[go: up one dir, main page]

JPS60170473A - Drive circuit of vibration wave motor - Google Patents

Drive circuit of vibration wave motor

Info

Publication number
JPS60170473A
JPS60170473A JP59024023A JP2402384A JPS60170473A JP S60170473 A JPS60170473 A JP S60170473A JP 59024023 A JP59024023 A JP 59024023A JP 2402384 A JP2402384 A JP 2402384A JP S60170473 A JPS60170473 A JP S60170473A
Authority
JP
Japan
Prior art keywords
vibration
voltage
electrostrictive element
frequency
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59024023A
Other languages
Japanese (ja)
Other versions
JPH0519392B2 (en
Inventor
Kazuhiro Izukawa
和弘 伊豆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59024023A priority Critical patent/JPS60170473A/en
Priority to US06/699,319 priority patent/US4658172A/en
Publication of JPS60170473A publication Critical patent/JPS60170473A/en
Publication of JPH0519392B2 publication Critical patent/JPH0519392B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/142Small signal circuits; Means for controlling position or derived quantities, e.g. speed, torque, starting, stopping, reversing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/145Large signal circuits, e.g. final stages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To enhance the drive efficiency by oscillating a frequency voltage by the variation in the impedance of an electrostrictive element by the resonating vibration of elongation and contraction. CONSTITUTION:Positive input terminal voltage of an operational amplifier OP1 in an oscillator 11 becomes a value divided from an output voltage of the amplifier OP1 via resistors R2, R3. Negative input terminal voltage of the amplifier OP1 becomes a value divided by the impedances of resistor R1 and an electrostrictive element 1a from the output voltage of the amplifier OP1. The impedance of the element 1a is varied by the vibration frequency. 90 deg. phase shifter 12 is delayed by 90 deg. in phase of the output frequency voltage of the amplifier OP1, and applied to an electrostrictive element 1b.

Description

【発明の詳細な説明】 本発明は進行性振動波により移動体を摩擦駆動する振動
波モータの駆動回路、特に該振動波を安定な共振状態に
振動させるに適切なものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a drive circuit for a vibration wave motor that frictionally drives a moving body using progressive vibration waves, and particularly to a drive circuit suitable for vibrating the vibration waves into a stable resonance state.

最近実用化されつつある、進行性振動波によって駆動す
る振動波モータの実施例の概略図が第1図に示しである
。同図で、la・1bは電歪素子で例えばPZT (チ
タン酸ジルコン鉛)で、2は振動体で弾性物質からなり
、電歪素子1aslbを接着しである。振動体2は電歪
素子1aelbと共にステータ(不図示)側に保持され
ている。
FIG. 1 shows a schematic diagram of an embodiment of a vibration wave motor driven by progressive vibration waves, which has recently been put into practical use. In the figure, 1a and 1b are electrostrictive elements made of, for example, PZT (lead zirconium titanate), and 2 is a vibrating body made of an elastic material, to which the electrostrictive element 1aslb is bonded. The vibrating body 2 is held on the stator (not shown) side together with the electrostrictive element 1aelb.

3は移動体で振動体2に対し抑圧接触されていてロータ
を形成する。電歪素子1a及びlbは夫々複数個接着さ
れており、そのうちの一群の電歪素子1aに対し、もう
一群の電歪素子ibは振動波の波長入の%波長分だけず
れたピッチで配置される。群内での各電歪素子1aφ1
a・1a・・・は坏波長のピッチで、相隣り合うものの
極性が逆になるように配置されている。電歪素子1b・
lb・1b・・・についても同様に局波長のピッチで、
相隣り合うものは逆極性である。また電歪素子1a・1
bの表裏には図示を省略したが、夫々電極膜が設けられ
て、電歪素子1a及びlbに夫々交流電圧が印加できる
ようになっている。
Reference numeral 3 denotes a moving body which is in pressure contact with the vibrating body 2 and forms a rotor. A plurality of electrostrictive elements 1a and lb are each bonded to each other, and one group of electrostrictive elements 1a and another group of electrostrictive elements ib are arranged at a pitch shifted by a % wavelength of the wavelength of the vibration wave. Ru. Each electrostrictive element 1aφ1 in the group
a, 1a, . . . are the pitches of the wavelengths, and the polarities of adjacent ones are opposite to each other. Electrostrictive element 1b・
Similarly, for lb, 1b..., the pitch of the station wavelength is
Neighbors have opposite polarity. Also, the electrostrictive element 1a/1
Although not shown, electrode films are provided on the front and back sides of b, respectively, so that an alternating current voltage can be applied to each of the electrostrictive elements 1a and lb.

