[go: up one dir, main page]

JPS60170159A - Seald type alkaline storage cell - Google Patents

Seald type alkaline storage cell

Info

Publication number
JPS60170159A
JPS60170159A JP59025426A JP2542684A JPS60170159A JP S60170159 A JPS60170159 A JP S60170159A JP 59025426 A JP59025426 A JP 59025426A JP 2542684 A JP2542684 A JP 2542684A JP S60170159 A JPS60170159 A JP S60170159A
Authority
JP
Japan
Prior art keywords
fiber
nonwoven fabric
separator
denier
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59025426A
Other languages
Japanese (ja)
Inventor
Seiichi Okamoto
岡本 誠一
Sadao Shoji
小路 貞夫
Kentaro Yuasa
健太郎 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59025426A priority Critical patent/JPS60170159A/en
Publication of JPS60170159A publication Critical patent/JPS60170159A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To obtain a stable performance over a long time, in particular in a high temperature by constituting a separator using polypropylene fiber having two different diameters. CONSTITUTION:The cell uses a beltlike separator consisting of a No.1 non woven fabric 1 of polypropylene fiber 0.3-1.0 denier and a No.2 non woven fabric 2 of polypropylene fiber 2-3 denier press fitted on one or both sides of the No.1 non woven fabric. For example, the No.1 non woven fabric 1 is formed to the thickness of 0.2mm. in a fabric density of 50g/cm<2> using polypropylene fiber 0.3-1.0 denier in fiber diameter. Different from the above separator a No.2 non woven fabric 2 is formed in the fabric density of 20g/cm<2> using polypropylene fiber 2-3 denier in fiber diameter and is press fitted on both sides of the No.1 non woven fabric 1 to make a multilayer separator 3 of 0.22mm. thickness.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉形アルカリ蓄電池に係り、とくにそのセパ
レータの改良に関するものでちる。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to sealed alkaline storage batteries, and particularly to improvements in separators thereof.

−従来例の構成とその問題点 一般に、アルカリ蓄電池セパレータは、アルカリ電解液
中にあって正、負極間に介在され、両者の接触を防止す
ると共に、電解液を十分に保持して起電反応を円滑に進
行させるものでなけれはならない。このため、アルカリ
蓄電池用セパレータとしては、耐アルカリ性に富み、電
解液保持能力が大きく、かつ外部衝撃に充分耐えつるこ
とが要求される。とくに密閉形アルカリ蓄電池において
は急速充電性能を確保するためにも、電解液量は最低必
要限に設定されるため、少量の電解液で充分なイオン伝
導性が得られるセパレータが必要である。
- Conventional structure and its problems In general, an alkaline storage battery separator is placed between the positive and negative electrodes in an alkaline electrolyte to prevent contact between the two and to hold sufficient electrolyte to cause an electromotive reaction. must be able to proceed smoothly. Therefore, separators for alkaline storage batteries are required to have high alkali resistance, large electrolyte retention capacity, and sufficient resistance to external impact. In particular, in sealed alkaline storage batteries, the amount of electrolyte is set to the minimum necessary amount to ensure rapid charging performance, so a separator that can provide sufficient ionic conductivity with a small amount of electrolyte is required.

従来、この種のセパレータとしては、ナイロン。Conventionally, this type of separator is made of nylon.

あるいはポリプロピレン繊維を主体とした不織布状のも
のが用いられてきた。
Alternatively, a non-woven fabric made mainly of polypropylene fibers has been used.

このうちナイロン繊維不織布セパレータはこの種の密閉
形アルカリ蓄電池、たとえはHl−Cid蓄電池におい
て最も一般的に用いられてきた。
Of these, nylon fiber nonwoven separators have been most commonly used in this type of sealed alkaline storage batteries, such as Hl-Cid storage batteries.

その長所としては、ナイロン繊維そのものの親水性によ
り充分な保液性を有すると共に電解液含有状態でのガス
透過性に優れていることがあけられル°シかじ、一方高
温における耐アルカリ性、耐酸化性に問題があり電池寿
命劣化の主因となる欠点をも有していた。
Its advantages include sufficient liquid retention due to the hydrophilic nature of the nylon fiber itself, as well as excellent gas permeability when electrolyte is present, as well as alkali resistance and oxidation resistance at high temperatures. However, it also had the disadvantage of being the main cause of deterioration of battery life.

