[go: up one dir, main page]

JPS60169507A - Steel manufacturing method using auxiliary lance - Google Patents

Steel manufacturing method using auxiliary lance

Info

Publication number
JPS60169507A
JPS60169507A JP59025179A JP2517984A JPS60169507A JP S60169507 A JPS60169507 A JP S60169507A JP 59025179 A JP59025179 A JP 59025179A JP 2517984 A JP2517984 A JP 2517984A JP S60169507 A JPS60169507 A JP S60169507A
Authority
JP
Japan
Prior art keywords
oxygen
lance
slag
secondary combustion
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59025179A
Other languages
Japanese (ja)
Inventor
Kenichi Baba
馬場 賢一
Yoshiyuki Kyojima
京島 良幸
Mitsuhiko Nishimura
西村 光彦
Teruo Nakamura
中村 暉生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59025179A priority Critical patent/JPS60169507A/en
Publication of JPS60169507A publication Critical patent/JPS60169507A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は脱S1、脱P、脱S等の予備処理を行なった溶
銑の製鋼法に関するものであり、さらに詳しくはスクラ
ップ等の冷鉄源配合比を増加させることのできる溶銑の
製鋼法に関するものである。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a method for making steel using hot metal that has been subjected to preliminary treatments such as de-S1, de-P, de-S, etc., and more specifically, the blending ratio of cold iron sources such as scrap. This relates to a method of making steel using hot metal that can increase the amount of steel.

従来技術 現在の溶銑の精錬法の−っである転炉製鋼法は、一般的
には高炉より出銑した溶銑を、溶銑鍋またはトピート力
一によって移送し、転炉に装入し、転炉に多h;の造滓
剤を入れ上部からランスにより酸素を吹きつけ、溶銑中
のC,Si、p、s@の不要成分を取り除くものである
。近年、この転炉製鋼法かコスI・低減、品質向上およ
び省エネ等の観点から見向されつつある。すなわち、転
炉製鋼法は以下述べるいくつかの欠点を有し、又、その
改>Y+が望まれている。
Prior Art In the converter steelmaking method, which is the current method for refining hot metal, generally hot metal is tapped from a blast furnace, transferred by a hot metal pot or a topite power source, charged into a converter, and then transferred to a converter. A large amount of slag-forming agent is added to the hot metal, and oxygen is blown from the top using a lance to remove unnecessary components such as C, Si, p, and s@ from the hot metal. In recent years, this converter steel manufacturing method has been attracting attention from the viewpoints of cost reduction, quality improvement, energy saving, etc. That is, the converter steel manufacturing method has several drawbacks as described below, and improvements to it are desired.

(1)ダスI・およびスラグへの酸化鉄として逃げる鉄
ロスが多い。
(1) There is a lot of iron loss that escapes as iron oxide to Das I and slag.

(2)造滓剤の使用平が多く、そのため鋼中の水素濃度
が高くなり、その除去の〆め一次精錬を要することにな
ったり、多漿に発生するスラグによる持去り熱が多いな
どの問題がある。
(2) Slag-forming agents are often used, which increases the hydrogen concentration in the steel, necessitating primary refining to remove it, and causes problems such as a large amount of heat being carried away due to the slag generated in a large amount of slag. There's a problem.

(3)スラグの酸素ポテンシャルが高いため、合金添加
時にスラグ及びメタル中酸素による合金歩留が悪い。
(3) Since the oxygen potential of the slag is high, the alloy yield is poor due to oxygen in the slag and metal when adding the alloy.

(4)脱C,Si、P、Sを−っの容器で同時に行うた
め、各反応の効率か低い。
(4) Because the removal of C, Si, P, and S are performed simultaneously in two containers, the efficiency of each reaction is low.

又、エネルギーの有効利用の面から考えると、最近では
転炉カスの回収を実施する例か多くなっているが、以下
の点から見直しを必要とされている。
Furthermore, from the point of view of effective energy use, recently there have been many cases in which converter waste is recovered, but this needs to be reconsidered from the following points.

(a)回収カスを発電に利用する場合には20%程度し
か利用できないなど、エネルギー利用効率が低い。
(a) When the collected waste is used for power generation, only about 20% can be used, so the energy use efficiency is low.