このような構成の振動波モータで一群の電歪素子1aに
VoSinωTの交流電圧を印加し、もう一方群の電歪
素子1bにvoCosωTの交流電圧を印加する。従っ
て各電歪素子は相隣り合うものどうし極性が逆向きで二
つの群どうし90’位相のずれた交流電圧が印加されて
伸縮振動をすZ、 この振動が伝えられて振動体2は電
歪素子1aslbの配置ピッチに従ってIllll目動
振動る。
With the vibration wave motor having such a configuration, an AC voltage of VoSinωT is applied to one group of electrostrictive elements 1a, and an AC voltage of voCosωT is applied to the other group of electrostrictive elements 1b. Therefore, each electrostrictive element undergoes stretching vibration by applying alternating current voltages with opposite polarities and a 90' phase shift between the two groups. This vibration is transmitted and the vibrating body 2 undergoes electrostrictive vibration. Illllll eye movements vibrate according to the arrangement pitch of the element 1aslb.

振動体2が一つおきの電歪素子の位置で出っ張ると、他
の一つおきの電歪素子の位置が引っ込む。
When the vibrating body 2 protrudes at the position of every other electrostrictive element, the position of every other electrostrictive element retracts.

一方、前記の如く電歪素子1aは電歪素子1bに対し、
%波長ずれた位置にあるため曲げ振動が進行する。交流
電圧が印加されている間、次々と振動が励起されて、進
行性曲げ振動波となって振動体2を伝わってゆく。
On the other hand, as described above, the electrostrictive element 1a is
% wavelength shift, bending vibration progresses. While the alternating current voltage is applied, vibrations are excited one after another and propagate through the vibrating body 2 as progressive bending vibration waves.

このときの波の進行状態が第2図(a) (b)(c)
(d)に示しである。いま、進行性曲げ振動波が矢示X
1方向に進むとする。0を静1に状態に於ける振動体の
中心面とすると振動状態では鎖線示の状態となり、この
中立面6は曲げによる応力が拮抗している。中1γ面6
と直交する断面7.についてみると、これら二面の交線
5、では応力がかからず上下振動しているだけである。
The progress state of the wave at this time is shown in Figure 2 (a), (b), and (c).
It is shown in (d). Now, the progressive bending vibration wave is pointing to arrow X.
Suppose it moves in one direction. If 0 is the central plane of the vibrating body in the static 1 state, then in the vibrating state it will be in the state shown by the chain line, and the stress due to bending is balanced on this neutral plane 6. Middle 1γ plane 6
A cross section perpendicular to 7. If we look at it, no stress is applied to the intersection line 5 of these two surfaces, and there is only vertical vibration.

同時に断面71は交線51を中心として左右の振り子振
動している。
At the same time, the cross section 71 is pendulum vibrating left and right about the intersection line 51.

断面72又は73についても同じように交線52又は5
3を中心とL7て左右の振り子振動する。
Similarly for the cross section 72 or 73, the intersection line 52 or 5
The pendulum oscillates left and right with L7 as the center.

同図(a)に示す状態では断面71と振動体2の移動体
3側の表面との交線」−の点P1は左右振動の右死点と
なっておりに方向連動だけしている。
In the state shown in FIG. 5A, point P1 of the intersection line ``-'' between the cross section 71 and the surface of the vibrating body 2 on the movable body 3 side is the right dead center of left-right vibration, and is only directionally linked.