上記のようなナイロン不織布の欠点をカバーするために
、ナイロンよりもより化学的安定性を広い温度範囲で有
するポリプロピレン繊維を主体とした不織布が一部実用
化されつつある。しかし、ポリプロピレン繊維をセパレ
ータの構成材料とするとき、ポリプロピレン繊維自体が
化学的に安定であるため、親水性、保液性がナイロンと
比較して大幅に劣化するとされていた。この点をカバー
するために、■不織布の多孔度、孔容積を大幅に向上さ
せる。■界面活性剤を添加して親水性を向−ヒさせる。
In order to overcome the above-mentioned drawbacks of nylon nonwoven fabrics, some nonwoven fabrics based on polypropylene fibers, which have greater chemical stability than nylon over a wider temperature range, are being put into practical use. However, when polypropylene fibers are used as a constituent material of a separator, it has been said that hydrophilicity and liquid retention properties are significantly worse than those of nylon because polypropylene fibers themselves are chemically stable. In order to address this issue, (1) significantly improve the porosity and pore volume of the nonwoven fabric; (2) Adding a surfactant to improve hydrophilicity.

■ナイロン繊維との混紡、混抄状態としてそれぞれの長
所のみを生かす。などの工夫が行われている。
■By blending with nylon fiber and making a blended paper, only the advantages of each can be utilized. Such efforts are being made.

しかし、■の不織布の孔容積を向上させる方法は、不織
布の厚みが一定であれは、繊維密度を減少させる/こめ
、繊維表面の電解液との接触面積が低下し、含有される
電解液量は見掛上増加するが、その保持力が小さいため
、充放電条件等によっては電解液の偏在を生ずると共に
内部ショート発生の確率も大となる。
However, method (2) of increasing the pore volume of a nonwoven fabric requires that if the thickness of the nonwoven fabric is constant, the fiber density decreases, the contact area of the fiber surface with the electrolyte decreases, and the amount of electrolyte contained appears to increase, but since the holding force is small, the electrolyte may become unevenly distributed depending on charging/discharging conditions, and the probability of internal short circuiting also increases.

さらに、ポリプロピレン繊維は、ナイロンに比べ比重が
小さいためナイロンと同様の重量密度に設定した場合、
かさ密度が大と乃ってガス透過性が低下する。したがっ
てナイロンと同等のガス透過性を確保するためには大幅
に繊維重量密度を低下させなければならす、このような
不織布は強度がきわめて弱いと共に繊維密度のムラが発
生しやすく、きわめて内部ショートが発生しやすく実用
に附えるものでばなかった。
Furthermore, polypropylene fiber has a lower specific gravity than nylon, so if it is set to the same weight density as nylon,
As bulk density increases, gas permeability decreases. Therefore, in order to ensure gas permeability equivalent to that of nylon, the fiber weight density must be significantly lowered.Such nonwoven fabrics have extremely low strength and tend to have uneven fiber density, which can lead to internal short circuits. It was not something that could be easily done and put into practical use.

■の界面活性剤の添加は、初期0稽での親水性。Addition of surfactant (2) makes it hydrophilic at the initial stage.

吸液性を向上させるだけであり、ポリプロピレン繊維本
来の欠点は全く解消できない。
It only improves the liquid absorbency and does not completely eliminate the inherent drawbacks of polypropylene fibers.

■のナイロン繊維との混紡、混抄は長所よりも、むしろ
両者の欠点が顕在化する。
(2) Blending with nylon fiber or mixed papermaking brings out the disadvantages of both rather than the advantages.

す々わち、保液性、親水性はポリプロピレン繊維だけの
場合に比較して若干向上するが、化学的安定性はむしろ
ナイロン繊維に支配され、ポリプロピレン繊維の長所が
全く生かされていない。
In other words, the liquid retention and hydrophilicity are slightly improved compared to the case of using only polypropylene fibers, but the chemical stability is rather dominated by the nylon fibers, and the advantages of polypropylene fibers are not fully utilized.

発明の目的 本発明は、セパレータ全改良することで上記のような従
来の欠点を改良して長期にわたり、特に高温における安
定な寿命性能を得るものである。
OBJECTS OF THE INVENTION The present invention aims to overcome the above-mentioned conventional drawbacks by completely improving the separator, thereby achieving stable life performance over a long period of time, especially at high temperatures.