(b)タスト除去設備が必要となるなど設備費か大でお
る。
(b) Equipment costs are high, such as the need for dust removal equipment.

(C)転炉カスの発生が間けつ的でパンファーか必要で
ある。
(C) Converter scum is generated intermittently and a breadfer is required.

これら諸欠点の数片や晃直しの霊求に対して、幾つかの
ノに案がなされてきた。
Several proposals have been made to address some of these shortcomings and seek correction.

例えば、鉄と鋼、Vol 89、No15、「」、下吹
き転炉における少年スラグ吹錬の精錬特性」によると造
f+′剤を大+ljに削減させた少甲スラグ時には、1
悦戊により発生するGOの転炉内での燃焼か大きく、そ
の発生熱を有効利用することにより、スクラップ比一杯
の向上が期待できる。
For example, according to Tetsu to Hagane, Vol. 89, No. 15, "Refining characteristics of juvenile slag blowing in a bottom-blown converter," when using low-K slag with the F + ' agent reduced to large + lj,
The combustion of GO generated by Etsubo in the converter is large, and by effectively utilizing the generated heat, it is expected that the scrap ratio will be greatly improved.

又、特開111コ58−73712号公報には、]−底
吹き転炉で転炉廃カスに炭素源及び/又は水素源を婬加
して、転炉かず中のC01H7濃度を向」二し、右効利
用紮ルすることか小されている。しかしながら、該公報
においてはト底吹転炉で上部十ランスより酸素を(、l
(給して吹錬を行ったとき、2次燃焼率β(−[[;C
)、/(CflCO7)] X100χ)が40%超と
なると、炉内熱効率が低ドすることが示されている(同
公報第7図)。
Furthermore, Japanese Patent Application Laid-open No. 111-58-73712 discloses that a carbon source and/or a hydrogen source is added to the converter waste in a bottom-blown converter to increase the C01H7 concentration in the converter waste. And it has been small to use the right effect. However, in this publication, oxygen (, 1
(When blowing is performed with
), /(CflCO7)] It has been shown that when X100χ) exceeds 40%, the in-furnace thermal efficiency decreases (Figure 7 of the same publication).

炉内熱動−トの向I−1すなわち溶鋼への着熱効率を向
[、させることは、溶銑に対するスクランプ等の配合率
を向1−させ(すなわち、装入溶銑配合率の低減させ)
ることが可能となり、鉄源選択の自由瓜を増すとノ(に
、コスト低減、省エネ効果ともなるためその黄望が大で
あった。
Improving the direction of heat transfer in the furnace, that is, the heat transfer efficiency to molten steel, means increasing the blending ratio of scrap, etc. to hot metal (i.e., reducing the charging hot metal blending ratio).
There were great prospects for this, as it would increase the freedom of choice of iron source, and also reduce costs and save energy.

溶鋼へのlj熱効率を向」−させるため転炉中に加炭剤
を添加する方法も提案されているが加1に剤(たとえば
コークス)から溶鋼への窒素ピンクア、プという問題が
起ってくる。
In order to improve the thermal efficiency of the molten steel, a method has been proposed in which a recarburizing agent is added to the converter. come.

発明の1」的 本発明は、補助ランスな(21用する新たな製鋼法で、
2次燃焼率βを40%を越える範囲で安定に維持し、か
つその発生熱を高着熱効率でもって溶鋼に伝えることを
確保することにより、冷熱源の配合比の増大をIi丁能
とすることを目的とする。
The present invention is a new steel manufacturing method that uses an auxiliary lance (21).
By stably maintaining the secondary combustion rate β in a range exceeding 40% and ensuring that the generated heat is transferred to the molten steel with high heat transfer efficiency, it is possible to increase the blending ratio of the cold heat source. The purpose is to

発明の構成 ずなわぢ、本発明は精錬容器内の溶銑に、湯面1一部よ
り酸素ランスを用いて精錬を行うにあたり、七吹き酸素
による湯面へこみ深さLが80≦L≦400 mmとな
るよう送酸を行なう−)Sランスと、合A1で主ランス
の送m!:i’rの60%以下の送酸1−となるような
送酸を行なう補助ランスを用いて精錬を行なうことを特
徴とする製鋼法である。
Structure of the Invention In the present invention, when refining hot metal in a refining vessel using an oxygen lance from a part of the hot metal surface, the depth L of the hot metal surface indentation due to seven blows of oxygen is 80≦L≦400 mm. Oxidation is carried out so that -) S lance and main lance are fed in combination A1 m! :This is a steelmaking method characterized by carrying out refining using an auxiliary lance that delivers oxygen so that the oxygen delivery is 1- or less than 60% of i'r.