この振り子振動は交線51・52又は53が波のit側
では(中心面Oの」−側にあるとき)左方向(波の進行
方向X1と逆方向)の応力が加わり、波の負側(同じく
下側にあるとき)右方向の応力が加わる。即ち同図 (
a)に於て、交線52と断面72が前者のときの状態で
、点P2は矢示方向の応力が加わる。交線53と断面7
3が後者のときの状F)で、点P3は矢示方向の応力が
加わる。波が進行し、(b)に示すように波の正側に交
線51がくると点P1は左方向の運動をすると同時に」
一方向の運動をする。 (C)で点P1は−1−下振動
の上死点で左方向の連動だけする。(d)で点P1は左
方向の運動と下方向運動をする。さらに波が進行し、右
方向と下方向の連動、右方向と」一方向の連動を経て(
a)の状態に戻る。この一連の運動を合成すると点P、
は回転楕円運動をしている。一方、移動体3は振動体2
に加圧接触しており、同図 (C)に示すように、振動
体2上の点′P1の回転楕円運動が移動体3をX2方向
に摩擦駆動する。
This pendulum vibration is caused by stress in the left direction (opposite to the wave traveling direction (Similarly when it is on the lower side) stress is applied in the right direction. That is, the same figure (
In a), when the intersection line 52 and the cross section 72 are in the former state, stress is applied to the point P2 in the direction of the arrow. Intersection line 53 and cross section 7
In state F) when 3 is the latter, stress is applied to point P3 in the direction of the arrow. As the wave progresses and the intersection line 51 comes to the positive side of the wave as shown in (b), point P1 moves to the left and at the same time.
Exercise in one direction. In (C), point P1 only moves in the left direction at the top dead center of the -1-down vibration. In (d), point P1 moves leftward and downward. The wave progresses further, moving to the right and downwards, moving to the right and moving in one direction (
Return to state a). When this series of movements is synthesized, the point P,
is in spheroidal motion. On the other hand, the moving body 3 is the vibrating body 2.
As shown in FIG. 2C, the spheroidal movement of point 'P1 on the vibrating body 2 frictionally drives the movable body 3 in the X2 direction.

点P2 ・P3及びその他振動体2上の全ての点が点P
1と同じように移動体3を摩擦駆動する。
Point P2 ・P3 and all other points on the vibrating body 2 are point P
The movable body 3 is driven by friction in the same manner as in 1.

このようにして駆動される振動波モータでは、振動が共
振状態のときに効率よく駆動される。共振周波数は、電
歪素子管振動体の寸法や温度或は移動体の接触圧力など
により決る。そのため従来は、例えば振動体の振動周波
数をセンサで検知して、駆動電圧の発振回路にフィード
バックさせ、駆動電圧周波数を共振周波数に制御してい
る。しかしながら、このようにセンサなどが介在する間
接的な制御方式であると、応答スピードに遅れがでて共
振周波数が発振するまで時間がかかり、その間異なった
周波数が重畳されて「うなり」を生じたり、制御が不正
確になったりしがちである。
The vibration wave motor driven in this manner is efficiently driven when the vibration is in a resonant state. The resonance frequency is determined by the dimensions and temperature of the electrostrictive tube vibrating body, the contact pressure of the moving body, and the like. Therefore, conventionally, for example, the vibration frequency of the vibrating body is detected by a sensor and fed back to a drive voltage oscillation circuit to control the drive voltage frequency to the resonance frequency. However, with this indirect control method that involves sensors, etc., there is a delay in response speed and it takes time for the resonant frequency to oscillate, during which time different frequencies may be superimposed and cause "beating". , control tends to be inaccurate.

その結果、騒音を発するばかりか、駆動効率も悪いもの
になってしなう。またセンサやその信号処理の回路がモ
ータの部品構成や駆動回路構成を複雑なものにし、生産
コスト低下の障害になっている。
As a result, not only is the noise generated, but the drive efficiency is also poor. In addition, the sensor and its signal processing circuit complicate the component configuration of the motor and the drive circuit configuration, which is an obstacle to lowering production costs.

本発明は、このような事態に鑑みなされたもので、騒音
がなく、駆動効率が良く、しかも安価に生産することの
できる振動波モータに適した駆動回路を提供することを
目的とするものである。
The present invention was made in view of the above situation, and it is an object of the present invention to provide a drive circuit suitable for a vibration wave motor that is noiseless, has good drive efficiency, and can be produced at low cost. be.