発明の構成 本発明は繊維径の異なる2種類のポリプロピレン繊維を
用いてセパレータを構成し、繊維密度を低下させること
なくナイロン繊維不織布と同等の保液性を確保したもの
である。すなわち、具体的には0.3〜1.0デニール
の極細繊維により構成される均一々繊維密度の第1の不
織布に、2〜3デニールの繊維により構成され第1の不
織布よりも繊維密度を像減させた第2の不織布を圧着一
体化した多層族造のセパレータとしたものである。
Structure of the Invention In the present invention, a separator is constructed using two types of polypropylene fibers with different fiber diameters, and a liquid retention property equivalent to that of a nylon fiber nonwoven fabric is ensured without reducing the fiber density. That is, specifically, a first nonwoven fabric with a uniform fiber density made of ultrafine fibers of 0.3 to 1.0 denier is added to a first nonwoven fabric made of ultrafine fibers of 2 to 3 denier with a fiber density lower than that of the first nonwoven fabric made of fibers of 2 to 3 denier. This is a multi-layered separator in which the image-reduced second nonwoven fabric is integrated by pressure bonding.

実施例の肚、明 以下実施例に基づき本発明を説明する。Examples of stomach and light The present invention will be explained below based on Examples.

鯵維径がα3〜1.0デニールのポリプロピレン繊維を
用いて50ii’/m”の繊維密度で厚さ0.20記の
第1の不織布1を形成する。これとは別に繊維径が2〜
3デニールのポリプロピレン繊維を用いて20 y /
yy?の繊維密度とした第2の不粋布2を形成し、これ
を前記第1の不縁布1の両側に圧着して厚さ0.22a
ysの第1図に示す多層セパレータ3とする。
A first nonwoven fabric 1 having a thickness of 0.20 mm is formed at a fiber density of 50 ii'/m'' using polypropylene fibers with a fiber diameter of α3 to 1.0 deniers.
20 y / using 3 denier polypropylene fiber
Yy? A second non-woven fabric 2 with a fiber density of
The multilayer separator 3 shown in FIG.

このセパレータ3の保液性、引張強度を測定し八−結果
を次表に示す。
The liquid retention properties and tensile strength of this separator 3 were measured and the results are shown in the following table.

この表において、比較のためのナイロン給維不紺:布B
、および従来のポリプロピレン繊維不織布Cはいずれも
繊維径2〜3デニ一ル程度のものである。
In this table, nylon fiber-fed navy blue for comparison: Fabric B
, and the conventional polypropylene fiber nonwoven fabric C each have a fiber diameter of about 2 to 3 deniers.

表において、Cの従来のポリプロピレン繊維不細布は、
ナイロン繊維との比重差があるため、同一多孔度とする
ために繊維密度を約16%低下させている。
In the table, the conventional polypropylene non-woven fabric of C is
Due to the difference in specific gravity with nylon fibers, the fiber density is reduced by approximately 16% to maintain the same porosity.

木分明品はナイロン繊維不織布と同等の繊維重量密度に
設定しているにもかかわらず、良好な保液性、ガヌ透過
性を示した。
Although the Kibunmei product had a fiber weight density equivalent to that of the nylon fiber nonwoven fabric, it showed good liquid retention and Ganu permeability.

本発明のセパレータの保液性が良好な理由は次のように
考えられる。
The reason why the separator of the present invention has good liquid retention properties is considered to be as follows.

すなわち、この種のセパレータの保液性は、繊維間lの
芹、気毛管現象に左右され、具体的には繊維の大さと繊
維密度とにより決定される。繊維密度と保液率との関係
は第2図に示すように繊維密度5of/yy?f変曲点
として変化する。
That is, the liquid retention property of this type of separator depends on the inter-fiber spacing and tracheal phenomena, and is specifically determined by the fiber size and fiber density. The relationship between fiber density and liquid retention rate is shown in Figure 2, where the fiber density is 5of/yy? f changes as an inflection point.

なお、第2図においては繊維径2〜3デニールの繊維を
用いた。
In addition, in FIG. 2, fibers having a fiber diameter of 2 to 3 deniers were used.

この5oy/ynFの繊維密度において、ポリプロピレ
ンPの繊維径を変化させて保液率を測定した結果が第3
図である。
The results of measuring the liquid retention rate by changing the fiber diameter of polypropylene P at this fiber density of 5oy/ynF are the third results.
It is a diagram.

