JPS6016891A - Preparation of crystal by application of magnetic field and its device - Google Patents
Preparation of crystal by application of magnetic field and its deviceInfo
- Publication number
- JPS6016891A JPS6016891A JP12025983A JP12025983A JPS6016891A JP S6016891 A JPS6016891 A JP S6016891A JP 12025983 A JP12025983 A JP 12025983A JP 12025983 A JP12025983 A JP 12025983A JP S6016891 A JPS6016891 A JP S6016891A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- melt
- coil
- crystal
- airtight container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/30—Mechanisms for rotating or moving either the melt or the crystal
- C30B15/305—Stirring of the melt
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は容器中の原料融体から種子結晶を用いて結晶成
長を行なう引上は法(C2法)あるいは原料多結晶棒を
融解してなる融帯から結晶成長を行なう浮遊帯域法(F
Z法)などの結晶製造方法に係るもので、特に金属や半
導体などのよう拠導電性の融液からの結晶成長時忙、直
流磁界を印加して、結晶の特性向上を計る結晶製造技術
に関するものである。Detailed Description of the Invention (Industrial Application Field) The present invention is a method for growing crystals from a raw material melt in a container using seed crystals (C2 method) or by melting a raw material polycrystalline rod. The floating zone method (F
This relates to crystal manufacturing methods such as the Z method, in particular the crystal manufacturing technology that improves the characteristics of crystals by applying a direct current magnetic field during the growth of crystals from conductive melts of metals, semiconductors, etc. It is something.
(従来技術)
本発明はCZ法やFZ法などにより結晶を製造する場合
、結晶の均質性に悪影響を及ばず融液内の熱対流を効果
的に抑制する方法として本発明者らが特願昭56−32
451号(特開昭57−149894号)で提案した結
晶製造方法、すなわち結晶の成長界面にほぼ垂直方向の
直流磁界を印加する結晶製造装置および方法に関するも
のである。本発明は上記基本的発明に関して、その後、
種々の具体的磁界発生手段を検討した結果得られた、小
形にして電力損失も少く、安定に強磁界を実現する磁界
印加結晶製造方法および結晶製造装置を提供することを
目的とするものである。(Prior art) The present invention was filed in a patent application by the inventors as a method for effectively suppressing thermal convection within the melt without adversely affecting the homogeneity of the crystal when producing crystals by the CZ method, FZ method, etc. Showa 56-32
The present invention relates to a crystal manufacturing method proposed in No. 451 (Japanese Unexamined Patent Publication No. 57-149894), that is, a crystal manufacturing apparatus and method in which a direct current magnetic field is applied in a substantially perpendicular direction to the growth interface of a crystal. The present invention relates to the above basic invention, and then:
The object of the present invention is to provide a magnetic field application crystal manufacturing method and crystal manufacturing apparatus that are compact, have little power loss, and stably produce a strong magnetic field, which were obtained as a result of studying various specific magnetic field generation means. .
(発明の構成)
上記の目的を達成するため、本発明は高温加熱された融
体才たは融帯と、これを囲むように設けられている加熱
手段および保温手段、さらに外部雰囲気との分離のため
の気密容器と、を備える結晶製造装置において、前記の
気密容器の周囲に同軸上に巻いた複数巻の導体を設け、
前記の導体に直流電流又は直流に近い脈流電流を印加し
、高温加熱された融体または融帯に直流磁界を印加した
状態で結晶成長を行わしめることを特徴とする磁界印加
結晶製造方法を発明の要旨とするものである。(Structure of the Invention) In order to achieve the above object, the present invention provides a method for separating a melting body or melting zone heated to a high temperature, a heating means and a heat retaining means provided so as to surround this, and furthermore, from an external atmosphere. A crystal manufacturing apparatus comprising an airtight container for, and a plurality of turns of a conductor coaxially wound around the airtight container,
A method for producing a crystal by application of a magnetic field, characterized in that a direct current or a pulsating current close to direct current is applied to the conductor, and crystal growth is performed in a state where a direct current magnetic field is applied to a melt or melt zone heated to a high temperature. This is the gist of the invention.