この目的を達成するため本発明は、周波電圧が印加され
た電歪素子の伸縮振動に励起されて生ずる進行性振動波
で、移動体を駆動する振動波モータの駆動回路に於て、
該伸縮の共振振動による該電歪素子のインピーダンス変
化で、前記周波電圧の周波数を発振させることを特徴と
する駆動回路である。
In order to achieve this object, the present invention provides a drive circuit for a vibration wave motor that drives a moving body using progressive vibration waves generated by the expansion and contraction vibration of an electrostrictive element to which a frequency voltage is applied.
The drive circuit is characterized in that the frequency of the frequency voltage is oscillated by a change in impedance of the electrostrictive element due to resonance vibration of the expansion and contraction.

以下図面に示された実施例を詳細に説明し上記本発明の
構成を明らかにする。
The embodiments shown in the drawings will be described in detail below to clarify the structure of the present invention.

第3図は本発明を適用する駆動回路を示すものである。FIG. 3 shows a drive circuit to which the present invention is applied.

同図に於て、10は電圧電源、11は発振部、12は9
0’移相部である。OPI・OF2は演算増[1]器、
R1−R4は抵抗、C1はコンデンサ、1a・1bは前
記の電歪素子である。
In the figure, 10 is a voltage power supply, 11 is an oscillation unit, and 12 is 9
This is a 0' phase shift section. OPI/OF2 is an operation multiplier [1],
R1-R4 are resistors, C1 is a capacitor, and 1a and 1b are the aforementioned electrostrictive elements.

発振部11で、演算増巾器OPIの十入力端子電圧V+
は、抵抗R2とR3により、演算項[1]器OPIの出
力電圧V outを分圧した値v+=(R3/(R2+
R3))・Vout 、、、、(1)になる。同じく、
演算項IJ器OP1の一入力端f電圧■−は、抵抗R1
と電歪素子1aのインピーダンス2により分圧した値 V −=(z /(z 十R1)l 争Vout 、、
、、、、、、(2)になる。
In the oscillator 11, the input terminal voltage V+ of the operational amplifier OPI is
is the value v+=(R3/(R2+
R3))・Vout , , becomes (1). Similarly,
The voltage at one input terminal f of the operational term IJ device OP1 is the resistor R1
The voltage divided by the impedance 2 of the electrostrictive element 1a is V - = (z / (z + R1)l Vout ,,
, , , , (2).

電歪素子のインピーダンスZは、振動周波数fによって
変化し、その特性が第4図に示しである。frは共振周
波数、「aは反共振周波数である。
The impedance Z of the electrostrictive element changes depending on the vibration frequency f, and its characteristics are shown in FIG. fr is the resonant frequency, and a is the anti-resonant frequency.

いま−1二式(2)を周波数fで微分すると、従って、
入力端子電圧の電位差Vin=(V+) (V−)は、
周波数fの変化によって、下表のように増減する。
Now -12 Differentiating equation (2) with respect to the frequency f, therefore,
The potential difference between input terminal voltages Vin=(V+) (V-) is
Depending on the change in frequency f, it increases or decreases as shown in the table below.

この表からも解るように電歪素子の共振周波数frのと
き入力電位差Vinが最大値になる。従って、上記の関
係を満足する抵抗R1−R3を決める。なおそのときの
Qは電歪素子のQをQoとすれば、Ao’Qoとなる(
AOは演算増巾器OF1の増11]度)。
As can be seen from this table, the input potential difference Vin reaches its maximum value when the resonance frequency fr of the electrostrictive element is reached. Therefore, resistors R1-R3 that satisfy the above relationship are determined. Note that the Q at that time becomes Ao'Qo, if the Q of the electrostrictive element is Qo.
AO is the increase of the operational amplifier OF1 (11] degrees).

90°移相部12では、演算増巾器OP2、抵抗R4及
びコンデサCによる積分回路で、演算項+l器OPIの
出力周波電圧の位相を90’遅らせ電歪素子1bに印加
する。
In the 90° phase shifter 12, an integrating circuit including an operational amplifier OP2, a resistor R4, and a capacitor C delays the phase of the output frequency voltage of the operational term +l amplifier OPI by 90' and applies it to the electrostrictive element 1b.

第5図は別な実施例の回路を示すブロック図である。同
図では発振部だけを示し、移相部は前例と同じに構成で
きるから図示を省略しである。この実施例では、ブロッ
クz13〜z16を各種のインピーダンス回路にするこ
とにより、種々の変形が可能である。以下に各変形例を
挙げる。
FIG. 5 is a block diagram showing a circuit of another embodiment. In the figure, only the oscillation section is shown, and the phase shift section is omitted because it can be constructed in the same manner as in the previous example. In this embodiment, various modifications can be made by forming blocks z13 to z16 into various impedance circuits. Each modification example is listed below.

