formation method. We are trying to propose a new method for forming a multilayer film that can be easily formed.

本発明にJ、る多層膜の形成法によれば、上述した従来
の多層膜形成法の場合と同様に、シリコンでなる第1の
ターゲットと、酸化シリコンでなる第2のターグツ1〜
とから、不活性ガスのイオンを用いて、第1のターグツ
i〜を構成しているII;ミJ″(シリコン)と、第2
のターゲットを構成しCいる原子(シリコン及び酸素)
どを順次交Hにスパッタリングさせることによって、基
板1−に、シリコンでなる第1の膜と、酸化シリコンで
なる第2の膜とを順次交互に1a積形成さU゛(、目的
とする多層膜を形成する。
According to the method for forming a multilayer film according to the present invention, as in the case of the conventional multilayer film formation method described above, a first target made of silicon and a second target 1 to 1 made of silicon oxide are used.
From this, using inert gas ions, II;
C atoms (silicon and oxygen) that constitute the target of
By sequentially alternating sputtering, a first film made of silicon and a second film made of silicon oxide are sequentially and alternately deposited on the substrate 1-. Forms a film.

しかしながら、本発明による多層膜の形成法に、lI3
い−(1よ、上)ホし/Jようにシリ」ンでなる第1の
ターグツ1〜と、酸化シリコンでなる第2のターグツ1
〜とlp rら、不活性ガスのイA−ンを用いC1第゛
1のターゲットを構成している原f−と、第2のターグ
ツ1−を構成している原子とを順次交ノjにスパッタリ
ングさlる場合に用いる、不活性ガスとしく、上)ホし
た従来の多層膜形成法に用いているノノルゴンに代え、
アルゴンと水素とを含み、水素が10〜95−Eル%C
ある1M合ガスを用いる。
However, in the method for forming a multilayer film according to the present invention, lI3
I-(1, top) As shown, the first tags 1~ made of silicon and the second tags 1 made of silicon oxide.
... and lp r et al. used an inert gas ion to sequentially intersect the original f- constituting the first target of C1 and the atoms constituting the second target 1-. In place of nonorgone, which is used in the conventional multilayer film formation method mentioned above, as an inert gas used when sputtering
Contains argon and hydrogen, hydrogen is 10 to 95-El%C
A certain 1M combined gas is used.

なお、混合ガスを114成しでいる水素か、10〜95
七ル%であるのは、水素が10七ル%未満では、多層膜
を、その相隣るシリコンでなる第1の膜と、酸化シリコ
ンでなる第20)膜との間の境界が、不活性ガスとしく
アルゴンを用いている上述した従来の多層膜形成法にに
っで形成される多層膜における同様の境界と同作)印の
鮮明度しか得られず、且つシリコンでなる第1のIIU
及び酸化シリコンでなる第2の膜の厚さが、不活性ガス
としてアルゴンを用いている上述した従来の多層膜形成
法によって形成される多層膜にa月ノる同様の厚さと同
程度の均一性しか得られり゛、また、水素が95モル%
を越えれば、シリ−1ンeなる第1の膜及び酸化シリコ
ンでなる第2の膜を形成する速度が極めて遅くなり、従
つ(、多層+1rAを形成するのに長い時間を要し、実
用的Cなくなるからである。
In addition, whether the mixed gas is hydrogen containing 114 or 10 to 95
The reason for this is that when the hydrogen content is less than 10%, the boundary between the adjacent first film made of silicon and the 20th film made of silicon oxide is not formed. In the conventional multilayer film formation method described above using argon as the active gas, only the sharpness of the similar boundary in the multilayer film formed with Ni (same work) could be obtained, and the first method made of silicon IIU
and the thickness of the second film made of silicon oxide is as uniform as that of a multilayer film formed by the above-described conventional multilayer film formation method using argon as an inert gas. Only 95 mol% of hydrogen can be obtained.
If this value is exceeded, the speed of forming the first film made of silicon oxide and the second film made of silicon oxide becomes extremely slow, and therefore it takes a long time to form a multilayer +1rA, making it impractical for practical use. This is because the target C disappears.