作用 次に本発明の詳細な説明する。action Next, the present invention will be explained in detail.

2次燃焼の反応および伝熱機構について、第1図に基づ
き説明する。図1±精錬容器1の概略断面図で、耐火物
2で内部を覆われ、その内部に溶銑−(鋼)3が装入さ
れている。十ランス4から吐出する酪素ジェントは溶鋼
3に衝突すると、溶鋼面I一部には酸化鉄が生成し、そ
れがスラグ−溶鋼界面では、FeO+ C+Fe+CO
↑の反応が、土部スラグ層では溶鋼から発生したCOと
酸化鉄スラグFeOとの間にFe0−巨;0→Fe+ 
007なる反応が起こる。
The reaction and heat transfer mechanism of secondary combustion will be explained based on FIG. 1. FIG. 1 is a schematic cross-sectional view of a refining vessel 1, the interior of which is covered with a refractory 2, into which hot metal (steel) 3 is charged. When the butyric acid discharged from the lance 4 collides with the molten steel 3, iron oxide is generated on a part of the molten steel surface I, and at the slag-molten steel interface, FeO+ C+Fe+CO
In the Dobe slag layer, the reaction ↑ occurs between the CO generated from molten steel and the iron oxide slag FeO.
007 reaction occurs.

この結果、吹錬中温mL:部には、酸化鉄の融体とCO
およびGO,からなる気液混合状態のスラグフォーミン
グ層5ができる。つまり2次燃焼といわれている反に一
;はこのスラグフォーミング層5内で起こり、高温にな
ったスラグの熱が供給?ρ”6を通り、吹込羽117か
ら吹込まれたガスにより底吹攪拌による強制対流で溶鋼
に伝達されるわけである。そこで本発明はこの2次燃焼
の機構を踏えて1;0h錬装置2において]:、ランス
4からは、脱Cと鉄の酸化を1゛目的とした送酸を行な
い、補助ランス8からは溶銅1;部にできたスラグフォ
ーミング層5内のCOを燃焼させることを主目的として
送酸を行なう。本発明におて補助ランスが必要である理
111を以下に述べる。
As a result, the molten iron oxide and CO
A slag forming layer 5 in a gas-liquid mixed state consisting of and GO is formed. In other words, contrary to what is called secondary combustion, it occurs within this slag forming layer 5, and the heat from the high-temperature slag is supplied. ρ"6, and is transmitted to the molten steel by forced convection caused by bottom-blowing stirring by the gas blown in from the blower blade 117. Therefore, the present invention is based on this secondary combustion mechanism, and is transmitted to the molten steel by ]: From the lance 4, oxygen is sent for the purpose of removing carbon and oxidizing iron, and from the auxiliary lance 8, the purpose is to burn the CO in the slag foaming layer 5 formed in the molten copper. The main purpose is to supply oxygen.The reason why an auxiliary lance is necessary in the present invention will be described below.

すなわち、1ランスのみで2次燃焼率をアンプするには
、ランス高さを高くする必要がある。しかしある範囲以
1.になると2次燃焼率は低ドする。これ1」トランス
からの酸素が溶鋼に達するまでの距Nトおよび時間が長
くなること、また途中にスラグフォーミング層がイT合
することにより、有効に溶鋼に到達し、脱炭反応を起こ
す酸素が減少する ・力、発生GOかスラグフォーミン
グ層および1一部ガス相9で酸素と反応する確率が高く
なる等のためと考えられる。この結果上ランスのみで2
次燃焼率をにげようとすると、次のような欠点が生しる
That is, in order to increase the secondary combustion rate with only one lance, it is necessary to increase the lance height. However, beyond a certain range 1. When this happens, the secondary combustion rate becomes low. 1) The distance and time it takes for oxygen from the transformer to reach the molten steel becomes longer, and the slag forming layer is formed on the way, so that the oxygen effectively reaches the molten steel and causes a decarburization reaction. This is thought to be due to the fact that the probability of the generated GO reacting with oxygen in the slag forming layer and the gas phase 9 increases. As a result, only Lance has 2
Attempting to reduce the secondary combustion rate results in the following disadvantages.