例1.ブロックz14を共振させるべき電歪素子にし、
ブロックz12命z13拳z15を抵抗、ブロックz1
6をショートする。
Example 1. Block z14 is an electrostrictive element that should resonate,
Block z12 life z13 resist fist z15, block z1
Short 6.

例2.ブロックz12を共振させるべき電歪素子にし、
ブロックz13を第6図(a)に示す直列のインダクタ
ンスL1とコンデサC2にする。このとき2πfr=1
/L l eC2にする。ブロックZ14−z15を抵
抗、ブo ツクz16も第6図(a)に示す並列のイン
ダクタンスLlとコンデサC2にする。このとき演算増
巾器OPIの見かけの増巾塵は共振周波数frでAoに
なる。共振周波数frから離れるに従いブロックz16
のインピーダンスが増加して、演算増巾器OPIの入力
端子に於るフィードバック電圧が減少するから、増巾塵
が減少したようになる。これにより予め設定した共振周
波数f「の近傍から離れた共振点に於る発振は抑えられ
る。ブロックz13のインピーダンスも共振周波数fr
の近傍で減少するので、電歪素子であるブッロク12に
印加される電圧は、演算項11器OPIの最大出力に対
応するまで上げられる。
Example 2. Block z12 is an electrostrictive element that should resonate,
The block z13 is made up of a series inductance L1 and a capacitor C2 as shown in FIG. 6(a). In this case, 2πfr=1
/L l eC2. Blocks Z14-z15 are resistors, and block z16 is also a parallel inductance L1 and capacitor C2 shown in FIG. 6(a). At this time, the apparent amplification dust of the operational amplifier OPI becomes Ao at the resonance frequency fr. As the distance from the resonance frequency fr increases, the block z16
Since the impedance of OPI increases and the feedback voltage at the input terminal of the operational amplifier OPI decreases, the amplification dust appears to decrease. This suppresses oscillation at a resonance point far from the vicinity of the preset resonance frequency f.The impedance of block z13 also approaches the resonance frequency fr.
, the voltage applied to the block 12, which is an electrostrictive element, is increased until it corresponds to the maximum output of the operational term 11 unit OPI.

例3.ブロックz12を第6図(c)に示す並列のイン
ダクタンスL3、コンデサC4及び電歪素子1aにする
。このとき2πfr= I/L 3・C4にする。ブロ
ックz13〜z15を抵抗、ブロックz16をショート
する。共振周波数frで、ブロックz12のインピーダ
ンスが最大になり、離れるに従い減少する。これにより
共振周波数frの近傍でしか電圧は印加されない。
Example 3. Block z12 is made up of parallel inductance L3, capacitor C4, and electrostrictive element 1a shown in FIG. 6(c). At this time, 2πfr=I/L 3·C4. Blocks z13 to z15 are connected to resistors, and block z16 is shorted. At the resonant frequency fr, the impedance of the block z12 is maximum and decreases with distance. As a result, voltage is applied only near the resonance frequency fr.

以上説明したように、本発明を適用した駆動回路は、電
歪素子の共振周波数で発振するから、この回路で駆動し
た振動波モータは、騒音を防1):でき、駆動効率が良
くなる。しかもセンサなどを必要としないから、安価に
生産することができる。
As explained above, since the drive circuit to which the present invention is applied oscillates at the resonant frequency of the electrostrictive element, the vibration wave motor driven by this circuit can prevent noise (1) and improve drive efficiency. Moreover, since it does not require sensors or the like, it can be produced at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は振動波モータの主要部の概略図、第2図は振動
波モータの駆動原理を説明する図、第3図は本発明を適
用する実施例の駆動回路図、第4図はその特性図、第5
図・第6図は他の実施例の回路図である。 la*lbは電歪素子、2は振動体、3は移動体、10
は電圧電源、11は発振部、12は9゜0移相部、OP
I・OF2は演算増l]器、R1〜R4は抵抗、Cl−
C5はコンデンサ、Ll−L3はインダクタンス、z1
2〜z16はインピーダンス回路ブロックである。 特許出願人 キャノン株式会社 代 理 人 福 1) 勧 1 −377− IN N
Fig. 1 is a schematic diagram of the main parts of the vibration wave motor, Fig. 2 is a diagram explaining the driving principle of the vibration wave motor, Fig. 3 is a drive circuit diagram of an embodiment to which the present invention is applied, and Fig. 4 is the same. Characteristic diagram, 5th
FIG. 6 is a circuit diagram of another embodiment. la*lb is an electrostrictive element, 2 is a vibrating body, 3 is a moving body, 10
is a voltage power supply, 11 is an oscillation unit, 12 is a 9°0 phase shift unit, OP
I・OF2 is an operational amplifier, R1 to R4 are resistors, Cl-
C5 is a capacitor, Ll-L3 is an inductance, z1
2 to z16 are impedance circuit blocks. Patent applicant Canon Co., Ltd. Agent Fuku 1) 1 -377- IN N