第2図、第3図力・ら明らかなようにtsofliの繊
維密度でポリプロピレンPの繊維径を0.2〜1.0デ
ニールにすることによりナイロン繊維不織布B以−ヒの
保液性を有する。
As is clear from Figures 2 and 3, by setting the fiber diameter of polypropylene P to 0.2 to 1.0 denier at the fiber density of tsofli, it has a liquid retention property greater than that of nylon fiber nonwoven fabric B. .

しかし、このようなポリプロピレン繊維からなる不織布
Cの引張強度は第41図に示すように、きわめて弱く、
実用に耐えるものではない。そこで2〜3デニールの繊
維径をもったポリプロピレン繊維から構成される第2の
不織布を前記0.2〜1.0デニールのポリプロピレン
繊維から構成される第1の不織布の両側に圧着して引張
強度の向−ヒを図った。
However, the tensile strength of the nonwoven fabric C made of such polypropylene fibers is extremely low, as shown in FIG.
It is not practical. Therefore, a second non-woven fabric made of polypropylene fibers with a fiber diameter of 2 to 3 deniers is crimped to both sides of the first non-woven fabric made of polypropylene fibers of 0.2 to 1.0 denier to increase the tensile strength. The aim was to improve the

この第2のポリプロピレン繊維の不織布を10〜4of
/m’の繊維密度の範囲で変化させて、前記第1の不織
布に圧着し、保液性、引張強度を測定したのが第6図、
第6図である。
10 to 4 of this second polypropylene fiber nonwoven fabric
Fig. 6 shows the results of measuring the liquid retention property and tensile strength of the fibers by pressing them onto the first nonwoven fabric while changing the fiber density within the range of /m'.
FIG.

第5図から明らかなように、第2の不織布の繊維密度が
25 f /772”以下であれば、ナイロン繊維不縁
布Bと同等の範囲の保液性を有する。
As is clear from FIG. 5, if the fiber density of the second nonwoven fabric is 25 f /772'' or less, it has liquid retention in the same range as the nylon fiber nonwoven fabric B.

まだ第6図から明らかなように、引張強度は繊維密度が
10f/m’以−ヒであれば、ナイロン繊維不織布Bと
同等であった。なお、図中りは0.2〜1.0デニール
の繊維径をもったポリプロピレン繊維のみからなる不織
布の引張強度範囲を示す。
As is clear from FIG. 6, the tensile strength was equivalent to that of nylon fiber nonwoven fabric B when the fiber density was 10 f/m' or less. In addition, the inside of the figure shows the tensile strength range of a nonwoven fabric made only of polypropylene fibers having a fiber diameter of 0.2 to 1.0 denier.

本発明のセパレータを水酸化二ソヶw N i、(OH
)2を主体とした正極板と、酸化カドミウムCaOを主
体とした負極板との間に介在させて渦巻状に巻回して容
量1.8Ahの密閉形*t−Ca蓄電池とした。
The separator of the present invention is treated with hydroxide, Ni, (OH
) 2 and a negative electrode plate mainly composed of cadmium oxide CaO and wound spirally to form a sealed *t-Ca storage battery with a capacity of 1.8 Ah.

この電池イはナイロン不織布上パレータを用いた電池口
、および従来のポリプロピレン不織布を用いた電池ハと
ともに周囲温度70℃に〉いて充電は0.1C771A
で16時間、放電はI C771J でサイクル寿命試
験を実施した結果、第7図に示すような良好な結果を得
た。
This battery (1) has a battery port using a nylon non-woven fabric upper pallet, and a battery (3) that uses a conventional polypropylene non-woven fabric at an ambient temperature of 70°C and charges at 0.1C771A.
A cycle life test was conducted using IC771J for 16 hours and discharge, and as a result, good results as shown in FIG. 7 were obtained.

なお、第1.第2の両手織布の圧着一体化の際の重量比
率は2:1〜5:1がよいことが実験的に確認された。
In addition, 1. It has been experimentally confirmed that a weight ratio of 2:1 to 5:1 is preferable when the second two-handed woven fabric is crimped and integrated.

壕だ本実施例においては第2の不織布を第1のセパレー
タの両側に圧着したが、片側のみに圧着した場合でも同
様な効果が認められた。
In this example, the second nonwoven fabric was crimped on both sides of the first separator, but the same effect was observed even when the second nonwoven fabric was crimped on only one side.