(1,) −次燃焼率βがβ>40%の範囲では溶鋼へ
の4熱効率が著しく低ドする。この原因は、2/!X、
燃焼かスラグフォーミング層内よりも、むしろスラグフ
ォーミング層の−[一部で起こるようになるためと思わ
れる。
(1,) When the -secondary combustion rate β is in the range β>40%, the efficiency of heat transfer to molten steel is significantly reduced. The reason for this is 2/! X,
This appears to be because combustion occurs in a part of the slag-forming layer rather than within the slag-forming layer.

(ジ) 2次燃焼二Vを」−げろと、脱炭酸素効率が低
ドし、吹錬時間が長くなる。
(J) When secondary combustion occurs, the decarburization oxygen efficiency decreases and the blowing time becomes longer.

そこで本発明者は補助ランス8を用いることによりこれ
らの欠点が是11−されることを見出したのである。つ
まり十ランスは着熱効率の低トしない範囲に七ントシて
おいて、補助ランスがらはスラグフォーミング層内に直
接送酸し、該スラグフォ−ミ7グE’ 内のCOを燃焼
させてスラグについf; payを底吹き攪拌による強
制対流で溶411に伝熱することにより、ノ1熱効率の
低ドを防げる。また補助ランスと主うソスtオ独マfに
機能するため、−1ランスでの脱炭酸素列−1/、を低
ドさせることなく安定に随持しておき、2次燃焼率だけ
を最大にまで1−げることかIIf能となるわけである
The inventor of the present invention has discovered that by using the auxiliary lance 8, these drawbacks can be overcome. In other words, the ten lances are set at seven points within a range that does not reduce the heat transfer efficiency, and the auxiliary lances send oxygen directly into the slag forming layer, burning the CO in the slag forming layer E' and forming the slag. By transferring heat to the melt 411 by forced convection through bottom-blown stirring, low thermal efficiency can be prevented. In addition, since it functions in conjunction with the auxiliary lance, the decarburization oxygen train -1/ in the -1 lance is kept stable without lowering, and only the secondary combustion rate is controlled. Increasing the power to the maximum level becomes the IIf ability.

2次燃焼反1心は、総括的にはCO十局)→CO7で表
わせるか高1fll!になるど、CO7の解14¥反応
が起こるようになる。火’+、ntiA度は2色高温に
1で実A11l して、2400−2600°C程度と
報fJiされている(Automa−LionΔm5t
er+Jam 5ession、1965年3月、In
terna−tional Cant、 on Iro
n and 5teel Making)。そこでスラ
グフォーミング層内温度はCOの燃焼によって2500
°C程度になると考えられる。この温度より、2次燃3
J’l−j<は・1・衡論的に60%程1臭が最大限界
イ直と考えられる。
The secondary combustion anti-1 core can be expressed as 10 stations of CO in general) → CO7 or high 1 flll! Then, the CO7 solution 14\ reaction begins to occur. Fire'+, ntiA degree is reported to be about 2400-2600°C (Automa-LionΔm5t).
er+Jam 5ession, March 1965, In
terna-tional Cant, on Iro
n and 5teel making). Therefore, the temperature inside the slag forming layer increases to 2,500 yen due to the combustion of CO.
It is thought that the temperature will be around °C. From this temperature, secondary combustion 3
J'l-j< is 1.Equitically speaking, about 60% of 1 odor is considered to be the maximum limit.

次に本発明の数値限定理由を説明する。Next, the reason for the numerical limitation of the present invention will be explained.