さらに本発明は高温加熱された融体または融帯とこれを
囲むようにして設けられた加熱手段および保温手段さら
に外部雰囲気との分離のための気密容器とからなる結晶
製造装置において、前記の気密容器の周囲に同軸状に巻
いた複数巻の導体と、前記の導体間を絶縁する手段およ
びこの導体を冷却する手段とを備えたことを特徴とする
磁界印加結晶製造装置を発明の要旨とするものである。Furthermore, the present invention provides a crystal manufacturing apparatus comprising a melt or melt zone heated to a high temperature, a heating means and a heat insulating means provided to surround the melt, and an airtight container for separating it from the external atmosphere. The gist of the invention is a magnetic field application crystal manufacturing apparatus characterized by comprising a plurality of turns of a conductor coaxially wound around the circumference, means for insulating between the conductors, and means for cooling the conductor. be.
次に本発明の実施例を添附図面について説明する。なお
実施例は一つの例示でおって、本発明の鞘“神を逸脱し
ない範囲で、種々の変更あるいは改良を行いうろことは
云うまでもない。Next, embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the scope of the present invention.
(実施例) 次に本発明の具体的な実施例を図面を用いて説明する。(Example) Next, specific embodiments of the present invention will be described using the drawings.
〔実施例1〕
第1図は本発明をCZ法シリコン単結晶育成に適用した
場合を示す。第1図妃おいて、1はシリコン融液、2は
石英るつぼ、3は石英るつは2を収容するグラファイト
るつぼ、4は発熱体、5は成長したシリコン単結晶を示
し、6はこれらを収容する円筒状気密容器である。lは
本発明に係わる磁界印加用コイルを示すもので、気密容
器の周囲に同軸状に巻いである。巻数は1層当シ12回
で、2層に巻き、合計24回の場合を示す。さらにこれ
らコイル7は銅材質などよシなる導体部8とこれら導体
間を電気的に絶縁するだめの綿テープなどよシなる絶縁
部9および導体部8の発熱による温度上昇を防止するだ
めの冷却水部10とによ)構成される(b図参照)。ま
た11はコイルスを保持するための支持円筒である。[Example 1] FIG. 1 shows a case where the present invention is applied to CZ method silicon single crystal growth. In Figure 1, 1 is a silicon melt, 2 is a quartz crucible, 3 is a graphite crucible containing the quartz crucible, 4 is a heating element, 5 is a grown silicon single crystal, and 6 indicates these. It is a cylindrical airtight container that accommodates. 1 indicates a magnetic field applying coil according to the present invention, which is coaxially wound around the airtight container. The number of turns is 12 times per layer, and the case is shown in which two layers are wound for a total of 24 times. Furthermore, these coils 7 are connected to a conductor part 8 made of copper or other material, an insulating part 9 made of cotton tape or the like to electrically insulate these conductors, and a cooling part to prevent temperature rise due to heat generation in the conductor part 8. (see figure b). Further, 11 is a support cylinder for holding the coils.
第2図は第1図に示すコイルlの電気的接続回路図を示
す。第1図コイルlの第1層目は回路12に、第2層目
は回路13にそれぞれ相当し、本実施例の場合、第1層
と第2層を直列に接続した場合を示す。本実施例では示
していない3)¥i以上の多層に構成する場合、電源1
4の特性を考慮して直列および並列接続を適切に組合せ
れば良いことは詳述するまでもない。FIG. 2 shows an electrical connection circuit diagram of the coil l shown in FIG. The first layer of the coil I in FIG. 1 corresponds to the circuit 12, and the second layer corresponds to the circuit 13. In this embodiment, the first layer and the second layer are connected in series. 3) Not shown in this example When configuring in multiple layers of ¥i or more, the power supply 1
There is no need to explain in detail that it is sufficient to appropriately combine series and parallel connections in consideration of the characteristics of No. 4.