上述した不発明ににる多層1Qの形成法によれば、小話
性ガスとして、アルゴンと水素とを含み、水素が10〜
95モル%である混合ガスを用い(いるので、多層膜を
、その相隣るシリコン【゛なる第1の肱と、酸化シリコ
ンでなる第2の11’、!どの間の境界が、不活性カス
としてアルゴンを用いCいる上述した従来の多層膜の形
成法の場合に比しより高い鮮明度を有し、旧つシリコン
で/、1:る第1の膜及び酸化シリコンでなる第2の膜
の厚さが、不活性カスとしてアルゴンを用い(いる上述
した従来の多層膜の形成の場合に比しJζり高い均一性
を有するものとして、容易に、形成Jることができる。
According to the method of forming the multilayer 1Q according to the above-mentioned invention, the gas contains argon and hydrogen, and the hydrogen is
Using a gas mixture with a concentration of 95 mol %, the multilayer film can be formed by forming a multilayer film with a first layer of silicon oxide and a second layer of silicon oxide. It has a higher definition than the conventional multilayer film formation method described above using argon as the scum. The thickness of the film can be easily formed with higher uniformity than in the case of forming the conventional multilayer film described above using argon as an inert gas.

従っC1本発明による多11゛4膜の形成法は、多層膜
を超格子構造として有している超格子構造半導体装置を
製造り−る場合に適用して、極め−C好適である。
Therefore, the method of forming a multilayer film according to the present invention is extremely suitable for application to the production of a superlattice structure semiconductor device having a multilayer film as a superlattice structure.

本発明の好適なり5例 次に、本発明による多層+11A形成法の好適な実施例
を述べよう。
Five Preferred Examples of the Present Invention Next, preferred embodiments of the multilayer +11A forming method according to the present invention will be described.

すなわら、導電性チャンバ内に、例えばその−ドプラ位
置において第1及び第2の電極を配し、下方位胃におい
て第3の電極を第1及び第2の電極と平行に配している
構成を有づる平板型高周波マグネ1〜ロンスパツタリン
グ装置〜を用い、そし−C1その導電性チャンバ内にお
いて、第1の電極上にシリコンでなる第1の一ターゲツ
1〜を配し、また、第2の電極上に酸化シリ」ンとして
の石英ガラスでなる第2のターグツ1−を配し、さらに
、第3の電極上に基板とを配した状態で、IJつ導電性
チャンバ内にアルゴンと水素とからなり、水素が80モ
ル%である混合ガスを不活4(141’フ左進λ」、1
ごツR(jμで一餡1のターグツ1〜を配している第1
の電極と基板を配している第2の電極とに、導電性チャ
ンバを基準とする高周波電源を印加さばて、導電性チャ
ンバ内で不活性ガス(アルゴンガス及び水素)4放電さ
せ、その放電によって得られる不活性ガス(アルゴン及
び水素)のイオンによって、第1のターグツ1へから、
それを構成している原子(シリコン)をスパッタリング
(放電)させて、基板上にシリコンC4rる第1の膜を
3.6nmの厚さにj「積形成゛りることと、第2のタ
ーグツi〜を配している第1の電(〜と基板を配してい
る第2の電極とに、導電性ヂ(・ンバを基準とする高周
波電源を印加さl!(、導電性チャンバ内で不活性カス
(アルゴン及び水素)を放電させ、その放電にJ、つ−
(4r/られる不活性ガス(アルゴン及び水素)のイオ
ンににつて、第2のターグツ1−から、それを41−1
成しCいる原子(シリコン及び酸素)をスパッタリング
(放電)さけて、基板上に酸化シリコン(/cKる第2
の膜を1.311111の厚さに堆積形成Jることとを
順次交互に40回繰返して行い、基板上に、3,6nm
の厚さを右づるシリコンでなる第1の膜と、1 、8 
u+の厚さを右りる酸化シリコンでなる第2の膜とが、
順次交Hに、40枚づつ積層されている1」的りる半導
体装置を形成した。
that is, a first and a second electrode are disposed within the conductive chamber, e.g., in the -Doppler position, and a third electrode is disposed parallel to the first and second electrodes in the inferior stomach. Using a flat plate-type high-frequency magnet 1 having the configuration of -Lon sputtering device, a first target 1 made of silicon is placed on the first electrode in the conductive chamber of -C1, and, With a second electrode made of quartz glass as silicon oxide placed on the second electrode, and a substrate placed on the third electrode, argon gas is placed in an IJ conductive chamber. and hydrogen, and the hydrogen is 80 mol%.
Gotsu R
A high frequency power source with reference to the conductive chamber is applied to the electrode and the second electrode on which the substrate is disposed, and an inert gas (argon gas and hydrogen) is discharged in the conductive chamber. from the first target 1 by ions of inert gas (argon and hydrogen) obtained by
By sputtering (discharging) the atoms (silicon) constituting it, a first film of silicon C4r is deposited on the substrate to a thickness of 3.6 nm, and a second film is deposited on the substrate. A high frequency power source with reference to the conductive chamber is applied to the first electrode (~ on which the i~ is disposed) and the second electrode on which the substrate is disposed. The inert gas (argon and hydrogen) is discharged at J,
(4r/For the ions of inert gas (argon and hydrogen), it is transferred from the second target 1- to 41-1
A second layer of silicon oxide (/cK) is deposited on the substrate, avoiding sputtering (discharge) of the atoms (silicon and oxygen) forming the structure.
A film of 3.6 nm thick was deposited on the substrate by repeating this process alternately 40 times.
a first film made of silicon having a thickness of 1 and 8;
A second film made of silicon oxide whose thickness depends on u+ is
A 1" semiconductor device was formed by sequentially stacking 40 semiconductor devices in an alternating pattern.