)ニランスについては2次燃焼率を上げる必要Lソフi
・プロー柴ヂIが必須で」−吹き酸素による湯面へこみ
深さLは80≦L≦400mmとすることがlI(まし
い。これよりさらにランス高さをLげソフトブロー条ヂ
1による吹錬、すなわち湯面へこみ深さで示すとL<8
0mmの条件とすると、COガスがスラグフォーミング
層内で燃えるよりも11部ガス層で多く燃えるため、ス
ラグフォーミング層の対流伝熱よりもカス体からの輻射
伝熱の比重が高まりIf然効−Vは低トーする。
) For Nirans, it is necessary to increase the secondary combustion rate.
- The depth L of the dent in the hot water surface due to blown oxygen should be 80≦L≦400mm (preferably. When expressed in terms of depth, that is, the depth of the dent in the hot water surface, L<8.
If the condition is 0 mm, more CO gas burns in the 11 part gas layer than in the slag forming layer, so the specific gravity of radiation heat transfer from the slag body becomes higher than that of convection heat transfer in the slag forming layer. V has a low toe.

また逆にランス高さを下げハートブローのし〉400m
mの条件では、2次燃焼はほとんど起こらずjM X<
’+転炉操業と同一となってくる。しかもこの条件にお
いては、スピッティングおよびダスト発生lt+も多く
なり歩留悪化の=し要因となる。
On the other hand, lower the lance height to reach 400m.
Under the conditions of m, secondary combustion hardly occurs and jM
'+ It becomes the same as converter operation. Furthermore, under these conditions, spitting and dust generation lt+ also increase, which becomes a factor in deterioration of yield.

以−1のことから−1:、5;ンスの送酸条件としては
、2次燃焼、歩N・/1等から老えて80≦L≦40m
mがi[/ましい。
From the above-1, the oxygen supply conditions for 1:, 5;
m is i[/like.

このトランスのみによる2次燃焼率βは前記したことく
品々40%である。
The secondary combustion rate β due to this transformer alone is 40% as described above.

次に補助ランス送酸量の省え方について述べる。2次燃
焼率については、前述したように’P−FJi論から6
0%稈1;\が限度である。また2次燃焼−Vと補助ラ
ンスからの送酸量の関係は (ただし、1;0:、:補助ランスからの送酸η1、F
o7);ランスからの送酸量、β′ 総括2次燃焼率(
χ)、β、1′ランスのみ時の2次燃焼率(χ)を表わ
す。)で表わぜ、1記1ランス条件においては0くβ≦
40%であるから補助ランスからの送酸量は、最高で1
.ランス送酸111の60%を確保すればよいことにな
る。
Next, we will discuss how to reduce the amount of oxygen supplied by the auxiliary lance. Regarding the secondary combustion rate, as mentioned above, 6 is derived from the 'P-FJi theory.
The limit is 0% culm 1;\. In addition, the relationship between the secondary combustion -V and the amount of oxygen sent from the auxiliary lance is (1; 0:, : oxygen sent from the auxiliary lance η1, F
o7); Amount of oxygen sent from the lance, β' Overall secondary combustion rate (
χ), β, represents the secondary combustion rate (χ) when only the 1' lance is used. ), and under the 1-1-lance conditions, 0 β≦
Since it is 40%, the amount of oxygen sent from the auxiliary lance is 1 at most.
.. It is sufficient to secure 60% of the lance oxygen supply 111.

たとえtiβ=0%、β′−60%のkきFo; / 
Fo7−0.6(80%); β−40%、f3’=8
0%ノドき、Fo’、/Fo2 ” o、 143(1
4,3%)となり、第2図はこの関係を説明したt〕の
である。すなわち、FO’y /Fo7のIZ限は60
%で、それ以l;酸素を送酸しても2次燃焼率は向I、
リー4、高着熱効率も得られない。そこで補助ランス合
、:1で主ランスの送酸量の60%以ト′となるような
送酸を行うこととした。
Even if tiβ=0%, β'-60%, Fo; /
Fo7-0.6 (80%); β-40%, f3'=8
0% throat, Fo', /Fo2 ” o, 143 (1
4.3%), and Figure 2 illustrates this relationship. In other words, the IZ limit of FO'y /Fo7 is 60
% and more than that; even if oxygen is supplied, the secondary combustion rate is
Lee 4, high heat transfer efficiency cannot be obtained either. Therefore, it was decided to supply oxygen in such a way that the amount of oxygen supplied by the auxiliary lance was 60% or more of the amount of oxygen supplied by the main lance at a ratio of 1:1.

なお、補助ランスは複数本が好ましい。Note that it is preferable to use a plurality of auxiliary lances.