発明の効果 以上のように本発明によるセパレータを用いた密閉形ア
ルカリ蓄電池は、高温における寿命特性を良好に保つこ
とができるものである。
Effects of the Invention As described above, the sealed alkaline storage battery using the separator according to the present invention can maintain good life characteristics at high temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1+=け本発明の実施例における密閉形アルカリ蓄電
池に用いるセパレータの断面略図、第2図は同セパレー
タにおける繊維密度と保液率との関係を示す図、第3図
は同セパレータの繊維径と保液率との関係を示す図、第
4図は繊維径と引張強度との関係を示す図、第6図は第
2の不織布の繊維密度と保液率との関係を示す図、第6
図は第2の不織布の繊維密度と引張強度との関係を示す
図。 第7図は同セパレータを用いた密閉形アルカリ蓄電池の
サイクル寿命特性を示す図である。 1・・・・・第1のポリプロピレン繊維不織布、2・・
・・第2のポリプロピレン繊維不織布、3・・・・・・
セパレータ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 1 第2図 、岳j! 遼創1丁ノ町 (′J/が)1m 、娘a、
7条 (テ゛ニールン 第4図 )@ J□寸そ(デ゛二−ルン 第 5 因 第2の千@布の、maz屋(Vヮリ 第6図 第2り不側1介の撮銭゛禮1τ贋(V冶り第7図 リイクル牧(回ノ
Figure 1 is a schematic cross-sectional view of a separator used in a sealed alkaline storage battery according to an embodiment of the present invention, Figure 2 is a diagram showing the relationship between fiber density and liquid retention rate in the separator, and Figure 3 is the fiber diameter of the separator. FIG. 4 is a diagram showing the relationship between fiber diameter and tensile strength. FIG. 6 is a diagram showing the relationship between fiber density and liquid retention rate of the second nonwoven fabric. 6
The figure is a diagram showing the relationship between fiber density and tensile strength of the second nonwoven fabric. FIG. 7 is a diagram showing the cycle life characteristics of a sealed alkaline storage battery using the same separator. 1...First polypropylene fiber nonwoven fabric, 2...
...Second polypropylene fiber nonwoven fabric, 3...
Separator. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 1 Figure 2, Mt. J! Ryoso 1chonomachi ('J/ga) 1m, daughter a,
Article 7 (Tenirun Figure 4) Rei 1τ counterfeit (V Rei 7th Recycle Maki (time

Claims (2)

【特許請求の範囲】[Claims] (1)正負極間に帯状のセパレータを介在して渦巻状に
巻回した極板群を有する密閉形アルカリ蓄電池であって
、前記セパレータは、0.3〜1.0デニールのポリプ
ロピレン繊維からなる第1の不織布と、2〜3デニール
のポリプロピレン繊維からなる第2の不織布とから構成
されており、第1の不織布の少なくとも片面に第2の不
織布を圧着したことを特徴とする密閉形アルカリ蓄電池
(1) A sealed alkaline storage battery having a group of spirally wound electrode plates with a band-shaped separator interposed between the positive and negative electrodes, the separator being made of polypropylene fibers of 0.3 to 1.0 denier. A sealed alkaline storage battery comprising a first nonwoven fabric and a second nonwoven fabric made of 2 to 3 denier polypropylene fiber, the second nonwoven fabric being crimped to at least one side of the first nonwoven fabric. .
(2)セパレータは、第1の不織布と第2の不織布の重
量比率を2:1〜5:1としたものである特許請求の範
囲第1項に記載の密閉形アルカリ蓄電池。
(2) The sealed alkaline storage battery according to claim 1, wherein the separator has a weight ratio of the first nonwoven fabric to the second nonwoven fabric of 2:1 to 5:1.
JP59025426A 1984-02-14 1984-02-14 Seald type alkaline storage cell Pending JPS60170159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59025426A JPS60170159A (en) 1984-02-14 1984-02-14 Seald type alkaline storage cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59025426A JPS60170159A (en) 1984-02-14 1984-02-14 Seald type alkaline storage cell

Publications (1)

Publication Number Publication Date
JPS60170159A true JPS60170159A (en) 1985-09-03

Family

ID=12165634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59025426A Pending JPS60170159A (en) 1984-02-14 1984-02-14 Seald type alkaline storage cell

Country Status (1)