第3図は第1図に示すコイルIの冷却水の接続回路図を
示す。第1図コイルlの第1層目は回路15に、第2層
目は回路16にそれぞれ相当し、並列接続した場合を示
す。冷却水の接続も、電気的接続の場合と同様に冷却水
供給源の特性(圧力、流量)K整合させて適切な的・並
列回路の組合せを行なえば良いことは詳述を要しない。FIG. 3 shows a cooling water connection circuit diagram of the coil I shown in FIG. 1. The first layer of the coil I in FIG. 1 corresponds to the circuit 15, and the second layer corresponds to the circuit 16, respectively, and shows a case where they are connected in parallel. It does not need to be explained in detail that the connection of the cooling water can be made by matching the characteristics (pressure, flow rate) of the cooling water supply source and combining appropriate targets and parallel circuits in the same manner as in the case of electrical connections.
なお、本実施例におけるコイル7の寸法は内径350m
、、外径400八m1.高さは300ya、、iJi量
は約50しであった。In addition, the dimensions of the coil 7 in this example are an inner diameter of 350 m.
,,outer diameter 4008 m1. The height was 300 ya, and the amount of iJi was about 50.
以上説明した構成の本発明の磁界印加結晶製造装置を結
晶育成に適用した例を以下に述べる。コイルIの導体部
8に直流電流■約150OAを印加し、るつは2の中心
部に約10000eの磁界を発生させた。この場合の冷
却水部10の流量Qは約、25チへ、□であシ、第3図
の冷却水回路の入口17と出口18の圧力差は約3〜r
/Cm2であった。第4図には発生磁界のるつぼ2内の
中心軸方向(a)図および面内の強IW分布の測定例(
b)図を示す。これらの分布特性は磁界発生用コイル7
と測定場所との幾可学的関係とコイルスに印加した電流
値から計算でめられる値と良く一致1〜でいることが確
認された。従って本発明の方法に」;れば、磁界の強さ
や、分布が周囲の状況に影憂・・されない有効な磁界発
生手段であることを示している。次にこのような磁界印
加のもとで育成した結晶の特性はすでに報告(、Tpn
、 、J、 Appl phys、 21 (1982
)、 L545 )したようにドーパント濃度の均一性
、敏素濃度の制御性、さらに結晶育成時の形状制御性な
どの点で、非常に優れた結果を得ることができた。An example in which the magnetic field application crystal manufacturing apparatus of the present invention having the configuration described above is applied to crystal growth will be described below. A direct current of approximately 150 OA was applied to the conductor portion 8 of the coil I, and a magnetic field of approximately 10,000 e was generated at the center of the coil 2. In this case, the flow rate Q of the cooling water section 10 is about 25 cm, and the pressure difference between the inlet 17 and the outlet 18 of the cooling water circuit in Fig. 3 is about 3~r.
/Cm2. Figure 4 shows a diagram (a) of the generated magnetic field in the central axis direction in the crucible 2 and an example of measurement of the in-plane strong IW distribution (
b) Show the diagram. These distribution characteristics are the magnetic field generation coil 7.
It was confirmed that the values were in good agreement with the values calculated from the geometric relationship between the measurement location and the current value applied to the coils. Therefore, it is shown that the method of the present invention is an effective means for generating a magnetic field in which the strength and distribution of the magnetic field are not influenced by the surrounding conditions. Next, the characteristics of crystals grown under the application of such a magnetic field have already been reported (, Tpn
, J. Appl phys, 21 (1982
), L545), very excellent results were obtained in terms of uniformity of dopant concentration, controllability of oxygen concentration, and controllability of shape during crystal growth.