次に実施例をもって、さらに具体的に説明する。Next, the present invention will be explained in more detail with reference to examples.

実施例1 10を炉において、第1表に示す操業を行なった。その
結果従来法では主ランスによる湯面へこみ深さが70m
mの時は、100mmのときに比べ、2次燃焼率は低ト
し、さらに着熱効率も低ドするため、スクラップ溶解砥
は減少する。またL = 1010011I・定で、補
助ランスからの送酸量がOの従来法と、22ONm’/
H(対土うンス送酸嫉比14.7%)の本発明法の比較
では、本状の方が従来法に比べて2次燃焼率か40%か
ら58%とほぼ理論通りに18%もアンプし、スクラン
プ比にして6z増加した。
Example 1 The operations shown in Table 1 were carried out using No. 10 in a furnace. As a result, with the conventional method, the depth of depression caused by the main lance was 70 m.
When the diameter is 100 mm, the secondary combustion rate is lower and the heat transfer efficiency is also lower, so the amount of scrap melting abrasive is reduced. In addition, L = 1010011I・constant, and the conventional method in which the amount of oxygen sent from the auxiliary lance is O, and 22ONm'/
In a comparison of the method of the present invention for H (oxygen to soil ratio of 14.7%), the secondary combustion rate of the present method is 40% to 58% compared to the conventional method, which is 18%, almost as per theory. It was also amplified, and the scram ratio increased by 6z.

実施例2 90を炉において、第2表に示す操業を行なった結果、
2次燃焼率が18%から32%と13%もアンプし、ス
クラップ比で5%増加した。
Example 2 As a result of carrying out the operations shown in Table 2 using 90 in a furnace,
The secondary combustion rate increased by 13% from 18% to 32%, and the scrap ratio increased by 5%.

発明の効果 このように本発明は、溶銑配合率を下げ鉄源選択の自由
度の増すことのできる工業的に有意義な発明である。
Effects of the Invention As described above, the present invention is an industrially significant invention that can lower the hot metal blending ratio and increase the degree of freedom in selecting iron sources.

第1表 第2表Table 1 Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図は精錬容器の概略断面図である。第2図は本発明
の説明図で、2次燃焼率と送醇量比との関係を示すグラ
4)である。 l・・・精錬容器、2・・・耐火物、3・・・溶鋼、4
・・−主ランス、5・―・スラグフ号−ミング層・、6
・・φ刀ス供給管、7・・・底吹カス吹込羽L−J、8
・・・補助ランス、9・・・」二部カス相。 特Δ1出願人 新11木製鐵株式會社 代理人 弁理士 井 ト 雅 生 第1図 第2図 73(%) 昭和59年5月9日 特許庁長官 若杉和夫殿 1、事件の表示 昭和59年特許願第25179号 2、発明の名称 補助ランスを用いる製鋼法 3、補正をする者 事件との関係 特許出願人 住所 東京都千代田区大手町二丁目6ff3号名称 (
665)新11木製鐵株式會社代表者 武 1) 豊 4、代理人 〒103 住所 東京都中央区日本稿2丁目2番1゛壮共同ビル(
呉服橋) 明細書の発明の詳細な説明の欄 6、補iEの内容 (1)明細*第4頁1行I]の「転炉かす」を「111
人炉カヌ」 と、劉j11ニする。 (2)同第5頁2行「1の「冷熱0:(」を「l全鉄〃
:ミ」とt1’ +1−する。
FIG. 1 is a schematic cross-sectional view of the refining vessel. FIG. 2 is an explanatory diagram of the present invention, and is graph 4) showing the relationship between the secondary combustion rate and the feed ratio. l... Refining container, 2... Refractory, 3... Molten steel, 4
...-Main Lance, 5...Slagf-Ming Layer...6
... φ blade supply pipe, 7 ... Bottom blowing waste blowing blade L-J, 8
... Auxiliary lance, 9..." Two-part scum phase. Patent Delta 1 Applicant New 11 Wooden Steel Co., Ltd. Agent Masao Ito, Patent Attorney Figure 1 Figure 2 73 (%) May 9, 1980 Commissioner of the Patent Office Kazuo Wakasugi 1, Indication of Case 1988 Patent Application No. 25179 2, Steel manufacturing method using an auxiliary lance in the name of the invention 3, Relationship with the amended person's case Patent applicant address 3-6ff, Otemachi 2-chome, Chiyoda-ku, Tokyo Name (
665) Shin 11 Wooden Iron Co., Ltd. Representative Takeshi 1) Yutaka 4, Agent 103 Address 2-2-1 Nihonsho, Chuo-ku, Tokyo Sokyodo Building (
Gofukubashi) Detailed explanation of the invention in the specification column 6, contents of Supplement iE (1) Specification *Page 4, line 1 I] "Converter scum" is changed to "111"
"It's a human hearth," Liu said. (2) Page 5, line 2, “1’s cold and heat 0: (” is changed to “l Zentetsu.
:Mi' and t1' +1-.