Country Link
JP (1) JPS60170159A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0228603A1 (en) * 1985-12-27 1987-07-15 Kuraray Co., Ltd. Separators for alkaline dry batteries
JPS63148539A (en) * 1986-12-10 1988-06-21 Kanai Hiroyuki Separator for alkaline battery
JPS63158743A (en) * 1986-12-22 1988-07-01 Kanai Hiroyuki Separator for alkaline battery
EP0820108A1 (en) * 1996-07-18 1998-01-21 Saft Separator for accumulator with spirally wounded electrodes and alcaline electrolyte
FR2769408A1 (en) * 1997-10-07 1999-04-09 Alsthom Cge Alcatel ALKALINE ELECTROLYTE ACCUMULATOR, ESPECIALLY NICKEL-CADMIUM OR NICKEL-METAL HYDRURABLE TYPE
JP2002500417A (en) * 1997-12-31 2002-01-08 デュラセル インコーポレイテッド Porous alkaline zinc / manganese oxide battery
JP2002500418A (en) * 1997-12-31 2002-01-08 デュラセル インコーポレイテッド Electrochemical cell balance
EP1074055A4 (en) * 1997-12-31 2005-07-13 Duracell Inc battery separator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0228603A1 (en) * 1985-12-27 1987-07-15 Kuraray Co., Ltd. Separators for alkaline dry batteries
US4746586A (en) * 1985-12-27 1988-05-24 Kuraray Company Limited Separators for alkaline dry batteries
JPS63148539A (en) * 1986-12-10 1988-06-21 Kanai Hiroyuki Separator for alkaline battery
JPS63158743A (en) * 1986-12-22 1988-07-01 Kanai Hiroyuki Separator for alkaline battery
EP0820108A1 (en) * 1996-07-18 1998-01-21 Saft Separator for accumulator with spirally wounded electrodes and alcaline electrolyte
FR2751469A1 (en) * 1996-07-18 1998-01-23 Accumulateurs Fixes SEPARATOR FOR NI-MH ACCUMULATOR
FR2769408A1 (en) * 1997-10-07 1999-04-09 Alsthom Cge Alcatel ALKALINE ELECTROLYTE ACCUMULATOR, ESPECIALLY NICKEL-CADMIUM OR NICKEL-METAL HYDRURABLE TYPE
EP0908963A1 (en) * 1997-10-07 1999-04-14 Alcatel Alkaline electrolyte secondary battery, particularly of the type nickel-cadmium or nickel metal hydride
JP2002500417A (en) * 1997-12-31 2002-01-08 デュラセル インコーポレイテッド Porous alkaline zinc / manganese oxide battery
JP2002500418A (en) * 1997-12-31 2002-01-08 デュラセル インコーポレイテッド Electrochemical cell balance
EP1074055A4 (en) * 1997-12-31 2005-07-13 Duracell Inc battery separator

Similar Documents

Publication Publication Date Title
EP0821422A2 (en) Sealed lead-acid battery
JPS60170159A (en) Seald type alkaline storage cell
JPH0572063B2 (en)
US3476601A (en) Battery including inorganic fibrous material
JPH01187760A (en) Cylindrical alkaline zinc storage battery
EP1039566B1 (en) Alkaline storage battery with two separators
EP0921580A1 (en) Manufacturing method of alkali storage cell
JP2976762B2 (en) Sealed alkaline storage battery
JP2022152915A (en) lead acid battery
JPS6112342B2 (en)
JP2917702B2 (en) Sealed nickel-hydrogen battery
JP3332139B2 (en) Sealed alkaline storage battery
US7052800B2 (en) Separator for nickel-metal hydride storage battery and nickel-metal hydride storage battery
US6645672B2 (en) Alkaline storage battery and method for manufacturing the same
JP3436058B2 (en) Alkaline storage battery
JP7661741B2 (en) Lead-acid battery
JPS6381763A (en) Enclosed type alkaline storage battery
KR100389123B1 (en) Separators for alkaline secondary batteries and manufacturing method thereof
JP3226357B2 (en) Alkaline battery separator and alkaline battery using the same
JPH01264167A (en) Sealed alkaline secondary battery
JPH059815Y2 (en)
JPH0722028A (en) Sealed alkaline zinc storage battery
JPH01169869A (en) Lead-acid battery
JPS63264863A (en) Sealed nickel-cadmium storage battery and its manufacture
JPH0432158A (en) Closed lead acid battery