不活性ガスとしC、ノlルゴンと水素とからなり、水素
が801X−ル%である混合ガスを用いた本実施例にに
って形成された多層膜についで、その相隣るシリコンで
なる第1の膜と、酸化シリコンC′4「る第2の膜との
間の境界の鮮明度を調べるために、低角度X線回折特性
を測定したどころ、その特性が、第1図に対応している
第2図に示づように、相隣るシリコンでなる第1の膜と
、酸化シリコンでなる第2の膜との間の境界の鮮明度を
シリコンでなる第1の膜及び酸化シリコンで4する第2
の膜の厚さととしに示り回折スペクトルを、シリコンで
なる第1の股と、酸化シリ−1ンC゛なる第2の膜との
19さの和5)。
Next to the multilayer film formed according to this example using a mixed gas consisting of carbon, norgon, and hydrogen as an inert gas, in which hydrogen is 801xle%, the next layer is made of silicon. In order to investigate the sharpness of the boundary between the first film and the second film made of silicon oxide, low-angle X-ray diffraction characteristics were measured, and the characteristics corresponded to those shown in Figure 1. As shown in Figure 2, the sharpness of the boundary between the adjacent first film made of silicon and the second film made of silicon oxide is 2nd to 4 with silicone
The thickness of the film and the diffraction spectrum shown below are the sum of 19 and the thickness of the first film made of silicon and the second film made of silicon oxide 5).

411mに対応する1次、2次及び3次の回折ピークI
)1、P2及びP3を以て、顕署に観察し1;lるらの
どして得られた。
1st, 2nd and 3rd order diffraction peaks I corresponding to 411m
) 1, P2 and P3 were observed in the laboratory and 1;1 was obtained.

この第2図に示す低角度X線回折特性と、第1図に承り
低角度X線回折特性とを対比するところから6明らかな
ように、不活性ガスとして、アルゴンと水素とからなり
、水素が80モル%ひある程合ガスを用いた本実施例に
よれば、多層膜を、ぞの相隣るシリコンでなる第1の膜
と、酸化シリコンひなる第2の膜との間の境界が不活性
ガスとしてアルゴンを用いる従来の多層膜形成法の用台
に比し高い鮮明度を右し、且つシリコンでなる第1の膜
と、酸化シリコンでなる第2の膜の厚さが、不活性ガス
としてアルゴンを用いる従来の多層膜形成法の場合に比
しより均一111をイjJるものとして得られた。
As is clear from comparing the low-angle X-ray diffraction characteristics shown in Figure 2 with the low-angle X-ray diffraction characteristics shown in Figure 1, the inert gas is composed of argon and hydrogen. According to this example, a multilayer film is formed by forming a boundary between a first film made of silicon and a second film made of silicon oxide, which are adjacent to each other. provides higher definition than the conventional multilayer film formation method using argon as an inert gas, and the thickness of the first film made of silicon and the second film made of silicon oxide is A more uniform layer of 111 was obtained than in the case of a conventional multilayer film formation method using argon as an inert gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第′1図は、従来の多層膜形成法の説明に供す−る、そ
の多層膜形成法によって形成された多層膜につい(、そ
のシリコンでなる第1の膜と、酸化シリコンでなる第2
の膜との間の境界の鮮明1.σど、シリコンでなる第1
の膜及び酸化シリコンでなる第2の膜の厚さの均一性と
を調べるために測定した低角度X線回折特性を示J図で
ある。 第2図は、本発明による多層1模形成法の説明に供りる
、その多層膜形成法の実施例によつC形成された多層膜
について、そのシリコンでなる第1の膜と、酸化シリコ
ンでなる第2の膜との間の境界の鮮明度と、シリコンで
なる第1の膜及び酸化シリコンでなる第2の膜の厚さの
均一性とを調べるために測定した低角jaX線回折特性
を示1図で゛ある。 1)1.1〕2.1”3・・・・・・・・・回折ピーク
出願人 1」本電信電話公社 第1図 回訂角28(友) 第2図 回哲角2θaυ
FIG.
Sharpness of the boundary between the membrane 1. σ, the first made of silicon
FIG. 4 is a J diagram showing low-angle X-ray diffraction characteristics measured to examine the uniformity of the thickness of the film and the second film made of silicon oxide. FIG. 2 shows a first film made of silicon and a multilayer film formed by C according to an embodiment of the multilayer film forming method according to the present invention. Low-angle JA Figure 1 shows the diffraction characteristics. 1) 1.1] 2.1" 3... Diffraction peak applicant 1" Telegraph and Telephone Corporation Figure 1 Revision angle 28 (Friend) Figure 2 Revision angle 2θaυ