〔実施例2〕
第5図は本発明をLEC法GaAs単結晶育成に適用し
た場合を示す。第5図において19はGaAs融液、2
0は石英または熱分解窒化ボロン(PBN)などよシな
るるつぼ、21は液体封止剤B2O3,22は成長した
GaAs単結晶、23は発熱体であり、これらは高耐圧
気密容器24の内部に配置されている。(5は本発明に
係わる磁界印加用ごイルを示すもので、本実施例の場合
、高耐圧気密容器24に埋込む構造で、周囲に同軸状に
一層だけ巻いである。コイル2−5は導電性の高い銅材
質などよシなる導体部26と@)合う導体部26間を電
気的に絶縁する絶縁部27および導体部26の発熱によ
る温度上昇を防止するだめの冷却水部28とによ多構成
されることは実施例1と全く同様である。[Example 2] FIG. 5 shows a case where the present invention is applied to GaAs single crystal growth using the LEC method. In FIG. 5, 19 is a GaAs melt, 2
0 is a crucible made of quartz or pyrolytic boron nitride (PBN), 21 is a liquid sealant B2O3, 22 is a grown GaAs single crystal, 23 is a heating element, and these are placed inside a high pressure-resistant airtight container 24. It is located. (Reference numeral 5 indicates a coil for applying a magnetic field according to the present invention. In the case of this embodiment, it has a structure embedded in a high pressure-resistant airtight container 24, and is coaxially wound in a single layer around the periphery. The coil 2-5 is The conductor part 26 is made of a material such as a highly conductive copper material, the insulating part 27 electrically insulates the mating conductor part 26, and the cooling water part 28 which prevents temperature rise due to heat generation of the conductor part 26. The configuration is exactly the same as in the first embodiment.
なお29I′iコイル乞5を保持する支持円筒である。Note that 29I'i is a support cylinder that holds the coil 5.
上述の本発明の磁界印加LEO法結高結晶製造装置成し
たGaAs単結晶は実施例1のCZ法シリコン単結晶と
同様、磁界によシ融液の熱対流が低減された結果、ドー
パント濃度の変動の少い均一特性が得られた。さらに結
晶育成時に成長界面の温度が安定化し、ネッキングによ
る細くて長い頚部形成や、直径制御が非常に容易になる
など新たな効果が明らかになった。Similar to the CZ method silicon single crystal of Example 1, the GaAs single crystal produced by the above-mentioned magnetic field applied LEO method high crystal production apparatus of the present invention has a lower dopant concentration as a result of the reduction of thermal convection of the melt due to the magnetic field. Uniform characteristics with little variation were obtained. Furthermore, new effects have been revealed, such as stabilizing the temperature at the growth interface during crystal growth, forming a thin and long neck due to necking, and making diameter control much easier.
〔実施例3〕
第6図は、本発明をFZ法シリコン単結晶育成に適用し
た場合を示す。第6図において30は原料シリコン棒、
31はlit帯、32は成長したシリコン単結晶、33
は融帯31を加熱するワークコイルであり、これらは気
密容器34の内部に収容されている。また気密容器34
には観測窓35が設けてあシ、結晶育成時には融帯31
を観測できるようになっている。次に36a 、 36
bは本発明に係わる磁界印加用コイルを示し、本実施例
の場合観測窓35をはさんで上・下に2個のコイル36
a。[Example 3] FIG. 6 shows a case where the present invention is applied to silicon single crystal growth using the FZ method. In Fig. 6, 30 is a raw silicon rod;
31 is a lit band, 32 is a grown silicon single crystal, 33
are work coils that heat the melting zone 31, and these are housed inside the airtight container 34. In addition, the airtight container 34
An observation window 35 is provided in the molten zone 31 during crystal growth.
can now be observed. Next 36a, 36
b shows a magnetic field applying coil according to the present invention; in this embodiment, there are two coils 36 above and below across the observation window 35;
a.