Claims (1)

【特許請求の範囲】[Claims] (1)周波電圧が印加された電歪素子の伸縮振動に励起
されて生ずる進行性振動波で、移動体を駆動する振動波
モータの駆動回路に於て、該伸縮の共振振動による該電
歪素子のインピーダンス変化で、前記周波電圧の周波数
を発振させることを特徴とする駆動回路。
(1) A progressive vibration wave that is generated by being excited by the stretching vibration of an electrostrictive element to which a frequency voltage is applied. A drive circuit characterized in that the frequency of the frequency voltage is oscillated by changing the impedance of an element.
JP59024023A 1984-02-10 1984-02-10 Drive circuit of vibration wave motor Granted JPS60170473A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59024023A JPS60170473A (en) 1984-02-10 1984-02-10 Drive circuit of vibration wave motor
US06/699,319 US4658172A (en) 1984-02-10 1985-02-07 Drive circuit for a vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59024023A JPS60170473A (en) 1984-02-10 1984-02-10 Drive circuit of vibration wave motor

Publications (2)

Publication Number Publication Date
JPS60170473A true JPS60170473A (en) 1985-09-03
JPH0519392B2 JPH0519392B2 (en) 1993-03-16

Family

ID=12126931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59024023A Granted JPS60170473A (en) 1984-02-10 1984-02-10 Drive circuit of vibration wave motor

Country Status (1)

Country Link
JP (1) JPS60170473A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888514A (en) * 1987-10-16 1989-12-19 Matsushita Electric Industrial Co., Ltd. Driving apparatus for ultrasonic motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888514A (en) * 1987-10-16 1989-12-19 Matsushita Electric Industrial Co., Ltd. Driving apparatus for ultrasonic motor

Also Published As

Publication number Publication date
JPH0519392B2 (en) 1993-03-16

Similar Documents

Publication Publication Date Title
KR100328532B1 (en) Angular velocity detector
JPS60170474A (en) Vibration wave motor
FR2709213B1 (en) Electric motor with vibrating elements and elastic coupler.
JPH04161078A (en) Standing wave type ultrasonic motor drive device
US5285127A (en) Single mode resonator and method
JP2000046560A (en) Angular velocity sensor
JPH0515155B2 (en)
JPH07241090A (en) Ultrasonic motor
JPS60170473A (en) Drive circuit of vibration wave motor
JPH07143771A (en) Ultrasonic motor and its manufacture
JP3674013B2 (en) Angular velocity detector
JPS61221584A (en) Drive circuit of vibration wave motor
JPS61203873A (en) Drive circuit of vibration wave motor
JP3453838B2 (en) Ultrasonic motor
JPH0311983A (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JPH072022B2 (en) Ultrasonic motor driving method
JPS61157276A (en) Drive circuit of vibration wave motor
JPH07213078A (en) Ultrasonic motor
JPH066959B2 (en) Piezoelectric fan
JPH11201758A (en) Piezoelectric vibrator and piezoelectric vibrational angular velocity meter
JPS63214380A (en) Piezoelectric type converter
JP3000702B2 (en) Exciting method of vibrating body
JPH0870584A (en) Ultrasonic motor and its manufacture
JPH04131032U (en) Torsional vibration twin tuning fork type vibrator
JPH1054724A (en) Angular velocity detector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term