Claims (1)

【特許請求の範囲】 シリコンでなる第1のターグツ1〜と、酸化シリコンで
なる第2のターグツl−とから、不活性ガスのイΔンを
用いて、」二記第1のターグツ1〜を構成している原子
と、上記第2のターゲットを4f4成している原子とを
順次交互にスパッタリングさせることによって、基板上
に、シリコンでなる第1の膜と、酸化シリコンでなる第
2の膜とを順次交互に堆積形成さぼる多層膜形成法にお
いて、 上記不活性ガスどして、アルゴンと水素とを含み、水素
が10〜95モル%である混合カスを用いることを特徴
と覆る多層膜形成法。
[Claims] From the first terminus 1~ made of silicon and the second termite 1~ made of silicon oxide, using an inert gas ion, the first termite 1~ By sequentially and alternately sputtering the atoms constituting the 4F4 and the atoms constituting the second target, a first film made of silicon and a second film made of silicon oxide are formed on the substrate. A multilayer film forming method in which films are sequentially and alternately deposited, wherein the inert gas is a mixture of argon and hydrogen, and the hydrogen content is 10 to 95 mol %. Formation method.
JP2458784A 1984-02-13 1984-02-13 Forming method of multilayer film Pending JPS60173828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2458784A JPS60173828A (en) 1984-02-13 1984-02-13 Forming method of multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2458784A JPS60173828A (en) 1984-02-13 1984-02-13 Forming method of multilayer film

Publications (1)

Publication Number Publication Date
JPS60173828A true JPS60173828A (en) 1985-09-07

Family

ID=12142287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2458784A Pending JPS60173828A (en) 1984-02-13 1984-02-13 Forming method of multilayer film

Country Status (1)

Country Link
JP (1) JPS60173828A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6448577B1 (en) 1990-10-15 2002-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with grain boundaries

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6448577B1 (en) 1990-10-15 2002-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with grain boundaries

Similar Documents

Publication Publication Date Title
JPH03234025A (en) Method of forming insulating thin film
TWI225268B (en) Plasma display panel
CN105336870B (en) Flexible base board and its manufacture method
US3579063A (en) Thin film capacitor
JPH09246017A (en) Laminated chip varistor and manufacture thereof
JPS60173828A (en) Forming method of multilayer film
Dey et al. Antisite-disorder engineering in La-based oxide heterostructures via oxygen vacancy control
JPH05127014A (en) Black mask for color filter
US4107568A (en) Face plate for color pick-up tube
TWI239937B (en) Glass plate provided with electrodes made of a conducting material
JP2006120356A (en) Plasma display panel and its manufacturing method
JPH07235381A (en) Thin film EL device
JPS63241846A (en) Heat-proof black electrode
EP0109589A1 (en) Electroluminescent thin film display device
KR960706684A (en) Stacked-type component and method for the manufacture of same
JP2000106304A (en) Laminated chip thermistor and its manufacture
JPH07272858A (en) Electroluminescent element and its manufacture
JPH0995769A (en) Dielectric thin film and thin film magnetic device
JP2703809B2 (en) Method for manufacturing thin film EL element
JPS60131965A (en) Target device for sputtering
JPS6269489A (en) Manufacturing thin film el element
JPH04212238A (en) Thin film phosphor and manufacture thereof
JPS6142895A (en) Thin film el panel
JPH04284665A (en) Semiconductor device and its manufacturing method
JPH05152075A (en) Thin film el element and manufacture thereof