36bを設ける構造となっている。このような構造にお
いても上部コイル36a下部コイル36bの形状および
相対位置を適切に選択することによシ結晶成長が行なわ
れる融帯31に均一な磁界を印加できることは電磁気宇
の教えるところであQ、説明を要しない。さらにコイル
36a 、 36bは導体部37゜絶縁部38(b図参
照)、冷却水部39よ多構成することは実施例1および
2と同様である。また」二部コイル36aと下部コイル
36bの電気的接続、冷却水人口40および41と出口
42および43の接続方法も実施例1で例示した(第2
図、第3図)方法により、行えることも同様である。本
実施例の磁界印加FZ法によシ育成したシリコン単結晶
はドーパント濃度のミクロな場所的な変動が著しく低減
(ドーパントとしてりん(p)を用いた場合で115以
下となった)していることがひるがシ、抵抗測定によシ
確認された。さらに結晶育成時の融帯部の温度分布を印
加する磁界により大幅に変化できることも明らかになっ
た。このことは従来困難であったFZ法結晶成長時の固
液界面形状の制御が可能となるなどの効果もある。36b is provided. Even in such a structure, electromagnetism teaches that by appropriately selecting the shape and relative position of the upper coil 36a and the lower coil 36b, it is possible to apply a uniform magnetic field to the melt zone 31 where crystal growth occurs. No explanation required. Further, as in the first and second embodiments, the coils 36a and 36b are composed of a conductor section 37, an insulating section 38 (see figure b), and a cooling water section 39. In addition, the electrical connection between the second coil 36a and the lower coil 36b and the connection method between the cooling water ports 40 and 41 and the outlets 42 and 43 were also exemplified in Embodiment 1.
The same thing can be done by the method (Fig. 3). In the silicon single crystal grown by the magnetic field application FZ method of this example, the microscopic local variation in dopant concentration is significantly reduced (below 115 when phosphorus (p) is used as the dopant). This was confirmed by resistance measurements. Furthermore, it was revealed that the temperature distribution in the melt zone during crystal growth can be significantly changed by the applied magnetic field. This has the effect that it becomes possible to control the shape of the solid-liquid interface during crystal growth using the FZ method, which has been difficult in the past.
上記の説明においで、直流磁界を形成するためコイルに
流す電流として直流を用いた場合について説明したが、
直流に近い脈流電流を用いて直流磁界を形成しても、同
様の効果を有するものである。In the above explanation, we have explained the case where direct current is used as the current flowing through the coil to form a direct current magnetic field.
Even if a DC magnetic field is formed using a pulsating current close to DC, the same effect can be obtained.
(発明の効果)
以上説明したように、本発明による磁界印加結晶製造装
置は磁界発生のためのコイルの構成に特徴がちり、すで
に公知の磁性体鉄心を用いた大形の電磁石に比べて小形
のコイルのみで十分な強磁界の発生可能であり、従って
消費11L力が低減できる。また、3つの実施例でも述
べたように0ZpJ、FZ法、 LEC法の他にブリッ
ジマン法、カイロポーラス法など各拙の従来の結晶製造
装値に適用が可能であり、設計の自由度が大きい。さら
に適切に分離したコイルの電気的接続と冷却水j綿は直
列および並列に組合せることにより、広範囲の強さの磁
界発生が容易に可能であるなど多くの利点がある。(Effects of the Invention) As explained above, the magnetic field application crystal manufacturing apparatus according to the present invention has different characteristics in the configuration of the coil for generating the magnetic field, and is smaller than the large electromagnet using the known magnetic core. It is possible to generate a sufficiently strong magnetic field with only one coil, and therefore the power consumption of 11L can be reduced. In addition, as mentioned in the three examples, in addition to the 0ZpJ, FZ method, and LEC method, it can be applied to various conventional crystal manufacturing methods such as the Bridgman method and the chiroporous method, increasing the degree of freedom in design. big. Furthermore, by combining appropriately separated electrical connections of coils and cooling water in series and parallel, there are many advantages such as the ability to easily generate magnetic fields with a wide range of strengths.
第1図は本発明の実施例を示す装置の断面図、第2図お
よび第3図は同実施例の電気接続図および冷却水接続図
、第4図は磁界分布特性図をそれぞれ示す。また第5図
および第6図は他の実施例を示す装置の断面図をそれぞ
れ示す。
1・・・シリコン融液、2・・・5芙るつぼ、3・・・
グラファイトるつぼ、4・・発熱体、5・・・シリコン
単結晶、6・・・気密容器、I・・・コイル、8・・・
導体部、9・・・絶縁部、10・・・冷却水部、11・
・・支持円筒、】2゜13・・・電気的回路を示すコイ
ル・シンボル、14・・・電源を示すシンボル、15.