Claims (1)

【特許請求の範囲】[Claims] 精錬容器内の溶銑に、湯面上部より酸素ランスを用いて
精錬を行うにあたり、−1−吹き酸素による湯面へこみ
深さLが80≦L≦400 mmとなるよう送酸を行な
う主ランスと、合計で主ランスの送酸量の60%以下の
送酸量となるような送酸を行なう補助ランスを用いて精
錬を行なうことを特徴とする製鋼法。
When refining hot metal in a refining vessel using an oxygen lance from above the hot metal surface, -1- A main lance that supplies oxygen so that the depth L of the hot metal surface depression due to blown oxygen is 80≦L≦400 mm. A steelmaking method characterized in that refining is carried out using auxiliary lances that supply oxygen such that the total amount of oxygen supplied is 60% or less of the amount of oxygen supplied by the main lance.
JP59025179A 1984-02-15 1984-02-15 Steel manufacturing method using auxiliary lance Pending JPS60169507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59025179A JPS60169507A (en) 1984-02-15 1984-02-15 Steel manufacturing method using auxiliary lance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59025179A JPS60169507A (en) 1984-02-15 1984-02-15 Steel manufacturing method using auxiliary lance

Publications (1)

Publication Number Publication Date
JPS60169507A true JPS60169507A (en) 1985-09-03

Family

ID=12158773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59025179A Pending JPS60169507A (en) 1984-02-15 1984-02-15 Steel manufacturing method using auxiliary lance

Country Status (1)

Country Link
JP (1) JPS60169507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277518A (en) * 1988-06-21 1990-03-16 Kawasaki Steel Corp Method for vacuum-degasifying and decarburizing molten steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277518A (en) * 1988-06-21 1990-03-16 Kawasaki Steel Corp Method for vacuum-degasifying and decarburizing molten steel

Similar Documents

Publication Publication Date Title
US4362556A (en) Arc furnace steelmaking involving oxygen blowing
JP2011157570A (en) Method for dephosphorizing molten iron and top-blowing lance for refining
JPS6150122B2 (en)
JPS60169507A (en) Steel manufacturing method using auxiliary lance
JP3705170B2 (en) Hot phosphorus dephosphorization method
WO2020152945A1 (en) Method for producing low-carbon ferromanganese
JP4080679B2 (en) Hot phosphorus dephosphorization method
JPS61284512A (en) Manufacturing method of high chromium steel using chromium ore
JPH11131122A (en) Decarburization and refining of crude stainless steel using blast furnace hot metal and ferrochrome alloy.
JP7447878B2 (en) Method for decarburizing molten Cr and method for producing Cr-containing steel
JPH07173515A (en) Decarburization and refining method for stainless steel
JP3823877B2 (en) Method for producing low phosphorus hot metal
JP3800866B2 (en) Hot metal desiliconization method
JP2812852B2 (en) Hot metal desiliconization and dephosphorization method
JP2005187912A (en) Method for preliminarily treating molten pig iron
JP4513340B2 (en) Hot metal dephosphorization method
JP2725466B2 (en) Smelting reduction steelmaking method
JPH08176640A (en) Arc furnace smelting
JPS6250543B2 (en)
JPH04214812A (en) Method for smelting stainless steel
JP4806945B2 (en) Method for producing low phosphorus hot metal
JPS6223047B2 (en)
JPS63130745A (en) Manufacture of medium-or low-carbon ferromanganese
JPS62109914A (en) Pretreatment of molten pig iron
JPH09227918A (en) Stainless steel melting method