16・・冷却水回路、17・・冷却水の入口、18・・
・冷却水の出口、19・・・GaAs融液、20・・・
るつは、21・・・液体封止剤、22・・・GaAe単
結晶、23−・・発熱体、24−・・気密容器、25・
・・コイル、26・・・導体部、27・・・絶メ・、部
、28・・・冷却水部、29・・・支持円筒、30−・
、・逮料シリコン棒1.31・・融帯、32・・・シリ
コン単結晶、33・・・ワークコイル、34・・・気密
容器、35・・・観測窓、3旦a・・上部コイノ・、°
下部コイル、37・・・導体部、38・・・絶縁部、
39・・・冷却水部、40.41・・・冷却水入口、4
2.43・・・冷却水出1コ
特許出願人
第1図
(a)
第2図 第3図
第4図
6008001000
蔗野ハ513(○e)
−80−4004080
る1はψIし゛カ゛)り距離(mm)
第5図
(a)
(b)
第6図
(a)
(b)FIG. 1 is a sectional view of an apparatus showing an embodiment of the present invention, FIGS. 2 and 3 are electrical connection diagrams and cooling water connection diagrams of the same embodiment, and FIG. 4 is a magnetic field distribution characteristic diagram. Moreover, FIGS. 5 and 6 each show a sectional view of an apparatus showing another embodiment. 1...Silicon melt, 2...5 crucibles, 3...
Graphite crucible, 4... Heating element, 5... Silicon single crystal, 6... Airtight container, I... Coil, 8...
Conductor part, 9... Insulation part, 10... Cooling water part, 11.
...Support cylinder, ]2゜13...Coil symbol showing electrical circuit, 14...Symbol showing power source, 15.
16...Cooling water circuit, 17...Cooling water inlet, 18...
・Cooling water outlet, 19...GaAs melt, 20...
21--Liquid sealant, 22--GaAe single crystal, 23--Heating element, 24--Airtight container, 25--
...Coil, 26...Conductor part, 27...Extreme part, 28...Cooling water part, 29...Support cylinder, 30--
,・Arrest silicon rod 1. 31... Melting zone, 32... Silicon single crystal, 33... Work coil, 34... Airtight container, 35... Observation window, 3dan a... Upper Koino・,°
Lower coil, 37... Conductor part, 38... Insulating part,
39...Cooling water section, 40.41...Cooling water inlet, 4
2.43... Cooling water output 1 Patent applicant Figure 1 (a) Figure 2 Figure 3 Figure 4 6008001000 Konnoha513(○e) -80-4004080 1 is ψI Distance (mm) Fig. 5 (a) (b) Fig. 6 (a) (b)
Claims (2)
うに設けられている加熱手段および保温手段、さらに外
部雰囲気との分離のための気密容器と、を備える結晶製
造装置において、前記の気密容器の周囲に同軸上に巻い
た複数巻の導体を設け、前記の導体に直流電流又は直流
に近い脈流電流を印加し、高温加熱された融体または融
帯に直流磁界を印加した状態で結晶成長を行わしめるこ
とを特徴とする磁界印加結晶製造方法。(1) A crystal manufacturing apparatus comprising a melt or a melt zone heated to a high temperature, a heating means and a heat retaining means provided to surround the melt, and an airtight container for separating the melt from the external atmosphere. A multi-turn conductor coaxially wound around an airtight container was provided, and a direct current or pulsating current close to direct current was applied to the conductor, and a direct current magnetic field was applied to the melt or melt zone heated to a high temperature. 1. A method for producing crystals by applying a magnetic field, characterized by causing crystal growth in a state in which crystals are grown.
にして設けられた加熱手段および保温手段さらに外部雰
囲気との分離のための気密容器とからなる結晶製造装置
において、前記の気密容器の周囲に同軸状に巻いた複数
巻の導体と、前記の導体間を絶縁する手段およびこの導
体を冷却する手段とを備えたことを特徴とする磁界印加
結晶製造装置。(2) In a crystal manufacturing apparatus comprising a melt or melt zone heated to a high temperature, a heating means and a heat insulating means provided to surround the melt, and an airtight container for separation from the external atmosphere, the area around the airtight container is 1. An apparatus for producing a crystal by applying a magnetic field, comprising: a plurality of turns of a conductor coaxially wound around the conductor; means for insulating the conductors; and means for cooling the conductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12025983A JPS6016891A (en) | 1983-07-04 | 1983-07-04 | Preparation of crystal by application of magnetic field and its device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12025983A JPS6016891A (en) | 1983-07-04 | 1983-07-04 | Preparation of crystal by application of magnetic field and its device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6016891A true JPS6016891A (en) | 1985-01-28 |
Family
ID=14781770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12025983A Pending JPS6016891A (en) | 1983-07-04 | 1983-07-04 | Preparation of crystal by application of magnetic field and its device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6016891A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6259596A (en) * | 1985-09-09 | 1987-03-16 | Hitachi Cable Ltd | Crystal pulling up apparatus for magnetic field-applied liquid encapsulated pulling up process |
JPH10270237A (en) * | 1997-03-27 | 1998-10-09 | Super Silicon Kenkyusho:Kk | Method for deciding mounting position and deciding method of arranging direction of equipment or element |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5051688A (en) * | 1973-09-07 | 1975-05-08 | ||
JPS57149894A (en) * | 1981-03-09 | 1982-09-16 | Nippon Telegr & Teleph Corp <Ntt> | Method and apparatus for growing grystal |
-
1983
- 1983-07-04 JP JP12025983A patent/JPS6016891A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5051688A (en) * | 1973-09-07 | 1975-05-08 | ||
JPS57149894A (en) * | 1981-03-09 | 1982-09-16 | Nippon Telegr & Teleph Corp <Ntt> | Method and apparatus for growing grystal |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6259596A (en) * | 1985-09-09 | 1987-03-16 | Hitachi Cable Ltd | Crystal pulling up apparatus for magnetic field-applied liquid encapsulated pulling up process |
JPH10270237A (en) * | 1997-03-27 | 1998-10-09 | Super Silicon Kenkyusho:Kk | Method for deciding mounting position and deciding method of arranging direction of equipment or element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2144338A (en) | Single crystal manufacturing apparatus | |
JP2020522457A (en) | Magnetic substance used for pulling single crystal magnetic field and method for pulling single crystal magnetic field | |
Frosch et al. | The preparation and floating zone processing of gallium phosphide | |
JP3127981B2 (en) | High frequency induction heating device | |
CA1290654C (en) | Monocrystal growing apparatus | |
KR101885210B1 (en) | Heating unit and Apparatus for growing a ingot including the unit | |
US5268063A (en) | Method of manufacturing single-crystal silicon | |
JPS6016891A (en) | Preparation of crystal by application of magnetic field and its device | |
JPS59121183A (en) | Crystal growth method | |
JPS6041036B2 (en) | GaAs floating zone melting grass crystal production equipment | |
JP2004517797A (en) | Magnetic field heating furnace for manufacturing semiconductor substrate and method of using the same | |
McMasters et al. | Single crystal growth by the horizontal levitation zone melting method | |
JPS6036392A (en) | Apparatus for pulling single crystal | |
EP0511663A1 (en) | Method of producing silicon single crystal | |
AU2002246865A1 (en) | Magnetic field furnace and a method of using the same to manufacture semiconductor substrates | |
JPWO2002036861A1 (en) | Apparatus and method for producing silicon semiconductor single crystal | |
JPS60264391A (en) | Crystallizer | |
JPS59195595A (en) | Apparatus for crystal growth | |
JPS6270286A (en) | Apparatus for producting single crystal | |
JPH0864354A (en) | High frequency induction heating coil device | |
JPS58120592A (en) | Growing device for crystal | |
US3292574A (en) | Apparatus for pyrolytic precipitation of semi-conductor material from a gaseous compound thereof | |
JPH08310890A (en) | Production of crystal | |
JPS6033297A (en) | Pulling device for single crystal semiconductor | |
JPS60171292A (en) | Method and device for producing single crystal |